// SPDX-License-Identifier: GPL-2.0-or-later /* * Procedures for creating, accessing and interpreting the device tree. * * Paul Mackerras August 1996. * Copyright (C) 1996-2005 Paul Mackerras. * * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. * {engebret|bergner}@us.ibm.com */ #undef DEBUG #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DEBUG #define DBG(fmt...) printk(KERN_ERR fmt) #else #define DBG(fmt...) #endif int *chip_id_lookup_table; #ifdef CONFIG_PPC64 int __initdata iommu_is_off; int __initdata iommu_force_on; unsigned long tce_alloc_start, tce_alloc_end; u64 ppc64_rma_size; unsigned int boot_cpu_node_count __ro_after_init; #endif static phys_addr_t first_memblock_size; static int __initdata boot_cpu_count; static int __init early_parse_mem(char *p) { if (!p) return 1; memory_limit = PAGE_ALIGN(memparse(p, &p)); DBG("memory limit = 0x%llx\n", memory_limit); return 0; } early_param("mem", early_parse_mem); /* * overlaps_initrd - check for overlap with page aligned extension of * initrd. */ static inline int overlaps_initrd(unsigned long start, unsigned long size) { #ifdef CONFIG_BLK_DEV_INITRD if (!initrd_start) return 0; return (start + size) > ALIGN_DOWN(initrd_start, PAGE_SIZE) && start <= ALIGN(initrd_end, PAGE_SIZE); #else return 0; #endif } /** * move_device_tree - move tree to an unused area, if needed. * * The device tree may be allocated beyond our memory limit, or inside the * crash kernel region for kdump, or within the page aligned range of initrd. * If so, move it out of the way. */ static void __init move_device_tree(void) { unsigned long start, size; void *p; DBG("-> move_device_tree\n"); start = __pa(initial_boot_params); size = fdt_totalsize(initial_boot_params); if ((memory_limit && (start + size) > PHYSICAL_START + memory_limit) || !memblock_is_memory(start + size - 1) || overlaps_crashkernel(start, size) || overlaps_initrd(start, size)) { p = memblock_alloc_raw(size, PAGE_SIZE); if (!p) panic("Failed to allocate %lu bytes to move device tree\n", size); memcpy(p, initial_boot_params, size); initial_boot_params = p; DBG("Moved device tree to 0x%px\n", p); } DBG("<- move_device_tree\n"); } /* * ibm,pa/pi-features is a per-cpu property that contains a string of * attribute descriptors, each of which has a 2 byte header plus up * to 254 bytes worth of processor attribute bits. First header * byte specifies the number of bytes following the header. * Second header byte is an "attribute-specifier" type, of which * zero is the only currently-defined value. * Implementation: Pass in the byte and bit offset for the feature * that we are interested in. The function will return -1 if the * pa-features property is missing, or a 1/0 to indicate if the feature * is supported/not supported. Note that the bit numbers are * big-endian to match the definition in PAPR. * Note: the 'clear' flag clears the feature if the bit is set in the * ibm,pa/pi-features property, it does not set the feature if the * bit is clear. */ struct ibm_feature { unsigned long cpu_features; /* CPU_FTR_xxx bit */ unsigned long mmu_features; /* MMU_FTR_xxx bit */ unsigned int cpu_user_ftrs; /* PPC_FEATURE_xxx bit */ unsigned int cpu_user_ftrs2; /* PPC_FEATURE2_xxx bit */ unsigned char pabyte; /* byte number in ibm,pa/pi-features */ unsigned char pabit; /* bit number (big-endian) */ unsigned char clear; /* if 1, pa bit set => clear feature */ }; static struct ibm_feature ibm_pa_features[] __initdata = { { .pabyte = 0, .pabit = 0, .cpu_user_ftrs = PPC_FEATURE_HAS_MMU }, { .pabyte = 0, .pabit = 1, .cpu_user_ftrs = PPC_FEATURE_HAS_FPU }, { .pabyte = 0, .pabit = 3, .cpu_features = CPU_FTR_CTRL }, { .pabyte = 0, .pabit = 6, .cpu_features = CPU_FTR_NOEXECUTE }, { .pabyte = 1, .pabit = 2, .mmu_features = MMU_FTR_CI_LARGE_PAGE }, #ifdef CONFIG_PPC_RADIX_MMU { .pabyte = 40, .pabit = 0, .mmu_features = MMU_FTR_TYPE_RADIX | MMU_FTR_GTSE }, #endif { .pabyte = 5, .pabit = 0, .cpu_features = CPU_FTR_REAL_LE, .cpu_user_ftrs = PPC_FEATURE_TRUE_LE }, /* * If the kernel doesn't support TM (ie CONFIG_PPC_TRANSACTIONAL_MEM=n), * we don't want to turn on TM here, so we use the *_COMP versions * which are 0 if the kernel doesn't support TM. */ { .pabyte = 22, .pabit = 0, .cpu_features = CPU_FTR_TM_COMP, .cpu_user_ftrs2 = PPC_FEATURE2_HTM_COMP | PPC_FEATURE2_HTM_NOSC_COMP }, { .pabyte = 64, .pabit = 0, .cpu_features = CPU_FTR_DAWR1 }, { .pabyte = 68, .pabit = 5, .cpu_features = CPU_FTR_DEXCR_NPHIE }, }; /* * ibm,pi-features property provides the support of processor specific * options not described in ibm,pa-features. Right now use byte 0, bit 3 * which indicates the occurrence of DSI interrupt when the paste operation * on the suspended NX window. */ static struct ibm_feature ibm_pi_features[] __initdata = { { .pabyte = 0, .pabit = 3, .mmu_features = MMU_FTR_NX_DSI }, { .pabyte = 0, .pabit = 4, .cpu_features = CPU_FTR_DBELL, .clear = 1 }, }; static void __init scan_features(unsigned long node, const unsigned char *ftrs, unsigned long tablelen, struct ibm_feature *fp, unsigned long ft_size) { unsigned long i, len, bit; /* find descriptor with type == 0 */ for (;;) { if (tablelen < 3) return; len = 2 + ftrs[0]; if (tablelen < len) return; /* descriptor 0 not found */ if (ftrs[1] == 0) break; tablelen -= len; ftrs += len; } /* loop over bits we know about */ for (i = 0; i < ft_size; ++i, ++fp) { if (fp->pabyte >= ftrs[0]) continue; bit = (ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1; if (bit && !fp->clear) { cur_cpu_spec->cpu_features |= fp->cpu_features; cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs; cur_cpu_spec->cpu_user_features2 |= fp->cpu_user_ftrs2; cur_cpu_spec->mmu_features |= fp->mmu_features; } else if (bit == fp->clear) { cur_cpu_spec->cpu_features &= ~fp->cpu_features; cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs; cur_cpu_spec->cpu_user_features2 &= ~fp->cpu_user_ftrs2; cur_cpu_spec->mmu_features &= ~fp->mmu_features; } } } static void __init check_cpu_features(unsigned long node, char *name, struct ibm_feature *fp, unsigned long size) { const unsigned char *pa_ftrs; int tablelen; pa_ftrs = of_get_flat_dt_prop(node, name, &tablelen); if (pa_ftrs == NULL) return; scan_features(node, pa_ftrs, tablelen, fp, size); } #ifdef CONFIG_PPC_64S_HASH_MMU static void __init init_mmu_slb_size(unsigned long node) { const __be32 *slb_size_ptr; slb_size_ptr = of_get_flat_dt_prop(node, "slb-size", NULL) ? : of_get_flat_dt_prop(node, "ibm,slb-size", NULL); if (slb_size_ptr) mmu_slb_size = be32_to_cpup(slb_size_ptr); } #else #define init_mmu_slb_size(node) do { } while(0) #endif static struct feature_property { const char *name; u32 min_value; unsigned long cpu_feature; unsigned long cpu_user_ftr; } feature_properties[] __initdata = { #ifdef CONFIG_ALTIVEC {"altivec", 0, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC}, {"ibm,vmx", 1, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC}, #endif /* CONFIG_ALTIVEC */ #ifdef CONFIG_VSX /* Yes, this _really_ is ibm,vmx == 2 to enable VSX */ {"ibm,vmx", 2, CPU_FTR_VSX, PPC_FEATURE_HAS_VSX}, #endif /* CONFIG_VSX */ #ifdef CONFIG_PPC64 {"ibm,dfp", 1, 0, PPC_FEATURE_HAS_DFP}, {"ibm,purr", 1, CPU_FTR_PURR, 0}, {"ibm,spurr", 1, CPU_FTR_SPURR, 0}, #endif /* CONFIG_PPC64 */ }; #if defined(CONFIG_44x) && defined(CONFIG_PPC_FPU) static __init void identical_pvr_fixup(unsigned long node) { unsigned int pvr; const char *model = of_get_flat_dt_prop(node, "model", NULL); /* * Since 440GR(x)/440EP(x) processors have the same pvr, * we check the node path and set bit 28 in the cur_cpu_spec * pvr for EP(x) processor version. This bit is always 0 in * the "real" pvr. Then we call identify_cpu again with * the new logical pvr to enable FPU support. */ if (model && strstr(model, "440EP")) { pvr = cur_cpu_spec->pvr_value | 0x8; identify_cpu(0, pvr); DBG("Using logical pvr %x for %s\n", pvr, model); } } #else #define identical_pvr_fixup(node) do { } while(0) #endif static void __init check_cpu_feature_properties(unsigned long node) { int i; struct feature_property *fp = feature_properties; const __be32 *prop; for (i = 0; i < (int)ARRAY_SIZE(feature_properties); ++i, ++fp) { prop = of_get_flat_dt_prop(node, fp->name, NULL); if (prop && be32_to_cpup(prop) >= fp->min_value) { cur_cpu_spec->cpu_features |= fp->cpu_feature; cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftr; } } } static int __init early_init_dt_scan_cpus(unsigned long node, const char *uname, int depth, void *data) { const char *type = of_get_flat_dt_prop(node, "device_type", NULL); const __be32 *cpu_version = NULL; const __be32 *prop; const __be32 *intserv; int i, nthreads; int len; int found = -1; int found_thread = 0; /* We are scanning "cpu" nodes only */ if (type == NULL || strcmp(type, "cpu") != 0) return 0; if (IS_ENABLED(CONFIG_PPC64)) boot_cpu_node_count++; /* Get physical cpuid */ intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len); if (!intserv) intserv = of_get_flat_dt_prop(node, "reg", &len); nthreads = len / sizeof(int); /* * Now see if any of these threads match our boot cpu. * NOTE: This must match the parsing done in smp_setup_cpu_maps. */ for (i = 0; i < nthreads; i++) { if (be32_to_cpu(intserv[i]) == fdt_boot_cpuid_phys(initial_boot_params)) { found = boot_cpu_count; found_thread = i; } #ifdef CONFIG_SMP /* logical cpu id is always 0 on UP kernels */ boot_cpu_count++; #endif } /* Not the boot CPU */ if (found < 0) return 0; boot_cpuid = found; if (IS_ENABLED(CONFIG_PPC64)) boot_cpu_hwid = be32_to_cpu(intserv[found_thread]); if (nr_cpu_ids % nthreads != 0) { set_nr_cpu_ids(ALIGN(nr_cpu_ids, nthreads)); pr_warn("nr_cpu_ids was not a multiple of threads_per_core, adjusted to %d\n", nr_cpu_ids); } if (boot_cpuid >= nr_cpu_ids) { // Remember boot core for smp_setup_cpu_maps() boot_core_hwid = be32_to_cpu(intserv[0]); pr_warn("Boot CPU %d (core hwid %d) >= nr_cpu_ids, adjusted boot CPU to %d\n", boot_cpuid, boot_core_hwid, found_thread); // Adjust boot CPU to appear on logical core 0 boot_cpuid = found_thread; } DBG("boot cpu: logical %d physical %d\n", boot_cpuid, be32_to_cpu(intserv[found_thread])); /* * PAPR defines "logical" PVR values for cpus that * meet various levels of the architecture: * 0x0f000001 Architecture version 2.04 * 0x0f000002 Architecture version 2.05 * If the cpu-version property in the cpu node contains * such a value, we call identify_cpu again with the * logical PVR value in order to use the cpu feature * bits appropriate for the architecture level. * * A POWER6 partition in "POWER6 architected" mode * uses the 0x0f000002 PVR value; in POWER5+ mode * it uses 0x0f000001. * * If we're using device tree CPU feature discovery then we don't * support the cpu-version property, and it's the responsibility of the * firmware/hypervisor to provide the correct feature set for the * architecture level via the ibm,powerpc-cpu-features binding. */ if (!dt_cpu_ftrs_in_use()) { prop = of_get_flat_dt_prop(node, "cpu-version", NULL); if (prop && (be32_to_cpup(prop) & 0xff000000) == 0x0f000000) { identify_cpu(0, be32_to_cpup(prop)); cpu_version = prop; } check_cpu_feature_properties(node); check_cpu_features(node, "ibm,pa-features", ibm_pa_features, ARRAY_SIZE(ibm_pa_features)); check_cpu_features(node, "ibm,pi-features", ibm_pi_features, ARRAY_SIZE(ibm_pi_features)); } identical_pvr_fixup(node); // We can now add the CPU name & PVR to the hardware description seq_buf_printf(&ppc_hw_desc, "%s 0x%04lx ", cur_cpu_spec->cpu_name, mfspr(SPRN_PVR)); if (cpu_version) seq_buf_printf(&ppc_hw_desc, "0x%04x ", be32_to_cpup(cpu_version)); init_mmu_slb_size(node); #ifdef CONFIG_PPC64 if (nthreads == 1) cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT; else if (!dt_cpu_ftrs_in_use()) cur_cpu_spec->cpu_features |= CPU_FTR_SMT; #endif return 0; } static int __init early_init_dt_scan_chosen_ppc(unsigned long node, const char *uname, int depth, void *data) { const unsigned long *lprop; /* All these set by kernel, so no need to convert endian */ /* Use common scan routine to determine if this is the chosen node */ if (early_init_dt_scan_chosen(data) < 0) return 0; #ifdef CONFIG_PPC64 /* check if iommu is forced on or off */ if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL) iommu_is_off = 1; if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL) iommu_force_on = 1; #endif /* mem=x on the command line is the preferred mechanism */ lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL); if (lprop) memory_limit = *lprop; #ifdef CONFIG_PPC64 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL); if (lprop) tce_alloc_start = *lprop; lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL); if (lprop) tce_alloc_end = *lprop; #endif #ifdef CONFIG_CRASH_RESERVE lprop = of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL); if (lprop) crashk_res.start = *lprop; lprop = of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL); if (lprop) crashk_res.end = crashk_res.start + *lprop - 1; #endif /* break now */ return 1; } /* * Compare the range against max mem limit and update * size if it cross the limit. */ #ifdef CONFIG_SPARSEMEM static bool __init validate_mem_limit(u64 base, u64 *size) { u64 max_mem = 1UL << (MAX_PHYSMEM_BITS); if (base >= max_mem) return false; if ((base + *size) > max_mem) *size = max_mem - base; return true; } #else static bool __init validate_mem_limit(u64 base, u64 *size) { return true; } #endif #ifdef CONFIG_PPC_PSERIES /* * Interpret the ibm dynamic reconfiguration memory LMBs. * This contains a list of memory blocks along with NUMA affinity * information. */ static int __init early_init_drmem_lmb(struct drmem_lmb *lmb, const __be32 **usm, void *data) { u64 base, size; int is_kexec_kdump = 0, rngs; base = lmb->base_addr; size = drmem_lmb_size(); rngs = 1; /* * Skip this block if the reserved bit is set in flags * or if the block is not assigned to this partition. */ if ((lmb->flags & DRCONF_MEM_RESERVED) || !(lmb->flags & DRCONF_MEM_ASSIGNED)) return 0; if (*usm) is_kexec_kdump = 1; if (is_kexec_kdump) { /* * For each memblock in ibm,dynamic-memory, a * corresponding entry in linux,drconf-usable-memory * property contains a counter 'p' followed by 'p' * (base, size) duple. Now read the counter from * linux,drconf-usable-memory property */ rngs = dt_mem_next_cell(dt_root_size_cells, usm); if (!rngs) /* there are no (base, size) duple */ return 0; } do { if (is_kexec_kdump) { base = dt_mem_next_cell(dt_root_addr_cells, usm); size = dt_mem_next_cell(dt_root_size_cells, usm); } if (iommu_is_off) { if (base >= 0x80000000ul) continue; if ((base + size) > 0x80000000ul) size = 0x80000000ul - base; } if (!validate_mem_limit(base, &size)) continue; DBG("Adding: %llx -> %llx\n", base, size); memblock_add(base, size); if (lmb->flags & DRCONF_MEM_HOTREMOVABLE) memblock_mark_hotplug(base, size); } while (--rngs); return 0; } #endif /* CONFIG_PPC_PSERIES */ static int __init early_init_dt_scan_memory_ppc(void) { #ifdef CONFIG_PPC_PSERIES const void *fdt = initial_boot_params; int node = fdt_path_offset(fdt, "/ibm,dynamic-reconfiguration-memory"); if (node > 0) walk_drmem_lmbs_early(node, NULL, early_init_drmem_lmb); #endif return early_init_dt_scan_memory(); } /* * For a relocatable kernel, we need to get the memstart_addr first, * then use it to calculate the virtual kernel start address. This has * to happen at a very early stage (before machine_init). In this case, * we just want to get the memstart_address and would not like to mess the * memblock at this stage. So introduce a variable to skip the memblock_add() * for this reason. */ #ifdef CONFIG_RELOCATABLE static int add_mem_to_memblock = 1; #else #define add_mem_to_memblock 1 #endif void __init early_init_dt_add_memory_arch(u64 base, u64 size) { #ifdef CONFIG_PPC64 if (iommu_is_off) { if (base >= 0x80000000ul) return; if ((base + size) > 0x80000000ul) size = 0x80000000ul - base; } #endif /* Keep track of the beginning of memory -and- the size of * the very first block in the device-tree as it represents * the RMA on ppc64 server */ if (base < memstart_addr) { memstart_addr = base; first_memblock_size = size; } /* Add the chunk to the MEMBLOCK list */ if (add_mem_to_memblock) { if (validate_mem_limit(base, &size)) memblock_add(base, size); } } static void __init early_reserve_mem_dt(void) { unsigned long i, dt_root; int len; const __be32 *prop; early_init_fdt_reserve_self(); early_init_fdt_scan_reserved_mem(); dt_root = of_get_flat_dt_root(); prop = of_get_flat_dt_prop(dt_root, "reserved-ranges", &len); if (!prop) return; DBG("Found new-style reserved-ranges\n"); /* Each reserved range is an (address,size) pair, 2 cells each, * totalling 4 cells per range. */ for (i = 0; i < len / (sizeof(*prop) * 4); i++) { u64 base, size; base = of_read_number(prop + (i * 4) + 0, 2); size = of_read_number(prop + (i * 4) + 2, 2); if (size) { DBG("reserving: %llx -> %llx\n", base, size); memblock_reserve(base, size); } } } static void __init early_reserve_mem(void) { __be64 *reserve_map; reserve_map = (__be64 *)(((unsigned long)initial_boot_params) + fdt_off_mem_rsvmap(initial_boot_params)); /* Look for the new "reserved-regions" property in the DT */ early_reserve_mem_dt(); #ifdef CONFIG_BLK_DEV_INITRD /* Then reserve the initrd, if any */ if (initrd_start && (initrd_end > initrd_start)) { memblock_reserve(ALIGN_DOWN(__pa(initrd_start), PAGE_SIZE), ALIGN(initrd_end, PAGE_SIZE) - ALIGN_DOWN(initrd_start, PAGE_SIZE)); } #endif /* CONFIG_BLK_DEV_INITRD */ if (!IS_ENABLED(CONFIG_PPC32)) return; /* * Handle the case where we might be booting from an old kexec * image that setup the mem_rsvmap as pairs of 32-bit values */ if (be64_to_cpup(reserve_map) > 0xffffffffull) { u32 base_32, size_32; __be32 *reserve_map_32 = (__be32 *)reserve_map; DBG("Found old 32-bit reserve map\n"); while (1) { base_32 = be32_to_cpup(reserve_map_32++); size_32 = be32_to_cpup(reserve_map_32++); if (size_32 == 0) break; DBG("reserving: %x -> %x\n", base_32, size_32); memblock_reserve(base_32, size_32); } return; } } #ifdef CONFIG_PPC_TRANSACTIONAL_MEM static bool tm_disabled __initdata; static int __init parse_ppc_tm(char *str) { bool res; if (kstrtobool(str, &res)) return -EINVAL; tm_disabled = !res; return 0; } early_param("ppc_tm", parse_ppc_tm); static void __init tm_init(void) { if (tm_disabled) { pr_info("Disabling hardware transactional memory (HTM)\n"); cur_cpu_spec->cpu_user_features2 &= ~(PPC_FEATURE2_HTM_NOSC | PPC_FEATURE2_HTM); cur_cpu_spec->cpu_features &= ~CPU_FTR_TM; return; } pnv_tm_init(); } #else static void tm_init(void) { } #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ static int __init early_init_dt_scan_model(unsigned long node, const char *uname, int depth, void *data) { const char *prop; if (depth != 0) return 0; prop = of_get_flat_dt_prop(node, "model", NULL); if (prop) seq_buf_printf(&ppc_hw_desc, "%s ", prop); /* break now */ return 1; } #ifdef CONFIG_PPC64 static void __init save_fscr_to_task(void) { /* * Ensure the init_task (pid 0, aka swapper) uses the value of FSCR we * have configured via the device tree features or via __init_FSCR(). * That value will then be propagated to pid 1 (init) and all future * processes. */ if (early_cpu_has_feature(CPU_FTR_ARCH_207S)) init_task.thread.fscr = mfspr(SPRN_FSCR); } #else static inline void save_fscr_to_task(void) {} #endif void __init early_init_devtree(void *params) { phys_addr_t int_vector_size; DBG(" -> early_init_devtree(%px)\n", params); /* Too early to BUG_ON(), do it by hand */ if (!early_init_dt_verify(params, __pa(params))) panic("BUG: Failed verifying flat device tree, bad version?"); of_scan_flat_dt(early_init_dt_scan_model, NULL); #ifdef CONFIG_PPC_RTAS /* Some machines might need RTAS info for debugging, grab it now. */ of_scan_flat_dt(early_init_dt_scan_rtas, NULL); #endif #ifdef CONFIG_PPC_POWERNV /* Some machines might need OPAL info for debugging, grab it now. */ of_scan_flat_dt(early_init_dt_scan_opal, NULL); /* Scan tree for ultravisor feature */ of_scan_flat_dt(early_init_dt_scan_ultravisor, NULL); #endif #if defined(CONFIG_FA_DUMP) || defined(CONFIG_PRESERVE_FA_DUMP) /* scan tree to see if dump is active during last boot */ of_scan_flat_dt(early_init_dt_scan_fw_dump, NULL); #endif /* Retrieve various informations from the /chosen node of the * device-tree, including the platform type, initrd location and * size, TCE reserve, and more ... */ of_scan_flat_dt(early_init_dt_scan_chosen_ppc, boot_command_line); /* Append additional parameters passed for fadump capture kernel */ fadump_append_bootargs(); /* Scan memory nodes and rebuild MEMBLOCKs */ early_init_dt_scan_root(); early_init_dt_scan_memory_ppc(); /* * As generic code authors expect to be able to use static keys * in early_param() handlers, we initialize the static keys just * before parsing early params (it's fine to call jump_label_init() * more than once). */ jump_label_init(); parse_early_param(); /* make sure we've parsed cmdline for mem= before this */ if (memory_limit) first_memblock_size = min_t(u64, first_memblock_size, memory_limit); setup_initial_memory_limit(memstart_addr, first_memblock_size); /* Reserve MEMBLOCK regions used by kernel, initrd, dt, etc... */ memblock_reserve(PHYSICAL_START, __pa(_end) - PHYSICAL_START); #ifdef CONFIG_PPC64 /* If relocatable, reserve at least 32k for interrupt vectors etc. */ int_vector_size = __end_interrupts - _stext; int_vector_size = max_t(phys_addr_t, SZ_32K, int_vector_size); #else /* If relocatable, reserve first 32k for interrupt vectors etc. */ int_vector_size = SZ_32K; #endif if (PHYSICAL_START > MEMORY_START) memblock_reserve(MEMORY_START, int_vector_size); reserve_kdump_trampoline(); #if defined(CONFIG_FA_DUMP) || defined(CONFIG_PRESERVE_FA_DUMP) /* * If we fail to reserve memory for firmware-assisted dump then * fallback to kexec based kdump. */ if (fadump_reserve_mem() == 0) #endif reserve_crashkernel(); early_reserve_mem(); if (memory_limit > memblock_phys_mem_size()) memory_limit = 0; /* Align down to 16 MB which is large page size with hash page translation */ memory_limit = ALIGN_DOWN(memory_limit ?: memblock_phys_mem_size(), SZ_16M); memblock_enforce_memory_limit(memory_limit); #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_PPC_4K_PAGES) if (!early_radix_enabled()) memblock_cap_memory_range(0, 1UL << (H_MAX_PHYSMEM_BITS)); #endif memblock_allow_resize(); memblock_dump_all(); DBG("Phys. mem: %llx\n", (unsigned long long)memblock_phys_mem_size()); /* We may need to relocate the flat tree, do it now. * FIXME .. and the initrd too? */ move_device_tree(); DBG("Scanning CPUs ...\n"); dt_cpu_ftrs_scan(); /* Retrieve CPU related informations from the flat tree * (altivec support, boot CPU ID, ...) */ of_scan_flat_dt(early_init_dt_scan_cpus, NULL); if (boot_cpuid < 0) { printk("Failed to identify boot CPU !\n"); BUG(); } save_fscr_to_task(); #if defined(CONFIG_SMP) && defined(CONFIG_PPC64) /* We'll later wait for secondaries to check in; there are * NCPUS-1 non-boot CPUs :-) */ spinning_secondaries = boot_cpu_count - 1; #endif mmu_early_init_devtree(); /* Setup param area for passing additional parameters to fadump capture kernel. */ fadump_setup_param_area(); #ifdef CONFIG_PPC_POWERNV /* Scan and build the list of machine check recoverable ranges */ of_scan_flat_dt(early_init_dt_scan_recoverable_ranges, NULL); #endif epapr_paravirt_early_init(); /* Now try to figure out if we are running on LPAR and so on */ pseries_probe_fw_features(); /* * Initialize pkey features and default AMR/IAMR values */ pkey_early_init_devtree(); #ifdef CONFIG_PPC_PS3 /* Identify PS3 firmware */ if (of_flat_dt_is_compatible(of_get_flat_dt_root(), "sony,ps3")) powerpc_firmware_features |= FW_FEATURE_PS3_POSSIBLE; #endif /* If kexec left a PLPKS password in the DT, get it and clear it */ plpks_early_init_devtree(); tm_init(); DBG(" <- early_init_devtree()\n"); } #ifdef CONFIG_RELOCATABLE /* * This function run before early_init_devtree, so we have to init * initial_boot_params. */ void __init early_get_first_memblock_info(void *params, phys_addr_t *size) { /* Setup flat device-tree pointer */ initial_boot_params = params; /* * Scan the memory nodes and set add_mem_to_memblock to 0 to avoid * mess the memblock. */ add_mem_to_memblock = 0; early_init_dt_scan_root(); early_init_dt_scan_memory_ppc(); add_mem_to_memblock = 1; if (size) *size = first_memblock_size; } #endif /******* * * New implementation of the OF "find" APIs, return a refcounted * object, call of_node_put() when done. The device tree and list * are protected by a rw_lock. * * Note that property management will need some locking as well, * this isn't dealt with yet. * *******/ /** * of_get_ibm_chip_id - Returns the IBM "chip-id" of a device * @np: device node of the device * * This looks for a property "ibm,chip-id" in the node or any * of its parents and returns its content, or -1 if it cannot * be found. */ int of_get_ibm_chip_id(struct device_node *np) { of_node_get(np); while (np) { u32 chip_id; /* * Skiboot may produce memory nodes that contain more than one * cell in chip-id, we only read the first one here. */ if (!of_property_read_u32(np, "ibm,chip-id", &chip_id)) { of_node_put(np); return chip_id; } np = of_get_next_parent(np); } return -1; } EXPORT_SYMBOL(of_get_ibm_chip_id); /** * cpu_to_chip_id - Return the cpus chip-id * @cpu: The logical cpu number. * * Return the value of the ibm,chip-id property corresponding to the given * logical cpu number. If the chip-id can not be found, returns -1. */ int cpu_to_chip_id(int cpu) { struct device_node *np; int ret = -1, idx; idx = cpu / threads_per_core; if (chip_id_lookup_table && chip_id_lookup_table[idx] != -1) return chip_id_lookup_table[idx]; np = of_get_cpu_node(cpu, NULL); if (np) { ret = of_get_ibm_chip_id(np); of_node_put(np); if (chip_id_lookup_table) chip_id_lookup_table[idx] = ret; } return ret; } EXPORT_SYMBOL(cpu_to_chip_id); bool arch_match_cpu_phys_id(int cpu, u64 phys_id) { #ifdef CONFIG_SMP /* * Early firmware scanning must use this rather than * get_hard_smp_processor_id because we don't have pacas allocated * until memory topology is discovered. */ if (cpu_to_phys_id != NULL) return (int)phys_id == cpu_to_phys_id[cpu]; #endif return (int)phys_id == get_hard_smp_processor_id(cpu); }