/* SPDX-License-Identifier: GPL-2.0-only */ /* * * Copyright SUSE Linux Products GmbH 2010 * * Authors: Alexander Graf */ #ifndef __ASM_KVM_BOOK3S_64_H__ #define __ASM_KVM_BOOK3S_64_H__ #include #include #include #include #include #include /* * Structure for a nested guest, that is, for a guest that is managed by * one of our guests. */ struct kvm_nested_guest { struct kvm *l1_host; /* L1 VM that owns this nested guest */ int l1_lpid; /* lpid L1 guest thinks this guest is */ int shadow_lpid; /* real lpid of this nested guest */ pgd_t *shadow_pgtable; /* our page table for this guest */ u64 l1_gr_to_hr; /* L1's addr of part'n-scoped table */ u64 process_table; /* process table entry for this guest */ long refcnt; /* number of pointers to this struct */ struct mutex tlb_lock; /* serialize page faults and tlbies */ struct kvm_nested_guest *next; cpumask_t need_tlb_flush; short prev_cpu[NR_CPUS]; u8 radix; /* is this nested guest radix */ }; /* * We define a nested rmap entry as a single 64-bit quantity * 0xFFF0000000000000 12-bit lpid field * 0x000FFFFFFFFFF000 40-bit guest 4k page frame number * 0x0000000000000001 1-bit single entry flag */ #define RMAP_NESTED_LPID_MASK 0xFFF0000000000000UL #define RMAP_NESTED_LPID_SHIFT (52) #define RMAP_NESTED_GPA_MASK 0x000FFFFFFFFFF000UL #define RMAP_NESTED_IS_SINGLE_ENTRY 0x0000000000000001UL /* Structure for a nested guest rmap entry */ struct rmap_nested { struct llist_node list; u64 rmap; }; /* * for_each_nest_rmap_safe - iterate over the list of nested rmap entries * safe against removal of the list entry or NULL list * @pos: a (struct rmap_nested *) to use as a loop cursor * @node: pointer to the first entry * NOTE: this can be NULL * @rmapp: an (unsigned long *) in which to return the rmap entries on each * iteration * NOTE: this must point to already allocated memory * * The nested_rmap is a llist of (struct rmap_nested) entries pointed to by the * rmap entry in the memslot. The list is always terminated by a "single entry" * stored in the list element of the final entry of the llist. If there is ONLY * a single entry then this is itself in the rmap entry of the memslot, not a * llist head pointer. * * Note that the iterator below assumes that a nested rmap entry is always * non-zero. This is true for our usage because the LPID field is always * non-zero (zero is reserved for the host). * * This should be used to iterate over the list of rmap_nested entries with * processing done on the u64 rmap value given by each iteration. This is safe * against removal of list entries and it is always safe to call free on (pos). * * e.g. * struct rmap_nested *cursor; * struct llist_node *first; * unsigned long rmap; * for_each_nest_rmap_safe(cursor, first, &rmap) { * do_something(rmap); * free(cursor); * } */ #define for_each_nest_rmap_safe(pos, node, rmapp) \ for ((pos) = llist_entry((node), typeof(*(pos)), list); \ (node) && \ (*(rmapp) = ((RMAP_NESTED_IS_SINGLE_ENTRY & ((u64) (node))) ? \ ((u64) (node)) : ((pos)->rmap))) && \ (((node) = ((RMAP_NESTED_IS_SINGLE_ENTRY & ((u64) (node))) ? \ ((struct llist_node *) ((pos) = NULL)) : \ (pos)->list.next)), true); \ (pos) = llist_entry((node), typeof(*(pos)), list)) struct kvm_nested_guest *kvmhv_get_nested(struct kvm *kvm, int l1_lpid, bool create); void kvmhv_put_nested(struct kvm_nested_guest *gp); int kvmhv_nested_next_lpid(struct kvm *kvm, int lpid); /* Encoding of first parameter for H_TLB_INVALIDATE */ #define H_TLBIE_P1_ENC(ric, prs, r) (___PPC_RIC(ric) | ___PPC_PRS(prs) | \ ___PPC_R(r)) /* Power architecture requires HPT is at least 256kiB, at most 64TiB */ #define PPC_MIN_HPT_ORDER 18 #define PPC_MAX_HPT_ORDER 46 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE static inline struct kvmppc_book3s_shadow_vcpu *svcpu_get(struct kvm_vcpu *vcpu) { preempt_disable(); return &get_paca()->shadow_vcpu; } static inline void svcpu_put(struct kvmppc_book3s_shadow_vcpu *svcpu) { preempt_enable(); } #endif #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE static inline bool kvm_is_radix(struct kvm *kvm) { return kvm->arch.radix; } static inline bool kvmhv_vcpu_is_radix(struct kvm_vcpu *vcpu) { bool radix; if (vcpu->arch.nested) radix = vcpu->arch.nested->radix; else radix = kvm_is_radix(vcpu->kvm); return radix; } unsigned long kvmppc_msr_hard_disable_set_facilities(struct kvm_vcpu *vcpu, unsigned long msr); int kvmhv_vcpu_entry_p9(struct kvm_vcpu *vcpu, u64 time_limit, unsigned long lpcr, u64 *tb); #define KVM_DEFAULT_HPT_ORDER 24 /* 16MB HPT by default */ #endif /* * Invalid HDSISR value which is used to indicate when HW has not set the reg. * Used to work around an errata. */ #define HDSISR_CANARY 0x7fff /* * We use a lock bit in HPTE dword 0 to synchronize updates and * accesses to each HPTE, and another bit to indicate non-present * HPTEs. */ #define HPTE_V_HVLOCK 0x40UL #define HPTE_V_ABSENT 0x20UL /* * We use this bit in the guest_rpte field of the revmap entry * to indicate a modified HPTE. */ #define HPTE_GR_MODIFIED (1ul << 62) /* These bits are reserved in the guest view of the HPTE */ #define HPTE_GR_RESERVED HPTE_GR_MODIFIED static inline long try_lock_hpte(__be64 *hpte, unsigned long bits) { unsigned long tmp, old; __be64 be_lockbit, be_bits; /* * We load/store in native endian, but the HTAB is in big endian. If * we byte swap all data we apply on the PTE we're implicitly correct * again. */ be_lockbit = cpu_to_be64(HPTE_V_HVLOCK); be_bits = cpu_to_be64(bits); asm volatile(" ldarx %0,0,%2\n" " and. %1,%0,%3\n" " bne 2f\n" " or %0,%0,%4\n" " stdcx. %0,0,%2\n" " beq+ 2f\n" " mr %1,%3\n" "2: isync" : "=&r" (tmp), "=&r" (old) : "r" (hpte), "r" (be_bits), "r" (be_lockbit) : "cc", "memory"); return old == 0; } static inline void unlock_hpte(__be64 *hpte, unsigned long hpte_v) { hpte_v &= ~HPTE_V_HVLOCK; asm volatile(PPC_RELEASE_BARRIER "" : : : "memory"); hpte[0] = cpu_to_be64(hpte_v); } /* Without barrier */ static inline void __unlock_hpte(__be64 *hpte, unsigned long hpte_v) { hpte_v &= ~HPTE_V_HVLOCK; hpte[0] = cpu_to_be64(hpte_v); } /* * These functions encode knowledge of the POWER7/8/9 hardware * interpretations of the HPTE LP (large page size) field. */ static inline int kvmppc_hpte_page_shifts(unsigned long h, unsigned long l) { unsigned int lphi; if (!(h & HPTE_V_LARGE)) return 12; /* 4kB */ lphi = (l >> 16) & 0xf; switch ((l >> 12) & 0xf) { case 0: return !lphi ? 24 : 0; /* 16MB */ break; case 1: return 16; /* 64kB */ break; case 3: return !lphi ? 34 : 0; /* 16GB */ break; case 7: return (16 << 8) + 12; /* 64kB in 4kB */ break; case 8: if (!lphi) return (24 << 8) + 16; /* 16MB in 64kkB */ if (lphi == 3) return (24 << 8) + 12; /* 16MB in 4kB */ break; } return 0; } static inline int kvmppc_hpte_base_page_shift(unsigned long h, unsigned long l) { return kvmppc_hpte_page_shifts(h, l) & 0xff; } static inline int kvmppc_hpte_actual_page_shift(unsigned long h, unsigned long l) { int tmp = kvmppc_hpte_page_shifts(h, l); if (tmp >= 0x100) tmp >>= 8; return tmp; } static inline unsigned long kvmppc_actual_pgsz(unsigned long v, unsigned long r) { int shift = kvmppc_hpte_actual_page_shift(v, r); if (shift) return 1ul << shift; return 0; } static inline int kvmppc_pgsize_lp_encoding(int base_shift, int actual_shift) { switch (base_shift) { case 12: switch (actual_shift) { case 12: return 0; case 16: return 7; case 24: return 0x38; } break; case 16: switch (actual_shift) { case 16: return 1; case 24: return 8; } break; case 24: return 0; } return -1; } static inline unsigned long compute_tlbie_rb(unsigned long v, unsigned long r, unsigned long pte_index) { int a_pgshift, b_pgshift; unsigned long rb = 0, va_low, sllp; b_pgshift = a_pgshift = kvmppc_hpte_page_shifts(v, r); if (a_pgshift >= 0x100) { b_pgshift &= 0xff; a_pgshift >>= 8; } /* * Ignore the top 14 bits of va * v have top two bits covering segment size, hence move * by 16 bits, Also clear the lower HPTE_V_AVPN_SHIFT (7) bits. * AVA field in v also have the lower 23 bits ignored. * For base page size 4K we need 14 .. 65 bits (so need to * collect extra 11 bits) * For others we need 14..14+i */ /* This covers 14..54 bits of va*/ rb = (v & ~0x7fUL) << 16; /* AVA field */ /* * AVA in v had cleared lower 23 bits. We need to derive * that from pteg index */ va_low = pte_index >> 3; if (v & HPTE_V_SECONDARY) va_low = ~va_low; /* * get the vpn bits from va_low using reverse of hashing. * In v we have va with 23 bits dropped and then left shifted * HPTE_V_AVPN_SHIFT (7) bits. Now to find vsid we need * right shift it with (SID_SHIFT - (23 - 7)) */ if (!(v & HPTE_V_1TB_SEG)) va_low ^= v >> (SID_SHIFT - 16); else va_low ^= v >> (SID_SHIFT_1T - 16); va_low &= 0x7ff; if (b_pgshift <= 12) { if (a_pgshift > 12) { sllp = (a_pgshift == 16) ? 5 : 4; rb |= sllp << 5; /* AP field */ } rb |= (va_low & 0x7ff) << 12; /* remaining 11 bits of AVA */ } else { int aval_shift; /* * remaining bits of AVA/LP fields * Also contain the rr bits of LP */ rb |= (va_low << b_pgshift) & 0x7ff000; /* * Now clear not needed LP bits based on actual psize */ rb &= ~((1ul << a_pgshift) - 1); /* * AVAL field 58..77 - base_page_shift bits of va * we have space for 58..64 bits, Missing bits should * be zero filled. +1 is to take care of L bit shift */ aval_shift = 64 - (77 - b_pgshift) + 1; rb |= ((va_low << aval_shift) & 0xfe); rb |= 1; /* L field */ rb |= r & 0xff000 & ((1ul << a_pgshift) - 1); /* LP field */ } /* * This sets both bits of the B field in the PTE. 0b1x values are * reserved, but those will have been filtered by kvmppc_do_h_enter. */ rb |= (v >> HPTE_V_SSIZE_SHIFT) << 8; /* B field */ return rb; } static inline unsigned long hpte_rpn(unsigned long ptel, unsigned long psize) { return ((ptel & HPTE_R_RPN) & ~(psize - 1)) >> PAGE_SHIFT; } static inline int hpte_is_writable(unsigned long ptel) { unsigned long pp = ptel & (HPTE_R_PP0 | HPTE_R_PP); return pp != PP_RXRX && pp != PP_RXXX; } static inline unsigned long hpte_make_readonly(unsigned long ptel) { if ((ptel & HPTE_R_PP0) || (ptel & HPTE_R_PP) == PP_RWXX) ptel = (ptel & ~HPTE_R_PP) | PP_RXXX; else ptel |= PP_RXRX; return ptel; } static inline bool hpte_cache_flags_ok(unsigned long hptel, bool is_ci) { unsigned int wimg = hptel & HPTE_R_WIMG; /* Handle SAO */ if (wimg == (HPTE_R_W | HPTE_R_I | HPTE_R_M) && cpu_has_feature(CPU_FTR_ARCH_206)) wimg = HPTE_R_M; if (!is_ci) return wimg == HPTE_R_M; /* * if host is mapped cache inhibited, make sure hptel also have * cache inhibited. */ if (wimg & HPTE_R_W) /* FIXME!! is this ok for all guest. ? */ return false; return !!(wimg & HPTE_R_I); } /* * If it's present and writable, atomically set dirty and referenced bits and * return the PTE, otherwise return 0. */ static inline pte_t kvmppc_read_update_linux_pte(pte_t *ptep, int writing) { pte_t old_pte, new_pte = __pte(0); while (1) { /* * Make sure we don't reload from ptep */ old_pte = READ_ONCE(*ptep); /* * wait until H_PAGE_BUSY is clear then set it atomically */ if (unlikely(pte_val(old_pte) & H_PAGE_BUSY)) { cpu_relax(); continue; } /* If pte is not present return None */ if (unlikely(!pte_present(old_pte))) return __pte(0); new_pte = pte_mkyoung(old_pte); if (writing && pte_write(old_pte)) new_pte = pte_mkdirty(new_pte); if (pte_xchg(ptep, old_pte, new_pte)) break; } return new_pte; } static inline bool hpte_read_permission(unsigned long pp, unsigned long key) { if (key) return PP_RWRX <= pp && pp <= PP_RXRX; return true; } static inline bool hpte_write_permission(unsigned long pp, unsigned long key) { if (key) return pp == PP_RWRW; return pp <= PP_RWRW; } static inline int hpte_get_skey_perm(unsigned long hpte_r, unsigned long amr) { unsigned long skey; skey = ((hpte_r & HPTE_R_KEY_HI) >> 57) | ((hpte_r & HPTE_R_KEY_LO) >> 9); return (amr >> (62 - 2 * skey)) & 3; } static inline void lock_rmap(unsigned long *rmap) { do { while (test_bit(KVMPPC_RMAP_LOCK_BIT, rmap)) cpu_relax(); } while (test_and_set_bit_lock(KVMPPC_RMAP_LOCK_BIT, rmap)); } static inline void unlock_rmap(unsigned long *rmap) { __clear_bit_unlock(KVMPPC_RMAP_LOCK_BIT, rmap); } static inline bool slot_is_aligned(struct kvm_memory_slot *memslot, unsigned long pagesize) { unsigned long mask = (pagesize >> PAGE_SHIFT) - 1; if (pagesize <= PAGE_SIZE) return true; return !(memslot->base_gfn & mask) && !(memslot->npages & mask); } /* * This works for 4k, 64k and 16M pages on POWER7, * and 4k and 16M pages on PPC970. */ static inline unsigned long slb_pgsize_encoding(unsigned long psize) { unsigned long senc = 0; if (psize > 0x1000) { senc = SLB_VSID_L; if (psize == 0x10000) senc |= SLB_VSID_LP_01; } return senc; } static inline int is_vrma_hpte(unsigned long hpte_v) { return (hpte_v & ~0xffffffUL) == (HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16))); } #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE /* * Note modification of an HPTE; set the HPTE modified bit * if anyone is interested. */ static inline void note_hpte_modification(struct kvm *kvm, struct revmap_entry *rev) { if (atomic_read(&kvm->arch.hpte_mod_interest)) rev->guest_rpte |= HPTE_GR_MODIFIED; } /* * Like kvm_memslots(), but for use in real mode when we can't do * any RCU stuff (since the secondary threads are offline from the * kernel's point of view), and we can't print anything. * Thus we use rcu_dereference_raw() rather than rcu_dereference_check(). */ static inline struct kvm_memslots *kvm_memslots_raw(struct kvm *kvm) { return rcu_dereference_raw_check(kvm->memslots[0]); } extern void kvmppc_mmu_debugfs_init(struct kvm *kvm); extern void kvmhv_radix_debugfs_init(struct kvm *kvm); extern void kvmhv_rm_send_ipi(int cpu); static inline unsigned long kvmppc_hpt_npte(struct kvm_hpt_info *hpt) { /* HPTEs are 2**4 bytes long */ return 1UL << (hpt->order - 4); } static inline unsigned long kvmppc_hpt_mask(struct kvm_hpt_info *hpt) { /* 128 (2**7) bytes in each HPTEG */ return (1UL << (hpt->order - 7)) - 1; } /* Set bits in a dirty bitmap, which is in LE format */ static inline void set_dirty_bits(unsigned long *map, unsigned long i, unsigned long npages) { if (npages >= 8) memset((char *)map + i / 8, 0xff, npages / 8); else for (; npages; ++i, --npages) __set_bit_le(i, map); } static inline void set_dirty_bits_atomic(unsigned long *map, unsigned long i, unsigned long npages) { if (npages >= 8) memset((char *)map + i / 8, 0xff, npages / 8); else for (; npages; ++i, --npages) set_bit_le(i, map); } static inline u64 sanitize_msr(u64 msr) { msr &= ~MSR_HV; msr |= MSR_ME; return msr; } #ifdef CONFIG_PPC_TRANSACTIONAL_MEM static inline void copy_from_checkpoint(struct kvm_vcpu *vcpu) { vcpu->arch.regs.ccr = vcpu->arch.cr_tm; vcpu->arch.regs.xer = vcpu->arch.xer_tm; vcpu->arch.regs.link = vcpu->arch.lr_tm; vcpu->arch.regs.ctr = vcpu->arch.ctr_tm; vcpu->arch.amr = vcpu->arch.amr_tm; vcpu->arch.ppr = vcpu->arch.ppr_tm; vcpu->arch.dscr = vcpu->arch.dscr_tm; vcpu->arch.tar = vcpu->arch.tar_tm; memcpy(vcpu->arch.regs.gpr, vcpu->arch.gpr_tm, sizeof(vcpu->arch.regs.gpr)); vcpu->arch.fp = vcpu->arch.fp_tm; vcpu->arch.vr = vcpu->arch.vr_tm; vcpu->arch.vrsave = vcpu->arch.vrsave_tm; } static inline void copy_to_checkpoint(struct kvm_vcpu *vcpu) { vcpu->arch.cr_tm = vcpu->arch.regs.ccr; vcpu->arch.xer_tm = vcpu->arch.regs.xer; vcpu->arch.lr_tm = vcpu->arch.regs.link; vcpu->arch.ctr_tm = vcpu->arch.regs.ctr; vcpu->arch.amr_tm = vcpu->arch.amr; vcpu->arch.ppr_tm = vcpu->arch.ppr; vcpu->arch.dscr_tm = vcpu->arch.dscr; vcpu->arch.tar_tm = vcpu->arch.tar; memcpy(vcpu->arch.gpr_tm, vcpu->arch.regs.gpr, sizeof(vcpu->arch.regs.gpr)); vcpu->arch.fp_tm = vcpu->arch.fp; vcpu->arch.vr_tm = vcpu->arch.vr; vcpu->arch.vrsave_tm = vcpu->arch.vrsave; } #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ extern int kvmppc_create_pte(struct kvm *kvm, pgd_t *pgtable, pte_t pte, unsigned long gpa, unsigned int level, unsigned long mmu_seq, u64 lpid, unsigned long *rmapp, struct rmap_nested **n_rmap); extern void kvmhv_insert_nest_rmap(struct kvm *kvm, unsigned long *rmapp, struct rmap_nested **n_rmap); extern void kvmhv_update_nest_rmap_rc_list(struct kvm *kvm, unsigned long *rmapp, unsigned long clr, unsigned long set, unsigned long hpa, unsigned long nbytes); extern void kvmhv_remove_nest_rmap_range(struct kvm *kvm, const struct kvm_memory_slot *memslot, unsigned long gpa, unsigned long hpa, unsigned long nbytes); static inline pte_t * find_kvm_secondary_pte_unlocked(struct kvm *kvm, unsigned long ea, unsigned *hshift) { pte_t *pte; pte = __find_linux_pte(kvm->arch.pgtable, ea, NULL, hshift); return pte; } static inline pte_t *find_kvm_secondary_pte(struct kvm *kvm, unsigned long ea, unsigned *hshift) { pte_t *pte; VM_WARN(!spin_is_locked(&kvm->mmu_lock), "%s called with kvm mmu_lock not held \n", __func__); pte = __find_linux_pte(kvm->arch.pgtable, ea, NULL, hshift); return pte; } static inline pte_t *find_kvm_host_pte(struct kvm *kvm, unsigned long mmu_seq, unsigned long ea, unsigned *hshift) { pte_t *pte; VM_WARN(!spin_is_locked(&kvm->mmu_lock), "%s called with kvm mmu_lock not held \n", __func__); if (mmu_invalidate_retry(kvm, mmu_seq)) return NULL; pte = __find_linux_pte(kvm->mm->pgd, ea, NULL, hshift); return pte; } extern pte_t *find_kvm_nested_guest_pte(struct kvm *kvm, unsigned long lpid, unsigned long ea, unsigned *hshift); int kvmhv_nestedv2_vcpu_create(struct kvm_vcpu *vcpu, struct kvmhv_nestedv2_io *io); void kvmhv_nestedv2_vcpu_free(struct kvm_vcpu *vcpu, struct kvmhv_nestedv2_io *io); int kvmhv_nestedv2_flush_vcpu(struct kvm_vcpu *vcpu, u64 time_limit); int kvmhv_nestedv2_set_ptbl_entry(unsigned long lpid, u64 dw0, u64 dw1); int kvmhv_nestedv2_parse_output(struct kvm_vcpu *vcpu); int kvmhv_nestedv2_set_vpa(struct kvm_vcpu *vcpu, unsigned long vpa); int kvmhv_counters_tracepoint_regfunc(void); void kvmhv_counters_tracepoint_unregfunc(void); int kvmhv_get_l2_counters_status(void); void kvmhv_set_l2_counters_status(int cpu, bool status); u64 kvmhv_get_l1_to_l2_cs_time(void); u64 kvmhv_get_l2_to_l1_cs_time(void); u64 kvmhv_get_l2_runtime_agg(void); u64 kvmhv_get_l1_to_l2_cs_time_vcpu(void); u64 kvmhv_get_l2_to_l1_cs_time_vcpu(void); u64 kvmhv_get_l2_runtime_agg_vcpu(void); #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */ #endif /* __ASM_KVM_BOOK3S_64_H__ */