// SPDX-License-Identifier: GPL-2.0 /* linux/arch/sparc/kernel/time.c * * Copyright (C) 1995 David S. Miller (davem@davemloft.net) * Copyright (C) 1996 Thomas K. Dyas (tdyas@eden.rutgers.edu) * * Chris Davis (cdavis@cois.on.ca) 03/27/1998 * Added support for the intersil on the sun4/4200 * * Gleb Raiko (rajko@mech.math.msu.su) 08/18/1998 * Support for MicroSPARC-IIep, PCI CPU. * * This file handles the Sparc specific time handling details. * * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 * "A Kernel Model for Precision Timekeeping" by Dave Mills */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "kernel.h" #include "irq.h" static __cacheline_aligned_in_smp DEFINE_SEQLOCK(timer_cs_lock); static __volatile__ u64 timer_cs_internal_counter = 0; static char timer_cs_enabled = 0; static struct clock_event_device timer_ce; static char timer_ce_enabled = 0; #ifdef CONFIG_SMP DEFINE_PER_CPU(struct clock_event_device, sparc32_clockevent); #endif DEFINE_SPINLOCK(rtc_lock); EXPORT_SYMBOL(rtc_lock); unsigned long profile_pc(struct pt_regs *regs) { extern char __copy_user_begin[], __copy_user_end[]; extern char __bzero_begin[], __bzero_end[]; unsigned long pc = regs->pc; if (in_lock_functions(pc) || (pc >= (unsigned long) __copy_user_begin && pc < (unsigned long) __copy_user_end) || (pc >= (unsigned long) __bzero_begin && pc < (unsigned long) __bzero_end)) pc = regs->u_regs[UREG_RETPC]; return pc; } EXPORT_SYMBOL(profile_pc); volatile u32 __iomem *master_l10_counter; irqreturn_t notrace timer_interrupt(int dummy, void *dev_id) { if (timer_cs_enabled) { write_seqlock(&timer_cs_lock); timer_cs_internal_counter++; sparc_config.clear_clock_irq(); write_sequnlock(&timer_cs_lock); } else { sparc_config.clear_clock_irq(); } if (timer_ce_enabled) timer_ce.event_handler(&timer_ce); return IRQ_HANDLED; } static int timer_ce_shutdown(struct clock_event_device *evt) { timer_ce_enabled = 0; smp_mb(); return 0; } static int timer_ce_set_periodic(struct clock_event_device *evt) { timer_ce_enabled = 1; smp_mb(); return 0; } static __init void setup_timer_ce(void) { struct clock_event_device *ce = &timer_ce; BUG_ON(smp_processor_id() != boot_cpu_id); ce->name = "timer_ce"; ce->rating = 100; ce->features = CLOCK_EVT_FEAT_PERIODIC; ce->set_state_shutdown = timer_ce_shutdown; ce->set_state_periodic = timer_ce_set_periodic; ce->tick_resume = timer_ce_set_periodic; ce->cpumask = cpu_possible_mask; ce->shift = 32; ce->mult = div_sc(sparc_config.clock_rate, NSEC_PER_SEC, ce->shift); clockevents_register_device(ce); } static unsigned int sbus_cycles_offset(void) { u32 val, offset; val = sbus_readl(master_l10_counter); offset = (val >> TIMER_VALUE_SHIFT) & TIMER_VALUE_MASK; /* Limit hit? */ if (val & TIMER_LIMIT_BIT) offset += sparc_config.cs_period; return offset; } static u64 timer_cs_read(struct clocksource *cs) { unsigned int seq, offset; u64 cycles; do { seq = read_seqbegin(&timer_cs_lock); cycles = timer_cs_internal_counter; offset = sparc_config.get_cycles_offset(); } while (read_seqretry(&timer_cs_lock, seq)); /* Count absolute cycles */ cycles *= sparc_config.cs_period; cycles += offset; return cycles; } static struct clocksource timer_cs = { .name = "timer_cs", .rating = 100, .read = timer_cs_read, .mask = CLOCKSOURCE_MASK(64), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; static __init int setup_timer_cs(void) { timer_cs_enabled = 1; return clocksource_register_hz(&timer_cs, sparc_config.clock_rate); } #ifdef CONFIG_SMP static int percpu_ce_shutdown(struct clock_event_device *evt) { int cpu = cpumask_first(evt->cpumask); sparc_config.load_profile_irq(cpu, 0); return 0; } static int percpu_ce_set_periodic(struct clock_event_device *evt) { int cpu = cpumask_first(evt->cpumask); sparc_config.load_profile_irq(cpu, SBUS_CLOCK_RATE / HZ); return 0; } static int percpu_ce_set_next_event(unsigned long delta, struct clock_event_device *evt) { int cpu = cpumask_first(evt->cpumask); unsigned int next = (unsigned int)delta; sparc_config.load_profile_irq(cpu, next); return 0; } void register_percpu_ce(int cpu) { struct clock_event_device *ce = &per_cpu(sparc32_clockevent, cpu); unsigned int features = CLOCK_EVT_FEAT_PERIODIC; if (sparc_config.features & FEAT_L14_ONESHOT) features |= CLOCK_EVT_FEAT_ONESHOT; ce->name = "percpu_ce"; ce->rating = 200; ce->features = features; ce->set_state_shutdown = percpu_ce_shutdown; ce->set_state_periodic = percpu_ce_set_periodic; ce->set_state_oneshot = percpu_ce_shutdown; ce->set_next_event = percpu_ce_set_next_event; ce->cpumask = cpumask_of(cpu); ce->shift = 32; ce->mult = div_sc(sparc_config.clock_rate, NSEC_PER_SEC, ce->shift); ce->max_delta_ns = clockevent_delta2ns(sparc_config.clock_rate, ce); ce->max_delta_ticks = (unsigned long)sparc_config.clock_rate; ce->min_delta_ns = clockevent_delta2ns(100, ce); ce->min_delta_ticks = 100; clockevents_register_device(ce); } #endif static unsigned char mostek_read_byte(struct device *dev, u32 ofs) { struct platform_device *pdev = to_platform_device(dev); struct m48t59_plat_data *pdata = pdev->dev.platform_data; return readb(pdata->ioaddr + ofs); } static void mostek_write_byte(struct device *dev, u32 ofs, u8 val) { struct platform_device *pdev = to_platform_device(dev); struct m48t59_plat_data *pdata = pdev->dev.platform_data; writeb(val, pdata->ioaddr + ofs); } static struct m48t59_plat_data m48t59_data = { .read_byte = mostek_read_byte, .write_byte = mostek_write_byte, .yy_offset = 68, }; /* resource is set at runtime */ static struct platform_device m48t59_rtc = { .name = "rtc-m48t59", .id = 0, .num_resources = 1, .dev = { .platform_data = &m48t59_data, }, }; static int clock_probe(struct platform_device *op) { struct device_node *dp = op->dev.of_node; const char *model = of_get_property(dp, "model", NULL); if (!model) return -ENODEV; /* Only the primary RTC has an address property */ if (!of_property_present(dp, "address")) return -ENODEV; m48t59_rtc.resource = &op->resource[0]; if (!strcmp(model, "mk48t02")) { /* Map the clock register io area read-only */ m48t59_data.ioaddr = of_ioremap(&op->resource[0], 0, 2048, "rtc-m48t59"); m48t59_data.type = M48T59RTC_TYPE_M48T02; } else if (!strcmp(model, "mk48t08")) { m48t59_data.ioaddr = of_ioremap(&op->resource[0], 0, 8192, "rtc-m48t59"); m48t59_data.type = M48T59RTC_TYPE_M48T08; } else return -ENODEV; if (platform_device_register(&m48t59_rtc) < 0) printk(KERN_ERR "Registering RTC device failed\n"); return 0; } static const struct of_device_id clock_match[] = { { .name = "eeprom", }, {}, }; static struct platform_driver clock_driver = { .probe = clock_probe, .driver = { .name = "rtc", .of_match_table = clock_match, }, }; /* Probe for the mostek real time clock chip. */ static int __init clock_init(void) { return platform_driver_register(&clock_driver); } /* Must be after subsys_initcall() so that busses are probed. Must * be before device_initcall() because things like the RTC driver * need to see the clock registers. */ fs_initcall(clock_init); static void __init sparc32_late_time_init(void) { if (sparc_config.features & FEAT_L10_CLOCKEVENT) setup_timer_ce(); if (sparc_config.features & FEAT_L10_CLOCKSOURCE) setup_timer_cs(); #ifdef CONFIG_SMP register_percpu_ce(smp_processor_id()); #endif } static void __init sbus_time_init(void) { sparc_config.get_cycles_offset = sbus_cycles_offset; sparc_config.init_timers(); } void __init time_init(void) { sparc_config.features = 0; late_time_init = sparc32_late_time_init; if (pcic_present()) pci_time_init(); else sbus_time_init(); }