// SPDX-License-Identifier: GPL-2.0 #include #include #include #include int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address, pte_t *ptep, pte_t entry, int dirty) { asm goto(ALTERNATIVE("nop", "j %l[svvptc]", 0, RISCV_ISA_EXT_SVVPTC, 1) : : : : svvptc); if (!pte_same(ptep_get(ptep), entry)) __set_pte_at(vma->vm_mm, ptep, entry); /* * update_mmu_cache will unconditionally execute, handling both * the case that the PTE changed and the spurious fault case. */ return true; svvptc: if (!pte_same(ptep_get(ptep), entry)) { __set_pte_at(vma->vm_mm, ptep, entry); /* Here only not svadu is impacted */ flush_tlb_page(vma, address); return true; } return false; } int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) { if (!pte_young(ptep_get(ptep))) return 0; return test_and_clear_bit(_PAGE_ACCESSED_OFFSET, &pte_val(*ptep)); } EXPORT_SYMBOL_GPL(ptep_test_and_clear_young); #ifdef CONFIG_64BIT pud_t *pud_offset(p4d_t *p4d, unsigned long address) { if (pgtable_l4_enabled) return p4d_pgtable(p4dp_get(p4d)) + pud_index(address); return (pud_t *)p4d; } p4d_t *p4d_offset(pgd_t *pgd, unsigned long address) { if (pgtable_l5_enabled) return pgd_pgtable(pgdp_get(pgd)) + p4d_index(address); return (p4d_t *)pgd; } #endif #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) { return 0; } void p4d_clear_huge(p4d_t *p4d) { } int pud_set_huge(pud_t *pud, phys_addr_t phys, pgprot_t prot) { pud_t new_pud = pfn_pud(__phys_to_pfn(phys), prot); set_pud(pud, new_pud); return 1; } int pud_clear_huge(pud_t *pud) { if (!pud_leaf(pudp_get(pud))) return 0; pud_clear(pud); return 1; } int pud_free_pmd_page(pud_t *pud, unsigned long addr) { pmd_t *pmd = pud_pgtable(pudp_get(pud)); int i; pud_clear(pud); flush_tlb_kernel_range(addr, addr + PUD_SIZE); for (i = 0; i < PTRS_PER_PMD; i++) { if (!pmd_none(pmd[i])) { pte_t *pte = (pte_t *)pmd_page_vaddr(pmd[i]); pte_free_kernel(NULL, pte); } } pmd_free(NULL, pmd); return 1; } int pmd_set_huge(pmd_t *pmd, phys_addr_t phys, pgprot_t prot) { pmd_t new_pmd = pfn_pmd(__phys_to_pfn(phys), prot); set_pmd(pmd, new_pmd); return 1; } int pmd_clear_huge(pmd_t *pmd) { if (!pmd_leaf(pmdp_get(pmd))) return 0; pmd_clear(pmd); return 1; } int pmd_free_pte_page(pmd_t *pmd, unsigned long addr) { pte_t *pte = (pte_t *)pmd_page_vaddr(pmdp_get(pmd)); pmd_clear(pmd); flush_tlb_kernel_range(addr, addr + PMD_SIZE); pte_free_kernel(NULL, pte); return 1; } #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ #ifdef CONFIG_TRANSPARENT_HUGEPAGE pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp) { pmd_t pmd = pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp); VM_BUG_ON(address & ~HPAGE_PMD_MASK); VM_BUG_ON(pmd_trans_huge(pmdp_get(pmdp))); /* * When leaf PTE entries (regular pages) are collapsed into a leaf * PMD entry (huge page), a valid non-leaf PTE is converted into a * valid leaf PTE at the level 1 page table. Since the sfence.vma * forms that specify an address only apply to leaf PTEs, we need a * global flush here. collapse_huge_page() assumes these flushes are * eager, so just do the fence here. */ flush_tlb_mm(vma->vm_mm); return pmd; } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */