// SPDX-License-Identifier: GPL-2.0+ /* * Kernel Probes (KProbes) * * Copyright IBM Corp. 2002, 2006 * * s390 port, used ppc64 as template. Mike Grundy */ #define pr_fmt(fmt) "kprobes: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "entry.h" DEFINE_PER_CPU(struct kprobe *, current_kprobe); DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); struct kretprobe_blackpoint kretprobe_blacklist[] = { }; void *alloc_insn_page(void) { void *page; page = execmem_alloc(EXECMEM_KPROBES, PAGE_SIZE); if (!page) return NULL; set_memory_rox((unsigned long)page, 1); return page; } static void copy_instruction(struct kprobe *p) { kprobe_opcode_t insn[MAX_INSN_SIZE]; s64 disp, new_disp; u64 addr, new_addr; unsigned int len; len = insn_length(*p->addr >> 8); memcpy(&insn, p->addr, len); p->opcode = insn[0]; if (probe_is_insn_relative_long(&insn[0])) { /* * For pc-relative instructions in RIL-b or RIL-c format patch * the RI2 displacement field. The insn slot for the to be * patched instruction is within the same 4GB area like the * original instruction. Therefore the new displacement will * always fit. */ disp = *(s32 *)&insn[1]; addr = (u64)(unsigned long)p->addr; new_addr = (u64)(unsigned long)p->ainsn.insn; new_disp = ((addr + (disp * 2)) - new_addr) / 2; *(s32 *)&insn[1] = new_disp; } s390_kernel_write(p->ainsn.insn, &insn, len); } NOKPROBE_SYMBOL(copy_instruction); /* Check if paddr is at an instruction boundary */ static bool can_probe(unsigned long paddr) { unsigned long addr, offset = 0; kprobe_opcode_t insn; struct kprobe *kp; if (paddr & 0x01) return false; if (!kallsyms_lookup_size_offset(paddr, NULL, &offset)) return false; /* Decode instructions */ addr = paddr - offset; while (addr < paddr) { if (copy_from_kernel_nofault(&insn, (void *)addr, sizeof(insn))) return false; if (insn >> 8 == 0) { if (insn != BREAKPOINT_INSTRUCTION) { /* * Note that QEMU inserts opcode 0x0000 to implement * software breakpoints for guests. Since the size of * the original instruction is unknown, stop following * instructions and prevent setting a kprobe. */ return false; } /* * Check if the instruction has been modified by another * kprobe, in which case the original instruction is * decoded. */ kp = get_kprobe((void *)addr); if (!kp) { /* not a kprobe */ return false; } insn = kp->opcode; } addr += insn_length(insn >> 8); } return addr == paddr; } int arch_prepare_kprobe(struct kprobe *p) { if (!can_probe((unsigned long)p->addr)) return -EINVAL; /* Make sure the probe isn't going on a difficult instruction */ if (probe_is_prohibited_opcode(p->addr)) return -EINVAL; p->ainsn.insn = get_insn_slot(); if (!p->ainsn.insn) return -ENOMEM; copy_instruction(p); return 0; } NOKPROBE_SYMBOL(arch_prepare_kprobe); struct swap_insn_args { struct kprobe *p; unsigned int arm_kprobe : 1; }; static int swap_instruction(void *data) { struct swap_insn_args *args = data; struct kprobe *p = args->p; u16 opc; opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode; s390_kernel_write(p->addr, &opc, sizeof(opc)); return 0; } NOKPROBE_SYMBOL(swap_instruction); void arch_arm_kprobe(struct kprobe *p) { struct swap_insn_args args = {.p = p, .arm_kprobe = 1}; if (MACHINE_HAS_SEQ_INSN) { swap_instruction(&args); text_poke_sync(); } else { stop_machine_cpuslocked(swap_instruction, &args, NULL); } } NOKPROBE_SYMBOL(arch_arm_kprobe); void arch_disarm_kprobe(struct kprobe *p) { struct swap_insn_args args = {.p = p, .arm_kprobe = 0}; if (MACHINE_HAS_SEQ_INSN) { swap_instruction(&args); text_poke_sync(); } else { stop_machine_cpuslocked(swap_instruction, &args, NULL); } } NOKPROBE_SYMBOL(arch_disarm_kprobe); void arch_remove_kprobe(struct kprobe *p) { if (!p->ainsn.insn) return; free_insn_slot(p->ainsn.insn, 0); p->ainsn.insn = NULL; } NOKPROBE_SYMBOL(arch_remove_kprobe); static void enable_singlestep(struct kprobe_ctlblk *kcb, struct pt_regs *regs, unsigned long ip) { union { struct ctlreg regs[3]; struct { struct ctlreg control; struct ctlreg start; struct ctlreg end; }; } per_kprobe; /* Set up the PER control registers %cr9-%cr11 */ per_kprobe.control.val = PER_EVENT_IFETCH; per_kprobe.start.val = ip; per_kprobe.end.val = ip; /* Save control regs and psw mask */ __local_ctl_store(9, 11, kcb->kprobe_saved_ctl); kcb->kprobe_saved_imask = regs->psw.mask & (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT); /* Set PER control regs, turns on single step for the given address */ __local_ctl_load(9, 11, per_kprobe.regs); regs->psw.mask |= PSW_MASK_PER; regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT); regs->psw.addr = ip; } NOKPROBE_SYMBOL(enable_singlestep); static void disable_singlestep(struct kprobe_ctlblk *kcb, struct pt_regs *regs, unsigned long ip) { /* Restore control regs and psw mask, set new psw address */ __local_ctl_load(9, 11, kcb->kprobe_saved_ctl); regs->psw.mask &= ~PSW_MASK_PER; regs->psw.mask |= kcb->kprobe_saved_imask; regs->psw.addr = ip; } NOKPROBE_SYMBOL(disable_singlestep); /* * Activate a kprobe by storing its pointer to current_kprobe. The * previous kprobe is stored in kcb->prev_kprobe. A stack of up to * two kprobes can be active, see KPROBE_REENTER. */ static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p) { kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe); kcb->prev_kprobe.status = kcb->kprobe_status; __this_cpu_write(current_kprobe, p); } NOKPROBE_SYMBOL(push_kprobe); /* * Deactivate a kprobe by backing up to the previous state. If the * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL, * for any other state prev_kprobe.kp will be NULL. */ static void pop_kprobe(struct kprobe_ctlblk *kcb) { __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); kcb->kprobe_status = kcb->prev_kprobe.status; kcb->prev_kprobe.kp = NULL; } NOKPROBE_SYMBOL(pop_kprobe); static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p) { switch (kcb->kprobe_status) { case KPROBE_HIT_SSDONE: case KPROBE_HIT_ACTIVE: kprobes_inc_nmissed_count(p); break; case KPROBE_HIT_SS: case KPROBE_REENTER: default: /* * A kprobe on the code path to single step an instruction * is a BUG. The code path resides in the .kprobes.text * section and is executed with interrupts disabled. */ pr_err("Failed to recover from reentered kprobes.\n"); dump_kprobe(p); BUG(); } } NOKPROBE_SYMBOL(kprobe_reenter_check); static int kprobe_handler(struct pt_regs *regs) { struct kprobe_ctlblk *kcb; struct kprobe *p; /* * We want to disable preemption for the entire duration of kprobe * processing. That includes the calls to the pre/post handlers * and single stepping the kprobe instruction. */ preempt_disable(); kcb = get_kprobe_ctlblk(); p = get_kprobe((void *)(regs->psw.addr - 2)); if (p) { if (kprobe_running()) { /* * We have hit a kprobe while another is still * active. This can happen in the pre and post * handler. Single step the instruction of the * new probe but do not call any handler function * of this secondary kprobe. * push_kprobe and pop_kprobe saves and restores * the currently active kprobe. */ kprobe_reenter_check(kcb, p); push_kprobe(kcb, p); kcb->kprobe_status = KPROBE_REENTER; } else { /* * If we have no pre-handler or it returned 0, we * continue with single stepping. If we have a * pre-handler and it returned non-zero, it prepped * for changing execution path, so get out doing * nothing more here. */ push_kprobe(kcb, p); kcb->kprobe_status = KPROBE_HIT_ACTIVE; if (p->pre_handler && p->pre_handler(p, regs)) { pop_kprobe(kcb); preempt_enable_no_resched(); return 1; } kcb->kprobe_status = KPROBE_HIT_SS; } enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn); return 1; } /* else: * No kprobe at this address and no active kprobe. The trap has * not been caused by a kprobe breakpoint. The race of breakpoint * vs. kprobe remove does not exist because on s390 as we use * stop_machine to arm/disarm the breakpoints. */ preempt_enable_no_resched(); return 0; } NOKPROBE_SYMBOL(kprobe_handler); /* * Called after single-stepping. p->addr is the address of the * instruction whose first byte has been replaced by the "breakpoint" * instruction. To avoid the SMP problems that can occur when we * temporarily put back the original opcode to single-step, we * single-stepped a copy of the instruction. The address of this * copy is p->ainsn.insn. */ static void resume_execution(struct kprobe *p, struct pt_regs *regs) { struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); unsigned long ip = regs->psw.addr; int fixup = probe_get_fixup_type(p->ainsn.insn); if (fixup & FIXUP_PSW_NORMAL) ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn; if (fixup & FIXUP_BRANCH_NOT_TAKEN) { int ilen = insn_length(p->ainsn.insn[0] >> 8); if (ip - (unsigned long) p->ainsn.insn == ilen) ip = (unsigned long) p->addr + ilen; } if (fixup & FIXUP_RETURN_REGISTER) { int reg = (p->ainsn.insn[0] & 0xf0) >> 4; regs->gprs[reg] += (unsigned long) p->addr - (unsigned long) p->ainsn.insn; } disable_singlestep(kcb, regs, ip); } NOKPROBE_SYMBOL(resume_execution); static int post_kprobe_handler(struct pt_regs *regs) { struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); struct kprobe *p = kprobe_running(); if (!p) return 0; resume_execution(p, regs); if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) { kcb->kprobe_status = KPROBE_HIT_SSDONE; p->post_handler(p, regs, 0); } pop_kprobe(kcb); preempt_enable_no_resched(); /* * if somebody else is singlestepping across a probe point, psw mask * will have PER set, in which case, continue the remaining processing * of do_single_step, as if this is not a probe hit. */ if (regs->psw.mask & PSW_MASK_PER) return 0; return 1; } NOKPROBE_SYMBOL(post_kprobe_handler); static int kprobe_trap_handler(struct pt_regs *regs, int trapnr) { struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); struct kprobe *p = kprobe_running(); switch(kcb->kprobe_status) { case KPROBE_HIT_SS: case KPROBE_REENTER: /* * We are here because the instruction being single * stepped caused a page fault. We reset the current * kprobe and the nip points back to the probe address * and allow the page fault handler to continue as a * normal page fault. */ disable_singlestep(kcb, regs, (unsigned long) p->addr); pop_kprobe(kcb); preempt_enable_no_resched(); break; case KPROBE_HIT_ACTIVE: case KPROBE_HIT_SSDONE: /* * In case the user-specified fault handler returned * zero, try to fix up. */ if (fixup_exception(regs)) return 1; /* * fixup_exception() could not handle it, * Let do_page_fault() fix it. */ break; default: break; } return 0; } NOKPROBE_SYMBOL(kprobe_trap_handler); int kprobe_fault_handler(struct pt_regs *regs, int trapnr) { int ret; if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) local_irq_disable(); ret = kprobe_trap_handler(regs, trapnr); if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) local_irq_restore(regs->psw.mask & ~PSW_MASK_PER); return ret; } NOKPROBE_SYMBOL(kprobe_fault_handler); /* * Wrapper routine to for handling exceptions. */ int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val, void *data) { struct die_args *args = (struct die_args *) data; struct pt_regs *regs = args->regs; int ret = NOTIFY_DONE; if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) local_irq_disable(); switch (val) { case DIE_BPT: if (kprobe_handler(regs)) ret = NOTIFY_STOP; break; case DIE_SSTEP: if (post_kprobe_handler(regs)) ret = NOTIFY_STOP; break; case DIE_TRAP: if (!preemptible() && kprobe_running() && kprobe_trap_handler(regs, args->trapnr)) ret = NOTIFY_STOP; break; default: break; } if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) local_irq_restore(regs->psw.mask & ~PSW_MASK_PER); return ret; } NOKPROBE_SYMBOL(kprobe_exceptions_notify); int __init arch_init_kprobes(void) { return 0; } int __init arch_populate_kprobe_blacklist(void) { return kprobe_add_area_blacklist((unsigned long)__irqentry_text_start, (unsigned long)__irqentry_text_end); } int arch_trampoline_kprobe(struct kprobe *p) { return 0; } NOKPROBE_SYMBOL(arch_trampoline_kprobe);