// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2020 Google LLC * Author: Quentin Perret */ #include #include #include #include #include #include #include #include #include #include #include #include #define KVM_HOST_S2_FLAGS (KVM_PGTABLE_S2_NOFWB | KVM_PGTABLE_S2_IDMAP) struct host_mmu host_mmu; static struct hyp_pool host_s2_pool; static DEFINE_PER_CPU(struct pkvm_hyp_vm *, __current_vm); #define current_vm (*this_cpu_ptr(&__current_vm)) static void guest_lock_component(struct pkvm_hyp_vm *vm) { hyp_spin_lock(&vm->lock); current_vm = vm; } static void guest_unlock_component(struct pkvm_hyp_vm *vm) { current_vm = NULL; hyp_spin_unlock(&vm->lock); } static void host_lock_component(void) { hyp_spin_lock(&host_mmu.lock); } static void host_unlock_component(void) { hyp_spin_unlock(&host_mmu.lock); } static void hyp_lock_component(void) { hyp_spin_lock(&pkvm_pgd_lock); } static void hyp_unlock_component(void) { hyp_spin_unlock(&pkvm_pgd_lock); } static void *host_s2_zalloc_pages_exact(size_t size) { void *addr = hyp_alloc_pages(&host_s2_pool, get_order(size)); hyp_split_page(hyp_virt_to_page(addr)); /* * The size of concatenated PGDs is always a power of two of PAGE_SIZE, * so there should be no need to free any of the tail pages to make the * allocation exact. */ WARN_ON(size != (PAGE_SIZE << get_order(size))); return addr; } static void *host_s2_zalloc_page(void *pool) { return hyp_alloc_pages(pool, 0); } static void host_s2_get_page(void *addr) { hyp_get_page(&host_s2_pool, addr); } static void host_s2_put_page(void *addr) { hyp_put_page(&host_s2_pool, addr); } static void host_s2_free_unlinked_table(void *addr, s8 level) { kvm_pgtable_stage2_free_unlinked(&host_mmu.mm_ops, addr, level); } static int prepare_s2_pool(void *pgt_pool_base) { unsigned long nr_pages, pfn; int ret; pfn = hyp_virt_to_pfn(pgt_pool_base); nr_pages = host_s2_pgtable_pages(); ret = hyp_pool_init(&host_s2_pool, pfn, nr_pages, 0); if (ret) return ret; host_mmu.mm_ops = (struct kvm_pgtable_mm_ops) { .zalloc_pages_exact = host_s2_zalloc_pages_exact, .zalloc_page = host_s2_zalloc_page, .free_unlinked_table = host_s2_free_unlinked_table, .phys_to_virt = hyp_phys_to_virt, .virt_to_phys = hyp_virt_to_phys, .page_count = hyp_page_count, .get_page = host_s2_get_page, .put_page = host_s2_put_page, }; return 0; } static void prepare_host_vtcr(void) { u32 parange, phys_shift; /* The host stage 2 is id-mapped, so use parange for T0SZ */ parange = kvm_get_parange(id_aa64mmfr0_el1_sys_val); phys_shift = id_aa64mmfr0_parange_to_phys_shift(parange); host_mmu.arch.mmu.vtcr = kvm_get_vtcr(id_aa64mmfr0_el1_sys_val, id_aa64mmfr1_el1_sys_val, phys_shift); } static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot); int kvm_host_prepare_stage2(void *pgt_pool_base) { struct kvm_s2_mmu *mmu = &host_mmu.arch.mmu; int ret; prepare_host_vtcr(); hyp_spin_lock_init(&host_mmu.lock); mmu->arch = &host_mmu.arch; ret = prepare_s2_pool(pgt_pool_base); if (ret) return ret; ret = __kvm_pgtable_stage2_init(&host_mmu.pgt, mmu, &host_mmu.mm_ops, KVM_HOST_S2_FLAGS, host_stage2_force_pte_cb); if (ret) return ret; mmu->pgd_phys = __hyp_pa(host_mmu.pgt.pgd); mmu->pgt = &host_mmu.pgt; atomic64_set(&mmu->vmid.id, 0); return 0; } static bool guest_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot) { return true; } static void *guest_s2_zalloc_pages_exact(size_t size) { void *addr = hyp_alloc_pages(¤t_vm->pool, get_order(size)); WARN_ON(size != (PAGE_SIZE << get_order(size))); hyp_split_page(hyp_virt_to_page(addr)); return addr; } static void guest_s2_free_pages_exact(void *addr, unsigned long size) { u8 order = get_order(size); unsigned int i; for (i = 0; i < (1 << order); i++) hyp_put_page(¤t_vm->pool, addr + (i * PAGE_SIZE)); } static void *guest_s2_zalloc_page(void *mc) { struct hyp_page *p; void *addr; addr = hyp_alloc_pages(¤t_vm->pool, 0); if (addr) return addr; addr = pop_hyp_memcache(mc, hyp_phys_to_virt); if (!addr) return addr; memset(addr, 0, PAGE_SIZE); p = hyp_virt_to_page(addr); p->refcount = 1; p->order = 0; return addr; } static void guest_s2_get_page(void *addr) { hyp_get_page(¤t_vm->pool, addr); } static void guest_s2_put_page(void *addr) { hyp_put_page(¤t_vm->pool, addr); } static void clean_dcache_guest_page(void *va, size_t size) { __clean_dcache_guest_page(hyp_fixmap_map(__hyp_pa(va)), size); hyp_fixmap_unmap(); } static void invalidate_icache_guest_page(void *va, size_t size) { __invalidate_icache_guest_page(hyp_fixmap_map(__hyp_pa(va)), size); hyp_fixmap_unmap(); } int kvm_guest_prepare_stage2(struct pkvm_hyp_vm *vm, void *pgd) { struct kvm_s2_mmu *mmu = &vm->kvm.arch.mmu; unsigned long nr_pages; int ret; nr_pages = kvm_pgtable_stage2_pgd_size(mmu->vtcr) >> PAGE_SHIFT; ret = hyp_pool_init(&vm->pool, hyp_virt_to_pfn(pgd), nr_pages, 0); if (ret) return ret; hyp_spin_lock_init(&vm->lock); vm->mm_ops = (struct kvm_pgtable_mm_ops) { .zalloc_pages_exact = guest_s2_zalloc_pages_exact, .free_pages_exact = guest_s2_free_pages_exact, .zalloc_page = guest_s2_zalloc_page, .phys_to_virt = hyp_phys_to_virt, .virt_to_phys = hyp_virt_to_phys, .page_count = hyp_page_count, .get_page = guest_s2_get_page, .put_page = guest_s2_put_page, .dcache_clean_inval_poc = clean_dcache_guest_page, .icache_inval_pou = invalidate_icache_guest_page, }; guest_lock_component(vm); ret = __kvm_pgtable_stage2_init(mmu->pgt, mmu, &vm->mm_ops, 0, guest_stage2_force_pte_cb); guest_unlock_component(vm); if (ret) return ret; vm->kvm.arch.mmu.pgd_phys = __hyp_pa(vm->pgt.pgd); return 0; } void reclaim_guest_pages(struct pkvm_hyp_vm *vm, struct kvm_hyp_memcache *mc) { struct hyp_page *page; void *addr; /* Dump all pgtable pages in the hyp_pool */ guest_lock_component(vm); kvm_pgtable_stage2_destroy(&vm->pgt); vm->kvm.arch.mmu.pgd_phys = 0ULL; guest_unlock_component(vm); /* Drain the hyp_pool into the memcache */ addr = hyp_alloc_pages(&vm->pool, 0); while (addr) { page = hyp_virt_to_page(addr); page->refcount = 0; page->order = 0; push_hyp_memcache(mc, addr, hyp_virt_to_phys); WARN_ON(__pkvm_hyp_donate_host(hyp_virt_to_pfn(addr), 1)); addr = hyp_alloc_pages(&vm->pool, 0); } } int __pkvm_prot_finalize(void) { struct kvm_s2_mmu *mmu = &host_mmu.arch.mmu; struct kvm_nvhe_init_params *params = this_cpu_ptr(&kvm_init_params); if (params->hcr_el2 & HCR_VM) return -EPERM; params->vttbr = kvm_get_vttbr(mmu); params->vtcr = mmu->vtcr; params->hcr_el2 |= HCR_VM; /* * The CMO below not only cleans the updated params to the * PoC, but also provides the DSB that ensures ongoing * page-table walks that have started before we trapped to EL2 * have completed. */ kvm_flush_dcache_to_poc(params, sizeof(*params)); write_sysreg(params->hcr_el2, hcr_el2); __load_stage2(&host_mmu.arch.mmu, &host_mmu.arch); /* * Make sure to have an ISB before the TLB maintenance below but only * when __load_stage2() doesn't include one already. */ asm(ALTERNATIVE("isb", "nop", ARM64_WORKAROUND_SPECULATIVE_AT)); /* Invalidate stale HCR bits that may be cached in TLBs */ __tlbi(vmalls12e1); dsb(nsh); isb(); return 0; } static int host_stage2_unmap_dev_all(void) { struct kvm_pgtable *pgt = &host_mmu.pgt; struct memblock_region *reg; u64 addr = 0; int i, ret; /* Unmap all non-memory regions to recycle the pages */ for (i = 0; i < hyp_memblock_nr; i++, addr = reg->base + reg->size) { reg = &hyp_memory[i]; ret = kvm_pgtable_stage2_unmap(pgt, addr, reg->base - addr); if (ret) return ret; } return kvm_pgtable_stage2_unmap(pgt, addr, BIT(pgt->ia_bits) - addr); } struct kvm_mem_range { u64 start; u64 end; }; static struct memblock_region *find_mem_range(phys_addr_t addr, struct kvm_mem_range *range) { int cur, left = 0, right = hyp_memblock_nr; struct memblock_region *reg; phys_addr_t end; range->start = 0; range->end = ULONG_MAX; /* The list of memblock regions is sorted, binary search it */ while (left < right) { cur = (left + right) >> 1; reg = &hyp_memory[cur]; end = reg->base + reg->size; if (addr < reg->base) { right = cur; range->end = reg->base; } else if (addr >= end) { left = cur + 1; range->start = end; } else { range->start = reg->base; range->end = end; return reg; } } return NULL; } bool addr_is_memory(phys_addr_t phys) { struct kvm_mem_range range; return !!find_mem_range(phys, &range); } static bool is_in_mem_range(u64 addr, struct kvm_mem_range *range) { return range->start <= addr && addr < range->end; } static int check_range_allowed_memory(u64 start, u64 end) { struct memblock_region *reg; struct kvm_mem_range range; /* * Callers can't check the state of a range that overlaps memory and * MMIO regions, so ensure [start, end[ is in the same kvm_mem_range. */ reg = find_mem_range(start, &range); if (!is_in_mem_range(end - 1, &range)) return -EINVAL; if (!reg || reg->flags & MEMBLOCK_NOMAP) return -EPERM; return 0; } static bool range_is_memory(u64 start, u64 end) { struct kvm_mem_range r; if (!find_mem_range(start, &r)) return false; return is_in_mem_range(end - 1, &r); } static inline int __host_stage2_idmap(u64 start, u64 end, enum kvm_pgtable_prot prot) { return kvm_pgtable_stage2_map(&host_mmu.pgt, start, end - start, start, prot, &host_s2_pool, 0); } /* * The pool has been provided with enough pages to cover all of memory with * page granularity, but it is difficult to know how much of the MMIO range * we will need to cover upfront, so we may need to 'recycle' the pages if we * run out. */ #define host_stage2_try(fn, ...) \ ({ \ int __ret; \ hyp_assert_lock_held(&host_mmu.lock); \ __ret = fn(__VA_ARGS__); \ if (__ret == -ENOMEM) { \ __ret = host_stage2_unmap_dev_all(); \ if (!__ret) \ __ret = fn(__VA_ARGS__); \ } \ __ret; \ }) static inline bool range_included(struct kvm_mem_range *child, struct kvm_mem_range *parent) { return parent->start <= child->start && child->end <= parent->end; } static int host_stage2_adjust_range(u64 addr, struct kvm_mem_range *range) { struct kvm_mem_range cur; kvm_pte_t pte; s8 level; int ret; hyp_assert_lock_held(&host_mmu.lock); ret = kvm_pgtable_get_leaf(&host_mmu.pgt, addr, &pte, &level); if (ret) return ret; if (kvm_pte_valid(pte)) return -EAGAIN; if (pte) { WARN_ON(addr_is_memory(addr) && hyp_phys_to_page(addr)->host_state != PKVM_NOPAGE); return -EPERM; } do { u64 granule = kvm_granule_size(level); cur.start = ALIGN_DOWN(addr, granule); cur.end = cur.start + granule; level++; } while ((level <= KVM_PGTABLE_LAST_LEVEL) && !(kvm_level_supports_block_mapping(level) && range_included(&cur, range))); *range = cur; return 0; } int host_stage2_idmap_locked(phys_addr_t addr, u64 size, enum kvm_pgtable_prot prot) { return host_stage2_try(__host_stage2_idmap, addr, addr + size, prot); } static void __host_update_page_state(phys_addr_t addr, u64 size, enum pkvm_page_state state) { phys_addr_t end = addr + size; for (; addr < end; addr += PAGE_SIZE) hyp_phys_to_page(addr)->host_state = state; } int host_stage2_set_owner_locked(phys_addr_t addr, u64 size, u8 owner_id) { int ret; if (!addr_is_memory(addr)) return -EPERM; ret = host_stage2_try(kvm_pgtable_stage2_set_owner, &host_mmu.pgt, addr, size, &host_s2_pool, owner_id); if (ret) return ret; /* Don't forget to update the vmemmap tracking for the host */ if (owner_id == PKVM_ID_HOST) __host_update_page_state(addr, size, PKVM_PAGE_OWNED); else __host_update_page_state(addr, size, PKVM_NOPAGE); return 0; } static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot) { /* * Block mappings must be used with care in the host stage-2 as a * kvm_pgtable_stage2_map() operation targeting a page in the range of * an existing block will delete the block under the assumption that * mappings in the rest of the block range can always be rebuilt lazily. * That assumption is correct for the host stage-2 with RWX mappings * targeting memory or RW mappings targeting MMIO ranges (see * host_stage2_idmap() below which implements some of the host memory * abort logic). However, this is not safe for any other mappings where * the host stage-2 page-table is in fact the only place where this * state is stored. In all those cases, it is safer to use page-level * mappings, hence avoiding to lose the state because of side-effects in * kvm_pgtable_stage2_map(). */ if (range_is_memory(addr, end)) return prot != PKVM_HOST_MEM_PROT; else return prot != PKVM_HOST_MMIO_PROT; } static int host_stage2_idmap(u64 addr) { struct kvm_mem_range range; bool is_memory = !!find_mem_range(addr, &range); enum kvm_pgtable_prot prot; int ret; prot = is_memory ? PKVM_HOST_MEM_PROT : PKVM_HOST_MMIO_PROT; host_lock_component(); ret = host_stage2_adjust_range(addr, &range); if (ret) goto unlock; ret = host_stage2_idmap_locked(range.start, range.end - range.start, prot); unlock: host_unlock_component(); return ret; } void handle_host_mem_abort(struct kvm_cpu_context *host_ctxt) { struct kvm_vcpu_fault_info fault; u64 esr, addr; int ret = 0; esr = read_sysreg_el2(SYS_ESR); if (!__get_fault_info(esr, &fault)) { /* * We've presumably raced with a page-table change which caused * AT to fail, try again. */ return; } addr = (fault.hpfar_el2 & HPFAR_MASK) << 8; ret = host_stage2_idmap(addr); BUG_ON(ret && ret != -EAGAIN); } struct check_walk_data { enum pkvm_page_state desired; enum pkvm_page_state (*get_page_state)(kvm_pte_t pte, u64 addr); }; static int __check_page_state_visitor(const struct kvm_pgtable_visit_ctx *ctx, enum kvm_pgtable_walk_flags visit) { struct check_walk_data *d = ctx->arg; return d->get_page_state(ctx->old, ctx->addr) == d->desired ? 0 : -EPERM; } static int check_page_state_range(struct kvm_pgtable *pgt, u64 addr, u64 size, struct check_walk_data *data) { struct kvm_pgtable_walker walker = { .cb = __check_page_state_visitor, .arg = data, .flags = KVM_PGTABLE_WALK_LEAF, }; return kvm_pgtable_walk(pgt, addr, size, &walker); } static int __host_check_page_state_range(u64 addr, u64 size, enum pkvm_page_state state) { u64 end = addr + size; int ret; ret = check_range_allowed_memory(addr, end); if (ret) return ret; hyp_assert_lock_held(&host_mmu.lock); for (; addr < end; addr += PAGE_SIZE) { if (hyp_phys_to_page(addr)->host_state != state) return -EPERM; } return 0; } static int __host_set_page_state_range(u64 addr, u64 size, enum pkvm_page_state state) { if (hyp_phys_to_page(addr)->host_state == PKVM_NOPAGE) { int ret = host_stage2_idmap_locked(addr, size, PKVM_HOST_MEM_PROT); if (ret) return ret; } __host_update_page_state(addr, size, state); return 0; } static enum pkvm_page_state hyp_get_page_state(kvm_pte_t pte, u64 addr) { if (!kvm_pte_valid(pte)) return PKVM_NOPAGE; return pkvm_getstate(kvm_pgtable_hyp_pte_prot(pte)); } static int __hyp_check_page_state_range(u64 addr, u64 size, enum pkvm_page_state state) { struct check_walk_data d = { .desired = state, .get_page_state = hyp_get_page_state, }; hyp_assert_lock_held(&pkvm_pgd_lock); return check_page_state_range(&pkvm_pgtable, addr, size, &d); } static enum pkvm_page_state guest_get_page_state(kvm_pte_t pte, u64 addr) { if (!kvm_pte_valid(pte)) return PKVM_NOPAGE; return pkvm_getstate(kvm_pgtable_stage2_pte_prot(pte)); } static int __guest_check_page_state_range(struct pkvm_hyp_vcpu *vcpu, u64 addr, u64 size, enum pkvm_page_state state) { struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(vcpu); struct check_walk_data d = { .desired = state, .get_page_state = guest_get_page_state, }; hyp_assert_lock_held(&vm->lock); return check_page_state_range(&vm->pgt, addr, size, &d); } int __pkvm_host_share_hyp(u64 pfn) { u64 phys = hyp_pfn_to_phys(pfn); void *virt = __hyp_va(phys); enum kvm_pgtable_prot prot; u64 size = PAGE_SIZE; int ret; host_lock_component(); hyp_lock_component(); ret = __host_check_page_state_range(phys, size, PKVM_PAGE_OWNED); if (ret) goto unlock; if (IS_ENABLED(CONFIG_NVHE_EL2_DEBUG)) { ret = __hyp_check_page_state_range((u64)virt, size, PKVM_NOPAGE); if (ret) goto unlock; } prot = pkvm_mkstate(PAGE_HYP, PKVM_PAGE_SHARED_BORROWED); WARN_ON(pkvm_create_mappings_locked(virt, virt + size, prot)); WARN_ON(__host_set_page_state_range(phys, size, PKVM_PAGE_SHARED_OWNED)); unlock: hyp_unlock_component(); host_unlock_component(); return ret; } int __pkvm_host_unshare_hyp(u64 pfn) { u64 phys = hyp_pfn_to_phys(pfn); u64 virt = (u64)__hyp_va(phys); u64 size = PAGE_SIZE; int ret; host_lock_component(); hyp_lock_component(); ret = __host_check_page_state_range(phys, size, PKVM_PAGE_SHARED_OWNED); if (ret) goto unlock; ret = __hyp_check_page_state_range(virt, size, PKVM_PAGE_SHARED_BORROWED); if (ret) goto unlock; if (hyp_page_count((void *)virt)) { ret = -EBUSY; goto unlock; } WARN_ON(kvm_pgtable_hyp_unmap(&pkvm_pgtable, virt, size) != size); WARN_ON(__host_set_page_state_range(phys, size, PKVM_PAGE_OWNED)); unlock: hyp_unlock_component(); host_unlock_component(); return ret; } int __pkvm_host_donate_hyp(u64 pfn, u64 nr_pages) { u64 phys = hyp_pfn_to_phys(pfn); u64 size = PAGE_SIZE * nr_pages; void *virt = __hyp_va(phys); enum kvm_pgtable_prot prot; int ret; host_lock_component(); hyp_lock_component(); ret = __host_check_page_state_range(phys, size, PKVM_PAGE_OWNED); if (ret) goto unlock; if (IS_ENABLED(CONFIG_NVHE_EL2_DEBUG)) { ret = __hyp_check_page_state_range((u64)virt, size, PKVM_NOPAGE); if (ret) goto unlock; } prot = pkvm_mkstate(PAGE_HYP, PKVM_PAGE_OWNED); WARN_ON(pkvm_create_mappings_locked(virt, virt + size, prot)); WARN_ON(host_stage2_set_owner_locked(phys, size, PKVM_ID_HYP)); unlock: hyp_unlock_component(); host_unlock_component(); return ret; } int __pkvm_hyp_donate_host(u64 pfn, u64 nr_pages) { u64 phys = hyp_pfn_to_phys(pfn); u64 size = PAGE_SIZE * nr_pages; u64 virt = (u64)__hyp_va(phys); int ret; host_lock_component(); hyp_lock_component(); ret = __hyp_check_page_state_range(virt, size, PKVM_PAGE_OWNED); if (ret) goto unlock; if (IS_ENABLED(CONFIG_NVHE_EL2_DEBUG)) { ret = __host_check_page_state_range(phys, size, PKVM_NOPAGE); if (ret) goto unlock; } WARN_ON(kvm_pgtable_hyp_unmap(&pkvm_pgtable, virt, size) != size); WARN_ON(host_stage2_set_owner_locked(phys, size, PKVM_ID_HOST)); unlock: hyp_unlock_component(); host_unlock_component(); return ret; } int hyp_pin_shared_mem(void *from, void *to) { u64 cur, start = ALIGN_DOWN((u64)from, PAGE_SIZE); u64 end = PAGE_ALIGN((u64)to); u64 size = end - start; int ret; host_lock_component(); hyp_lock_component(); ret = __host_check_page_state_range(__hyp_pa(start), size, PKVM_PAGE_SHARED_OWNED); if (ret) goto unlock; ret = __hyp_check_page_state_range(start, size, PKVM_PAGE_SHARED_BORROWED); if (ret) goto unlock; for (cur = start; cur < end; cur += PAGE_SIZE) hyp_page_ref_inc(hyp_virt_to_page(cur)); unlock: hyp_unlock_component(); host_unlock_component(); return ret; } void hyp_unpin_shared_mem(void *from, void *to) { u64 cur, start = ALIGN_DOWN((u64)from, PAGE_SIZE); u64 end = PAGE_ALIGN((u64)to); host_lock_component(); hyp_lock_component(); for (cur = start; cur < end; cur += PAGE_SIZE) hyp_page_ref_dec(hyp_virt_to_page(cur)); hyp_unlock_component(); host_unlock_component(); } int __pkvm_host_share_ffa(u64 pfn, u64 nr_pages) { u64 phys = hyp_pfn_to_phys(pfn); u64 size = PAGE_SIZE * nr_pages; int ret; host_lock_component(); ret = __host_check_page_state_range(phys, size, PKVM_PAGE_OWNED); if (!ret) ret = __host_set_page_state_range(phys, size, PKVM_PAGE_SHARED_OWNED); host_unlock_component(); return ret; } int __pkvm_host_unshare_ffa(u64 pfn, u64 nr_pages) { u64 phys = hyp_pfn_to_phys(pfn); u64 size = PAGE_SIZE * nr_pages; int ret; host_lock_component(); ret = __host_check_page_state_range(phys, size, PKVM_PAGE_SHARED_OWNED); if (!ret) ret = __host_set_page_state_range(phys, size, PKVM_PAGE_OWNED); host_unlock_component(); return ret; } int __pkvm_host_share_guest(u64 pfn, u64 gfn, struct pkvm_hyp_vcpu *vcpu, enum kvm_pgtable_prot prot) { struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(vcpu); u64 phys = hyp_pfn_to_phys(pfn); u64 ipa = hyp_pfn_to_phys(gfn); struct hyp_page *page; int ret; if (prot & ~KVM_PGTABLE_PROT_RWX) return -EINVAL; ret = check_range_allowed_memory(phys, phys + PAGE_SIZE); if (ret) return ret; host_lock_component(); guest_lock_component(vm); ret = __guest_check_page_state_range(vcpu, ipa, PAGE_SIZE, PKVM_NOPAGE); if (ret) goto unlock; page = hyp_phys_to_page(phys); switch (page->host_state) { case PKVM_PAGE_OWNED: WARN_ON(__host_set_page_state_range(phys, PAGE_SIZE, PKVM_PAGE_SHARED_OWNED)); break; case PKVM_PAGE_SHARED_OWNED: if (page->host_share_guest_count) break; /* Only host to np-guest multi-sharing is tolerated */ WARN_ON(1); fallthrough; default: ret = -EPERM; goto unlock; } WARN_ON(kvm_pgtable_stage2_map(&vm->pgt, ipa, PAGE_SIZE, phys, pkvm_mkstate(prot, PKVM_PAGE_SHARED_BORROWED), &vcpu->vcpu.arch.pkvm_memcache, 0)); page->host_share_guest_count++; unlock: guest_unlock_component(vm); host_unlock_component(); return ret; } static int __check_host_shared_guest(struct pkvm_hyp_vm *vm, u64 *__phys, u64 ipa) { enum pkvm_page_state state; struct hyp_page *page; kvm_pte_t pte; u64 phys; s8 level; int ret; ret = kvm_pgtable_get_leaf(&vm->pgt, ipa, &pte, &level); if (ret) return ret; if (level != KVM_PGTABLE_LAST_LEVEL) return -E2BIG; if (!kvm_pte_valid(pte)) return -ENOENT; state = guest_get_page_state(pte, ipa); if (state != PKVM_PAGE_SHARED_BORROWED) return -EPERM; phys = kvm_pte_to_phys(pte); ret = check_range_allowed_memory(phys, phys + PAGE_SIZE); if (WARN_ON(ret)) return ret; page = hyp_phys_to_page(phys); if (page->host_state != PKVM_PAGE_SHARED_OWNED) return -EPERM; if (WARN_ON(!page->host_share_guest_count)) return -EINVAL; *__phys = phys; return 0; } int __pkvm_host_unshare_guest(u64 gfn, struct pkvm_hyp_vm *vm) { u64 ipa = hyp_pfn_to_phys(gfn); struct hyp_page *page; u64 phys; int ret; host_lock_component(); guest_lock_component(vm); ret = __check_host_shared_guest(vm, &phys, ipa); if (ret) goto unlock; ret = kvm_pgtable_stage2_unmap(&vm->pgt, ipa, PAGE_SIZE); if (ret) goto unlock; page = hyp_phys_to_page(phys); page->host_share_guest_count--; if (!page->host_share_guest_count) WARN_ON(__host_set_page_state_range(phys, PAGE_SIZE, PKVM_PAGE_OWNED)); unlock: guest_unlock_component(vm); host_unlock_component(); return ret; } int __pkvm_host_relax_perms_guest(u64 gfn, struct pkvm_hyp_vcpu *vcpu, enum kvm_pgtable_prot prot) { struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(vcpu); u64 ipa = hyp_pfn_to_phys(gfn); u64 phys; int ret; if (prot & ~KVM_PGTABLE_PROT_RWX) return -EINVAL; host_lock_component(); guest_lock_component(vm); ret = __check_host_shared_guest(vm, &phys, ipa); if (!ret) ret = kvm_pgtable_stage2_relax_perms(&vm->pgt, ipa, prot, 0); guest_unlock_component(vm); host_unlock_component(); return ret; } int __pkvm_host_wrprotect_guest(u64 gfn, struct pkvm_hyp_vm *vm) { u64 ipa = hyp_pfn_to_phys(gfn); u64 phys; int ret; host_lock_component(); guest_lock_component(vm); ret = __check_host_shared_guest(vm, &phys, ipa); if (!ret) ret = kvm_pgtable_stage2_wrprotect(&vm->pgt, ipa, PAGE_SIZE); guest_unlock_component(vm); host_unlock_component(); return ret; } int __pkvm_host_test_clear_young_guest(u64 gfn, bool mkold, struct pkvm_hyp_vm *vm) { u64 ipa = hyp_pfn_to_phys(gfn); u64 phys; int ret; host_lock_component(); guest_lock_component(vm); ret = __check_host_shared_guest(vm, &phys, ipa); if (!ret) ret = kvm_pgtable_stage2_test_clear_young(&vm->pgt, ipa, PAGE_SIZE, mkold); guest_unlock_component(vm); host_unlock_component(); return ret; } int __pkvm_host_mkyoung_guest(u64 gfn, struct pkvm_hyp_vcpu *vcpu) { struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(vcpu); u64 ipa = hyp_pfn_to_phys(gfn); u64 phys; int ret; host_lock_component(); guest_lock_component(vm); ret = __check_host_shared_guest(vm, &phys, ipa); if (!ret) kvm_pgtable_stage2_mkyoung(&vm->pgt, ipa, 0); guest_unlock_component(vm); host_unlock_component(); return ret; }