// SPDX-License-Identifier: GPL-2.0-only /* * Per core/cpu state * * Used to coordinate shared registers between HT threads or * among events on a single PMU. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../perf_event.h" /* * Intel PerfMon, used on Core and later. */ static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly = { [PERF_COUNT_HW_CPU_CYCLES] = 0x003c, [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0, [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e, [PERF_COUNT_HW_CACHE_MISSES] = 0x412e, [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4, [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5, [PERF_COUNT_HW_BUS_CYCLES] = 0x013c, [PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */ }; static struct event_constraint intel_core_event_constraints[] __read_mostly = { INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */ INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */ INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */ INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */ INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */ INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */ EVENT_CONSTRAINT_END }; static struct event_constraint intel_core2_event_constraints[] __read_mostly = { FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */ INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */ INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */ INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */ INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */ INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */ INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */ INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */ INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */ INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */ EVENT_CONSTRAINT_END }; static struct event_constraint intel_nehalem_event_constraints[] __read_mostly = { FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */ INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */ INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */ INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */ INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */ INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */ INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */ INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */ EVENT_CONSTRAINT_END }; static struct extra_reg intel_nehalem_extra_regs[] __read_mostly = { /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0), INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b), EVENT_EXTRA_END }; static struct event_constraint intel_westmere_event_constraints[] __read_mostly = { FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */ INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */ INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */ INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */ EVENT_CONSTRAINT_END }; static struct event_constraint intel_snb_event_constraints[] __read_mostly = { FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */ INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */ INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */ INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */ INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */ INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */ INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */ INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */ INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */ /* * When HT is off these events can only run on the bottom 4 counters * When HT is on, they are impacted by the HT bug and require EXCL access */ INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */ INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ EVENT_CONSTRAINT_END }; static struct event_constraint intel_ivb_event_constraints[] __read_mostly = { FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */ INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMPTY */ INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */ INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */ INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */ INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */ INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */ INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */ INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */ INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */ /* * When HT is off these events can only run on the bottom 4 counters * When HT is on, they are impacted by the HT bug and require EXCL access */ INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */ INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ EVENT_CONSTRAINT_END }; static struct extra_reg intel_westmere_extra_regs[] __read_mostly = { /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0), INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1), INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b), EVENT_EXTRA_END }; static struct event_constraint intel_v1_event_constraints[] __read_mostly = { EVENT_CONSTRAINT_END }; static struct event_constraint intel_gen_event_constraints[] __read_mostly = { FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ EVENT_CONSTRAINT_END }; static struct event_constraint intel_v5_gen_event_constraints[] __read_mostly = { FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */ FIXED_EVENT_CONSTRAINT(0x0500, 4), FIXED_EVENT_CONSTRAINT(0x0600, 5), FIXED_EVENT_CONSTRAINT(0x0700, 6), FIXED_EVENT_CONSTRAINT(0x0800, 7), FIXED_EVENT_CONSTRAINT(0x0900, 8), FIXED_EVENT_CONSTRAINT(0x0a00, 9), FIXED_EVENT_CONSTRAINT(0x0b00, 10), FIXED_EVENT_CONSTRAINT(0x0c00, 11), FIXED_EVENT_CONSTRAINT(0x0d00, 12), FIXED_EVENT_CONSTRAINT(0x0e00, 13), FIXED_EVENT_CONSTRAINT(0x0f00, 14), FIXED_EVENT_CONSTRAINT(0x1000, 15), EVENT_CONSTRAINT_END }; static struct event_constraint intel_slm_event_constraints[] __read_mostly = { FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */ EVENT_CONSTRAINT_END }; static struct event_constraint intel_grt_event_constraints[] __read_mostly = { FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */ FIXED_EVENT_CONSTRAINT(0x013c, 2), /* CPU_CLK_UNHALTED.REF_TSC_P */ EVENT_CONSTRAINT_END }; static struct event_constraint intel_skt_event_constraints[] __read_mostly = { FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */ FIXED_EVENT_CONSTRAINT(0x013c, 2), /* CPU_CLK_UNHALTED.REF_TSC_P */ FIXED_EVENT_CONSTRAINT(0x0073, 4), /* TOPDOWN_BAD_SPECULATION.ALL */ FIXED_EVENT_CONSTRAINT(0x019c, 5), /* TOPDOWN_FE_BOUND.ALL */ FIXED_EVENT_CONSTRAINT(0x02c2, 6), /* TOPDOWN_RETIRING.ALL */ EVENT_CONSTRAINT_END }; static struct event_constraint intel_skl_event_constraints[] = { FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */ /* * when HT is off, these can only run on the bottom 4 counters */ INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */ INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */ INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */ INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */ INTEL_EVENT_CONSTRAINT(0xc6, 0xf), /* FRONTEND_RETIRED.* */ EVENT_CONSTRAINT_END }; static struct extra_reg intel_knl_extra_regs[] __read_mostly = { INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0), INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1), EVENT_EXTRA_END }; static struct extra_reg intel_snb_extra_regs[] __read_mostly = { /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0), INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1), INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd), EVENT_EXTRA_END }; static struct extra_reg intel_snbep_extra_regs[] __read_mostly = { /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0), INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1), INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd), EVENT_EXTRA_END }; static struct extra_reg intel_skl_extra_regs[] __read_mostly = { INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0), INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1), INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd), /* * Note the low 8 bits eventsel code is not a continuous field, containing * some #GPing bits. These are masked out. */ INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE), EVENT_EXTRA_END }; static struct event_constraint intel_icl_event_constraints[] = { FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ FIXED_EVENT_CONSTRAINT(0x01c0, 0), /* old INST_RETIRED.PREC_DIST */ FIXED_EVENT_CONSTRAINT(0x0100, 0), /* INST_RETIRED.PREC_DIST */ FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */ METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0), METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1), METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2), METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3), INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf), INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf), INTEL_EVENT_CONSTRAINT(0x32, 0xf), /* SW_PREFETCH_ACCESS.* */ INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x56, 0xf), INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf), INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff), /* CYCLE_ACTIVITY.STALLS_TOTAL */ INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff), /* CYCLE_ACTIVITY.CYCLES_MEM_ANY */ INTEL_UEVENT_CONSTRAINT(0x14a3, 0xff), /* CYCLE_ACTIVITY.STALLS_MEM_ANY */ INTEL_EVENT_CONSTRAINT(0xa3, 0xf), /* CYCLE_ACTIVITY.* */ INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf), INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf), INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf), INTEL_EVENT_CONSTRAINT(0xef, 0xf), INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf), EVENT_CONSTRAINT_END }; static struct extra_reg intel_icl_extra_regs[] __read_mostly = { INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0), INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1), INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd), INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE), EVENT_EXTRA_END }; static struct extra_reg intel_glc_extra_regs[] __read_mostly = { INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0), INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1), INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd), INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE), INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE), INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE), EVENT_EXTRA_END }; static struct event_constraint intel_glc_event_constraints[] = { FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ FIXED_EVENT_CONSTRAINT(0x0100, 0), /* INST_RETIRED.PREC_DIST */ FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ FIXED_EVENT_CONSTRAINT(0x013c, 2), /* CPU_CLK_UNHALTED.REF_TSC_P */ FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */ METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0), METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1), METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2), METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3), METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_HEAVY_OPS, 4), METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BR_MISPREDICT, 5), METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FETCH_LAT, 6), METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_MEM_BOUND, 7), INTEL_EVENT_CONSTRAINT(0x2e, 0xff), INTEL_EVENT_CONSTRAINT(0x3c, 0xff), /* * Generally event codes < 0x90 are restricted to counters 0-3. * The 0x2E and 0x3C are exception, which has no restriction. */ INTEL_EVENT_CONSTRAINT_RANGE(0x01, 0x8f, 0xf), INTEL_UEVENT_CONSTRAINT(0x01a3, 0xf), INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), INTEL_UEVENT_CONSTRAINT(0x08a3, 0xf), INTEL_UEVENT_CONSTRAINT(0x04a4, 0x1), INTEL_UEVENT_CONSTRAINT(0x08a4, 0x1), INTEL_UEVENT_CONSTRAINT(0x02cd, 0x1), INTEL_EVENT_CONSTRAINT(0xce, 0x1), INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xdf, 0xf), /* * Generally event codes >= 0x90 are likely to have no restrictions. * The exception are defined as above. */ INTEL_EVENT_CONSTRAINT_RANGE(0x90, 0xfe, 0xff), EVENT_CONSTRAINT_END }; static struct extra_reg intel_rwc_extra_regs[] __read_mostly = { INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0), INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1), INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd), INTEL_UEVENT_EXTRA_REG(0x02c6, MSR_PEBS_FRONTEND, 0x9, FE), INTEL_UEVENT_EXTRA_REG(0x03c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE), INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE), INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE), EVENT_EXTRA_END }; static struct event_constraint intel_lnc_event_constraints[] = { FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ FIXED_EVENT_CONSTRAINT(0x0100, 0), /* INST_RETIRED.PREC_DIST */ FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ FIXED_EVENT_CONSTRAINT(0x013c, 2), /* CPU_CLK_UNHALTED.REF_TSC_P */ FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */ METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0), METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1), METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2), METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3), METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_HEAVY_OPS, 4), METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BR_MISPREDICT, 5), METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FETCH_LAT, 6), METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_MEM_BOUND, 7), INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), INTEL_UEVENT_CONSTRAINT(0x0175, 0x4), INTEL_EVENT_CONSTRAINT(0x2e, 0x3ff), INTEL_EVENT_CONSTRAINT(0x3c, 0x3ff), /* * Generally event codes < 0x90 are restricted to counters 0-3. * The 0x2E and 0x3C are exception, which has no restriction. */ INTEL_EVENT_CONSTRAINT_RANGE(0x01, 0x8f, 0xf), INTEL_UEVENT_CONSTRAINT(0x01a3, 0xf), INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), INTEL_UEVENT_CONSTRAINT(0x04a4, 0x1), INTEL_UEVENT_CONSTRAINT(0x08a4, 0x1), INTEL_UEVENT_CONSTRAINT(0x10a4, 0x1), INTEL_UEVENT_CONSTRAINT(0x01b1, 0x8), INTEL_UEVENT_CONSTRAINT(0x02cd, 0x3), INTEL_EVENT_CONSTRAINT(0xce, 0x1), INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xdf, 0xf), /* * Generally event codes >= 0x90 are likely to have no restrictions. * The exception are defined as above. */ INTEL_EVENT_CONSTRAINT_RANGE(0x90, 0xfe, 0x3ff), EVENT_CONSTRAINT_END }; static struct extra_reg intel_lnc_extra_regs[] __read_mostly = { INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0xfffffffffffull, RSP_0), INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0xfffffffffffull, RSP_1), INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd), INTEL_UEVENT_EXTRA_REG(0x02c6, MSR_PEBS_FRONTEND, 0x9, FE), INTEL_UEVENT_EXTRA_REG(0x03c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE), INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0xf, FE), INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE), EVENT_EXTRA_END }; EVENT_ATTR_STR(mem-loads, mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3"); EVENT_ATTR_STR(mem-loads, mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3"); EVENT_ATTR_STR(mem-stores, mem_st_snb, "event=0xcd,umask=0x2"); static struct attribute *nhm_mem_events_attrs[] = { EVENT_PTR(mem_ld_nhm), NULL, }; /* * topdown events for Intel Core CPUs. * * The events are all in slots, which is a free slot in a 4 wide * pipeline. Some events are already reported in slots, for cycle * events we multiply by the pipeline width (4). * * With Hyper Threading on, topdown metrics are either summed or averaged * between the threads of a core: (count_t0 + count_t1). * * For the average case the metric is always scaled to pipeline width, * so we use factor 2 ((count_t0 + count_t1) / 2 * 4) */ EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots, "event=0x3c,umask=0x0", /* cpu_clk_unhalted.thread */ "event=0x3c,umask=0x0,any=1"); /* cpu_clk_unhalted.thread_any */ EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2"); EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued, "event=0xe,umask=0x1"); /* uops_issued.any */ EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired, "event=0xc2,umask=0x2"); /* uops_retired.retire_slots */ EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles, "event=0x9c,umask=0x1"); /* idq_uops_not_delivered_core */ EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles, "event=0xd,umask=0x3,cmask=1", /* int_misc.recovery_cycles */ "event=0xd,umask=0x3,cmask=1,any=1"); /* int_misc.recovery_cycles_any */ EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale, "4", "2"); EVENT_ATTR_STR(slots, slots, "event=0x00,umask=0x4"); EVENT_ATTR_STR(topdown-retiring, td_retiring, "event=0x00,umask=0x80"); EVENT_ATTR_STR(topdown-bad-spec, td_bad_spec, "event=0x00,umask=0x81"); EVENT_ATTR_STR(topdown-fe-bound, td_fe_bound, "event=0x00,umask=0x82"); EVENT_ATTR_STR(topdown-be-bound, td_be_bound, "event=0x00,umask=0x83"); EVENT_ATTR_STR(topdown-heavy-ops, td_heavy_ops, "event=0x00,umask=0x84"); EVENT_ATTR_STR(topdown-br-mispredict, td_br_mispredict, "event=0x00,umask=0x85"); EVENT_ATTR_STR(topdown-fetch-lat, td_fetch_lat, "event=0x00,umask=0x86"); EVENT_ATTR_STR(topdown-mem-bound, td_mem_bound, "event=0x00,umask=0x87"); static struct attribute *snb_events_attrs[] = { EVENT_PTR(td_slots_issued), EVENT_PTR(td_slots_retired), EVENT_PTR(td_fetch_bubbles), EVENT_PTR(td_total_slots), EVENT_PTR(td_total_slots_scale), EVENT_PTR(td_recovery_bubbles), EVENT_PTR(td_recovery_bubbles_scale), NULL, }; static struct attribute *snb_mem_events_attrs[] = { EVENT_PTR(mem_ld_snb), EVENT_PTR(mem_st_snb), NULL, }; static struct event_constraint intel_hsw_event_constraints[] = { FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */ INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */ INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */ /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */ INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */ INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */ INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* * When HT is off these events can only run on the bottom 4 counters * When HT is on, they are impacted by the HT bug and require EXCL access */ INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */ INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ EVENT_CONSTRAINT_END }; static struct event_constraint intel_bdw_event_constraints[] = { FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */ INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */ /* * when HT is off, these can only run on the bottom 4 counters */ INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */ INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */ INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */ INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */ EVENT_CONSTRAINT_END }; static u64 intel_pmu_event_map(int hw_event) { return intel_perfmon_event_map[hw_event]; } static __initconst const u64 glc_hw_cache_event_ids [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [ C(L1D ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x81d0, [ C(RESULT_MISS) ] = 0xe124, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x82d0, }, }, [ C(L1I ) ] = { [ C(OP_READ) ] = { [ C(RESULT_MISS) ] = 0xe424, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, [ C(LL ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x12a, [ C(RESULT_MISS) ] = 0x12a, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x12a, [ C(RESULT_MISS) ] = 0x12a, }, }, [ C(DTLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x81d0, [ C(RESULT_MISS) ] = 0xe12, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x82d0, [ C(RESULT_MISS) ] = 0xe13, }, }, [ C(ITLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = 0xe11, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, [ C(BPU ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x4c4, [ C(RESULT_MISS) ] = 0x4c5, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, [ C(NODE) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x12a, [ C(RESULT_MISS) ] = 0x12a, }, }, }; static __initconst const u64 glc_hw_cache_extra_regs [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [ C(LL ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x10001, [ C(RESULT_MISS) ] = 0x3fbfc00001, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x3f3ffc0002, [ C(RESULT_MISS) ] = 0x3f3fc00002, }, }, [ C(NODE) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x10c000001, [ C(RESULT_MISS) ] = 0x3fb3000001, }, }, }; /* * Notes on the events: * - data reads do not include code reads (comparable to earlier tables) * - data counts include speculative execution (except L1 write, dtlb, bpu) * - remote node access includes remote memory, remote cache, remote mmio. * - prefetches are not included in the counts. * - icache miss does not include decoded icache */ #define SKL_DEMAND_DATA_RD BIT_ULL(0) #define SKL_DEMAND_RFO BIT_ULL(1) #define SKL_ANY_RESPONSE BIT_ULL(16) #define SKL_SUPPLIER_NONE BIT_ULL(17) #define SKL_L3_MISS_LOCAL_DRAM BIT_ULL(26) #define SKL_L3_MISS_REMOTE_HOP0_DRAM BIT_ULL(27) #define SKL_L3_MISS_REMOTE_HOP1_DRAM BIT_ULL(28) #define SKL_L3_MISS_REMOTE_HOP2P_DRAM BIT_ULL(29) #define SKL_L3_MISS (SKL_L3_MISS_LOCAL_DRAM| \ SKL_L3_MISS_REMOTE_HOP0_DRAM| \ SKL_L3_MISS_REMOTE_HOP1_DRAM| \ SKL_L3_MISS_REMOTE_HOP2P_DRAM) #define SKL_SPL_HIT BIT_ULL(30) #define SKL_SNOOP_NONE BIT_ULL(31) #define SKL_SNOOP_NOT_NEEDED BIT_ULL(32) #define SKL_SNOOP_MISS BIT_ULL(33) #define SKL_SNOOP_HIT_NO_FWD BIT_ULL(34) #define SKL_SNOOP_HIT_WITH_FWD BIT_ULL(35) #define SKL_SNOOP_HITM BIT_ULL(36) #define SKL_SNOOP_NON_DRAM BIT_ULL(37) #define SKL_ANY_SNOOP (SKL_SPL_HIT|SKL_SNOOP_NONE| \ SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \ SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \ SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM) #define SKL_DEMAND_READ SKL_DEMAND_DATA_RD #define SKL_SNOOP_DRAM (SKL_SNOOP_NONE| \ SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \ SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \ SKL_SNOOP_HITM|SKL_SPL_HIT) #define SKL_DEMAND_WRITE SKL_DEMAND_RFO #define SKL_LLC_ACCESS SKL_ANY_RESPONSE #define SKL_L3_MISS_REMOTE (SKL_L3_MISS_REMOTE_HOP0_DRAM| \ SKL_L3_MISS_REMOTE_HOP1_DRAM| \ SKL_L3_MISS_REMOTE_HOP2P_DRAM) static __initconst const u64 skl_hw_cache_event_ids [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [ C(L1D ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */ [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */ [ C(RESULT_MISS) ] = 0x0, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0, }, }, [ C(L1I ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x283, /* ICACHE_64B.MISS */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0, }, }, [ C(LL ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0, }, }, [ C(DTLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */ [ C(RESULT_MISS) ] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */ [ C(RESULT_MISS) ] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0, }, }, [ C(ITLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x2085, /* ITLB_MISSES.STLB_HIT */ [ C(RESULT_MISS) ] = 0xe85, /* ITLB_MISSES.WALK_COMPLETED */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, [ C(BPU ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */ [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, [ C(NODE) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0, }, }, }; static __initconst const u64 skl_hw_cache_extra_regs [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [ C(LL ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ| SKL_LLC_ACCESS|SKL_ANY_SNOOP, [ C(RESULT_MISS) ] = SKL_DEMAND_READ| SKL_L3_MISS|SKL_ANY_SNOOP| SKL_SUPPLIER_NONE, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE| SKL_LLC_ACCESS|SKL_ANY_SNOOP, [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE| SKL_L3_MISS|SKL_ANY_SNOOP| SKL_SUPPLIER_NONE, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0, }, }, [ C(NODE) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ| SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM, [ C(RESULT_MISS) ] = SKL_DEMAND_READ| SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE| SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM, [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE| SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0, }, }, }; #define SNB_DMND_DATA_RD (1ULL << 0) #define SNB_DMND_RFO (1ULL << 1) #define SNB_DMND_IFETCH (1ULL << 2) #define SNB_DMND_WB (1ULL << 3) #define SNB_PF_DATA_RD (1ULL << 4) #define SNB_PF_RFO (1ULL << 5) #define SNB_PF_IFETCH (1ULL << 6) #define SNB_LLC_DATA_RD (1ULL << 7) #define SNB_LLC_RFO (1ULL << 8) #define SNB_LLC_IFETCH (1ULL << 9) #define SNB_BUS_LOCKS (1ULL << 10) #define SNB_STRM_ST (1ULL << 11) #define SNB_OTHER (1ULL << 15) #define SNB_RESP_ANY (1ULL << 16) #define SNB_NO_SUPP (1ULL << 17) #define SNB_LLC_HITM (1ULL << 18) #define SNB_LLC_HITE (1ULL << 19) #define SNB_LLC_HITS (1ULL << 20) #define SNB_LLC_HITF (1ULL << 21) #define SNB_LOCAL (1ULL << 22) #define SNB_REMOTE (0xffULL << 23) #define SNB_SNP_NONE (1ULL << 31) #define SNB_SNP_NOT_NEEDED (1ULL << 32) #define SNB_SNP_MISS (1ULL << 33) #define SNB_NO_FWD (1ULL << 34) #define SNB_SNP_FWD (1ULL << 35) #define SNB_HITM (1ULL << 36) #define SNB_NON_DRAM (1ULL << 37) #define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD) #define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO) #define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO) #define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \ SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \ SNB_HITM) #define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY) #define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY) #define SNB_L3_ACCESS SNB_RESP_ANY #define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM) static __initconst const u64 snb_hw_cache_extra_regs [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [ C(LL ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS, [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS, [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS, [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS, }, }, [ C(NODE) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY, [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY, [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY, [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE, }, }, }; static __initconst const u64 snb_hw_cache_event_ids [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [ C(L1D) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */ [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */ [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */ }, }, [ C(L1I ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0, }, }, [ C(LL ) ] = { [ C(OP_READ) ] = { /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */ [ C(RESULT_ACCESS) ] = 0x01b7, /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */ [ C(RESULT_MISS) ] = 0x01b7, }, [ C(OP_WRITE) ] = { /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */ [ C(RESULT_ACCESS) ] = 0x01b7, /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */ [ C(RESULT_MISS) ] = 0x01b7, }, [ C(OP_PREFETCH) ] = { /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */ [ C(RESULT_ACCESS) ] = 0x01b7, /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */ [ C(RESULT_MISS) ] = 0x01b7, }, }, [ C(DTLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */ [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */ [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0, }, }, [ C(ITLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */ [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, [ C(BPU ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, [ C(NODE) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x01b7, [ C(RESULT_MISS) ] = 0x01b7, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x01b7, [ C(RESULT_MISS) ] = 0x01b7, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x01b7, [ C(RESULT_MISS) ] = 0x01b7, }, }, }; /* * Notes on the events: * - data reads do not include code reads (comparable to earlier tables) * - data counts include speculative execution (except L1 write, dtlb, bpu) * - remote node access includes remote memory, remote cache, remote mmio. * - prefetches are not included in the counts because they are not * reliably counted. */ #define HSW_DEMAND_DATA_RD BIT_ULL(0) #define HSW_DEMAND_RFO BIT_ULL(1) #define HSW_ANY_RESPONSE BIT_ULL(16) #define HSW_SUPPLIER_NONE BIT_ULL(17) #define HSW_L3_MISS_LOCAL_DRAM BIT_ULL(22) #define HSW_L3_MISS_REMOTE_HOP0 BIT_ULL(27) #define HSW_L3_MISS_REMOTE_HOP1 BIT_ULL(28) #define HSW_L3_MISS_REMOTE_HOP2P BIT_ULL(29) #define HSW_L3_MISS (HSW_L3_MISS_LOCAL_DRAM| \ HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \ HSW_L3_MISS_REMOTE_HOP2P) #define HSW_SNOOP_NONE BIT_ULL(31) #define HSW_SNOOP_NOT_NEEDED BIT_ULL(32) #define HSW_SNOOP_MISS BIT_ULL(33) #define HSW_SNOOP_HIT_NO_FWD BIT_ULL(34) #define HSW_SNOOP_HIT_WITH_FWD BIT_ULL(35) #define HSW_SNOOP_HITM BIT_ULL(36) #define HSW_SNOOP_NON_DRAM BIT_ULL(37) #define HSW_ANY_SNOOP (HSW_SNOOP_NONE| \ HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \ HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \ HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM) #define HSW_SNOOP_DRAM (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM) #define HSW_DEMAND_READ HSW_DEMAND_DATA_RD #define HSW_DEMAND_WRITE HSW_DEMAND_RFO #define HSW_L3_MISS_REMOTE (HSW_L3_MISS_REMOTE_HOP0|\ HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P) #define HSW_LLC_ACCESS HSW_ANY_RESPONSE #define BDW_L3_MISS_LOCAL BIT(26) #define BDW_L3_MISS (BDW_L3_MISS_LOCAL| \ HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \ HSW_L3_MISS_REMOTE_HOP2P) static __initconst const u64 hsw_hw_cache_event_ids [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [ C(L1D ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ [ C(RESULT_MISS) ] = 0x0, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0, }, }, [ C(L1I ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x280, /* ICACHE.MISSES */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0, }, }, [ C(LL ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0, }, }, [ C(DTLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ [ C(RESULT_MISS) ] = 0x108, /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ [ C(RESULT_MISS) ] = 0x149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0, }, }, [ C(ITLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x6085, /* ITLB_MISSES.STLB_HIT */ [ C(RESULT_MISS) ] = 0x185, /* ITLB_MISSES.MISS_CAUSES_A_WALK */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, [ C(BPU ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */ [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, [ C(NODE) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0, }, }, }; static __initconst const u64 hsw_hw_cache_extra_regs [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [ C(LL ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ| HSW_LLC_ACCESS, [ C(RESULT_MISS) ] = HSW_DEMAND_READ| HSW_L3_MISS|HSW_ANY_SNOOP, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE| HSW_LLC_ACCESS, [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE| HSW_L3_MISS|HSW_ANY_SNOOP, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0, }, }, [ C(NODE) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ| HSW_L3_MISS_LOCAL_DRAM| HSW_SNOOP_DRAM, [ C(RESULT_MISS) ] = HSW_DEMAND_READ| HSW_L3_MISS_REMOTE| HSW_SNOOP_DRAM, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE| HSW_L3_MISS_LOCAL_DRAM| HSW_SNOOP_DRAM, [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE| HSW_L3_MISS_REMOTE| HSW_SNOOP_DRAM, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0, }, }, }; static __initconst const u64 westmere_hw_cache_event_ids [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [ C(L1D) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */ [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */ [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */ [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */ }, }, [ C(L1I ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */ [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0, }, }, [ C(LL ) ] = { [ C(OP_READ) ] = { /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */ [ C(RESULT_ACCESS) ] = 0x01b7, /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */ [ C(RESULT_MISS) ] = 0x01b7, }, /* * Use RFO, not WRITEBACK, because a write miss would typically occur * on RFO. */ [ C(OP_WRITE) ] = { /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */ [ C(RESULT_ACCESS) ] = 0x01b7, /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */ [ C(RESULT_MISS) ] = 0x01b7, }, [ C(OP_PREFETCH) ] = { /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */ [ C(RESULT_ACCESS) ] = 0x01b7, /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */ [ C(RESULT_MISS) ] = 0x01b7, }, }, [ C(DTLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */ [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */ [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0, }, }, [ C(ITLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */ [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, [ C(BPU ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, [ C(NODE) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x01b7, [ C(RESULT_MISS) ] = 0x01b7, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x01b7, [ C(RESULT_MISS) ] = 0x01b7, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x01b7, [ C(RESULT_MISS) ] = 0x01b7, }, }, }; /* * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits; * See IA32 SDM Vol 3B 30.6.1.3 */ #define NHM_DMND_DATA_RD (1 << 0) #define NHM_DMND_RFO (1 << 1) #define NHM_DMND_IFETCH (1 << 2) #define NHM_DMND_WB (1 << 3) #define NHM_PF_DATA_RD (1 << 4) #define NHM_PF_DATA_RFO (1 << 5) #define NHM_PF_IFETCH (1 << 6) #define NHM_OFFCORE_OTHER (1 << 7) #define NHM_UNCORE_HIT (1 << 8) #define NHM_OTHER_CORE_HIT_SNP (1 << 9) #define NHM_OTHER_CORE_HITM (1 << 10) /* reserved */ #define NHM_REMOTE_CACHE_FWD (1 << 12) #define NHM_REMOTE_DRAM (1 << 13) #define NHM_LOCAL_DRAM (1 << 14) #define NHM_NON_DRAM (1 << 15) #define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD) #define NHM_REMOTE (NHM_REMOTE_DRAM) #define NHM_DMND_READ (NHM_DMND_DATA_RD) #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB) #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO) #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM) #define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD) #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS) static __initconst const u64 nehalem_hw_cache_extra_regs [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [ C(LL ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS, [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS, [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS, [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS, }, }, [ C(NODE) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE, [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE, [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE, [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE, }, }, }; static __initconst const u64 nehalem_hw_cache_event_ids [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [ C(L1D) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */ [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */ [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */ [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */ }, }, [ C(L1I ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */ [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0, }, }, [ C(LL ) ] = { [ C(OP_READ) ] = { /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */ [ C(RESULT_ACCESS) ] = 0x01b7, /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */ [ C(RESULT_MISS) ] = 0x01b7, }, /* * Use RFO, not WRITEBACK, because a write miss would typically occur * on RFO. */ [ C(OP_WRITE) ] = { /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */ [ C(RESULT_ACCESS) ] = 0x01b7, /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */ [ C(RESULT_MISS) ] = 0x01b7, }, [ C(OP_PREFETCH) ] = { /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */ [ C(RESULT_ACCESS) ] = 0x01b7, /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */ [ C(RESULT_MISS) ] = 0x01b7, }, }, [ C(DTLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */ [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */ [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0, }, }, [ C(ITLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */ [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, [ C(BPU ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, [ C(NODE) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x01b7, [ C(RESULT_MISS) ] = 0x01b7, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x01b7, [ C(RESULT_MISS) ] = 0x01b7, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x01b7, [ C(RESULT_MISS) ] = 0x01b7, }, }, }; static __initconst const u64 core2_hw_cache_event_ids [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [ C(L1D) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */ [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */ [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */ [ C(RESULT_MISS) ] = 0, }, }, [ C(L1I ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */ [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, }, [ C(LL ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */ [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */ [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, }, [ C(DTLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */ [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */ [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, }, [ C(ITLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */ [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, [ C(BPU ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */ [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, }; static __initconst const u64 atom_hw_cache_event_ids [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [ C(L1D) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */ [ C(RESULT_MISS) ] = 0, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */ [ C(RESULT_MISS) ] = 0, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0, }, }, [ C(L1I ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */ [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, }, [ C(LL ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */ [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */ [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, }, [ C(DTLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */ [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */ [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, }, [ C(ITLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */ [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, [ C(BPU ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */ [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, }; EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c"); EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2"); /* no_alloc_cycles.not_delivered */ EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm, "event=0xca,umask=0x50"); EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2"); /* uops_retired.all */ EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm, "event=0xc2,umask=0x10"); /* uops_retired.all */ EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm, "event=0xc2,umask=0x10"); static struct attribute *slm_events_attrs[] = { EVENT_PTR(td_total_slots_slm), EVENT_PTR(td_total_slots_scale_slm), EVENT_PTR(td_fetch_bubbles_slm), EVENT_PTR(td_fetch_bubbles_scale_slm), EVENT_PTR(td_slots_issued_slm), EVENT_PTR(td_slots_retired_slm), NULL }; static struct extra_reg intel_slm_extra_regs[] __read_mostly = { /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0), INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1), EVENT_EXTRA_END }; #define SLM_DMND_READ SNB_DMND_DATA_RD #define SLM_DMND_WRITE SNB_DMND_RFO #define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO) #define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM) #define SLM_LLC_ACCESS SNB_RESP_ANY #define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM) static __initconst const u64 slm_hw_cache_extra_regs [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [ C(LL ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS, [ C(RESULT_MISS) ] = 0, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS, [ C(RESULT_MISS) ] = SLM_DMND_WRITE|SLM_LLC_MISS, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS, [ C(RESULT_MISS) ] = SLM_DMND_PREFETCH|SLM_LLC_MISS, }, }, }; static __initconst const u64 slm_hw_cache_event_ids [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [ C(L1D) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0x0104, /* LD_DCU_MISS */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, }, [ C(L1I ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */ [ C(RESULT_MISS) ] = 0x0280, /* ICACGE.MISSES */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, }, [ C(LL ) ] = { [ C(OP_READ) ] = { /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */ [ C(RESULT_ACCESS) ] = 0x01b7, [ C(RESULT_MISS) ] = 0, }, [ C(OP_WRITE) ] = { /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */ [ C(RESULT_ACCESS) ] = 0x01b7, /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */ [ C(RESULT_MISS) ] = 0x01b7, }, [ C(OP_PREFETCH) ] = { /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */ [ C(RESULT_ACCESS) ] = 0x01b7, /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */ [ C(RESULT_MISS) ] = 0x01b7, }, }, [ C(DTLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0x0804, /* LD_DTLB_MISS */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, }, [ C(ITLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */ [ C(RESULT_MISS) ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, [ C(BPU ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */ [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, }; EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c"); EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3"); /* UOPS_NOT_DELIVERED.ANY */ EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c"); /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */ EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02"); /* UOPS_RETIRED.ANY */ EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2"); /* UOPS_ISSUED.ANY */ EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e"); static struct attribute *glm_events_attrs[] = { EVENT_PTR(td_total_slots_glm), EVENT_PTR(td_total_slots_scale_glm), EVENT_PTR(td_fetch_bubbles_glm), EVENT_PTR(td_recovery_bubbles_glm), EVENT_PTR(td_slots_issued_glm), EVENT_PTR(td_slots_retired_glm), NULL }; static struct extra_reg intel_glm_extra_regs[] __read_mostly = { /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0), INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1), EVENT_EXTRA_END }; #define GLM_DEMAND_DATA_RD BIT_ULL(0) #define GLM_DEMAND_RFO BIT_ULL(1) #define GLM_ANY_RESPONSE BIT_ULL(16) #define GLM_SNP_NONE_OR_MISS BIT_ULL(33) #define GLM_DEMAND_READ GLM_DEMAND_DATA_RD #define GLM_DEMAND_WRITE GLM_DEMAND_RFO #define GLM_DEMAND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO) #define GLM_LLC_ACCESS GLM_ANY_RESPONSE #define GLM_SNP_ANY (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM) #define GLM_LLC_MISS (GLM_SNP_ANY|SNB_NON_DRAM) static __initconst const u64 glm_hw_cache_event_ids [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [C(L1D)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ [C(RESULT_MISS)] = 0x0, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ [C(RESULT_MISS)] = 0x0, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = 0x0, [C(RESULT_MISS)] = 0x0, }, }, [C(L1I)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */ [C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */ }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = -1, [C(RESULT_MISS)] = -1, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = 0x0, [C(RESULT_MISS)] = 0x0, }, }, [C(LL)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */ [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */ }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */ [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */ }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */ [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */ }, }, [C(DTLB)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ [C(RESULT_MISS)] = 0x0, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ [C(RESULT_MISS)] = 0x0, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = 0x0, [C(RESULT_MISS)] = 0x0, }, }, [C(ITLB)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */ [C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */ }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = -1, [C(RESULT_MISS)] = -1, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = -1, [C(RESULT_MISS)] = -1, }, }, [C(BPU)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ [C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */ }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = -1, [C(RESULT_MISS)] = -1, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = -1, [C(RESULT_MISS)] = -1, }, }, }; static __initconst const u64 glm_hw_cache_extra_regs [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [C(LL)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = GLM_DEMAND_READ| GLM_LLC_ACCESS, [C(RESULT_MISS)] = GLM_DEMAND_READ| GLM_LLC_MISS, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = GLM_DEMAND_WRITE| GLM_LLC_ACCESS, [C(RESULT_MISS)] = GLM_DEMAND_WRITE| GLM_LLC_MISS, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = GLM_DEMAND_PREFETCH| GLM_LLC_ACCESS, [C(RESULT_MISS)] = GLM_DEMAND_PREFETCH| GLM_LLC_MISS, }, }, }; static __initconst const u64 glp_hw_cache_event_ids [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [C(L1D)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ [C(RESULT_MISS)] = 0x0, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ [C(RESULT_MISS)] = 0x0, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = 0x0, [C(RESULT_MISS)] = 0x0, }, }, [C(L1I)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */ [C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */ }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = -1, [C(RESULT_MISS)] = -1, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = 0x0, [C(RESULT_MISS)] = 0x0, }, }, [C(LL)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */ [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */ }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */ [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */ }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = 0x0, [C(RESULT_MISS)] = 0x0, }, }, [C(DTLB)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ [C(RESULT_MISS)] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */ }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ [C(RESULT_MISS)] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */ }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = 0x0, [C(RESULT_MISS)] = 0x0, }, }, [C(ITLB)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */ [C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */ }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = -1, [C(RESULT_MISS)] = -1, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = -1, [C(RESULT_MISS)] = -1, }, }, [C(BPU)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ [C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */ }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = -1, [C(RESULT_MISS)] = -1, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = -1, [C(RESULT_MISS)] = -1, }, }, }; static __initconst const u64 glp_hw_cache_extra_regs [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [C(LL)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = GLM_DEMAND_READ| GLM_LLC_ACCESS, [C(RESULT_MISS)] = GLM_DEMAND_READ| GLM_LLC_MISS, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = GLM_DEMAND_WRITE| GLM_LLC_ACCESS, [C(RESULT_MISS)] = GLM_DEMAND_WRITE| GLM_LLC_MISS, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = 0x0, [C(RESULT_MISS)] = 0x0, }, }, }; #define TNT_LOCAL_DRAM BIT_ULL(26) #define TNT_DEMAND_READ GLM_DEMAND_DATA_RD #define TNT_DEMAND_WRITE GLM_DEMAND_RFO #define TNT_LLC_ACCESS GLM_ANY_RESPONSE #define TNT_SNP_ANY (SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \ SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM) #define TNT_LLC_MISS (TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM) static __initconst const u64 tnt_hw_cache_extra_regs [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [C(LL)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = TNT_DEMAND_READ| TNT_LLC_ACCESS, [C(RESULT_MISS)] = TNT_DEMAND_READ| TNT_LLC_MISS, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = TNT_DEMAND_WRITE| TNT_LLC_ACCESS, [C(RESULT_MISS)] = TNT_DEMAND_WRITE| TNT_LLC_MISS, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = 0x0, [C(RESULT_MISS)] = 0x0, }, }, }; EVENT_ATTR_STR(topdown-fe-bound, td_fe_bound_tnt, "event=0x71,umask=0x0"); EVENT_ATTR_STR(topdown-retiring, td_retiring_tnt, "event=0xc2,umask=0x0"); EVENT_ATTR_STR(topdown-bad-spec, td_bad_spec_tnt, "event=0x73,umask=0x6"); EVENT_ATTR_STR(topdown-be-bound, td_be_bound_tnt, "event=0x74,umask=0x0"); static struct attribute *tnt_events_attrs[] = { EVENT_PTR(td_fe_bound_tnt), EVENT_PTR(td_retiring_tnt), EVENT_PTR(td_bad_spec_tnt), EVENT_PTR(td_be_bound_tnt), NULL, }; static struct extra_reg intel_tnt_extra_regs[] __read_mostly = { /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff0ffffff9fffull, RSP_0), INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff0ffffff9fffull, RSP_1), EVENT_EXTRA_END }; EVENT_ATTR_STR(mem-loads, mem_ld_grt, "event=0xd0,umask=0x5,ldlat=3"); EVENT_ATTR_STR(mem-stores, mem_st_grt, "event=0xd0,umask=0x6"); static struct attribute *grt_mem_attrs[] = { EVENT_PTR(mem_ld_grt), EVENT_PTR(mem_st_grt), NULL }; static struct extra_reg intel_grt_extra_regs[] __read_mostly = { /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0), INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1), INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0), EVENT_EXTRA_END }; EVENT_ATTR_STR(topdown-retiring, td_retiring_cmt, "event=0x72,umask=0x0"); EVENT_ATTR_STR(topdown-bad-spec, td_bad_spec_cmt, "event=0x73,umask=0x0"); static struct attribute *cmt_events_attrs[] = { EVENT_PTR(td_fe_bound_tnt), EVENT_PTR(td_retiring_cmt), EVENT_PTR(td_bad_spec_cmt), EVENT_PTR(td_be_bound_tnt), NULL }; static struct extra_reg intel_cmt_extra_regs[] __read_mostly = { /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff3ffffffffffull, RSP_0), INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff3ffffffffffull, RSP_1), INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0), INTEL_UEVENT_EXTRA_REG(0x0127, MSR_SNOOP_RSP_0, 0xffffffffffffffffull, SNOOP_0), INTEL_UEVENT_EXTRA_REG(0x0227, MSR_SNOOP_RSP_1, 0xffffffffffffffffull, SNOOP_1), EVENT_EXTRA_END }; #define KNL_OT_L2_HITE BIT_ULL(19) /* Other Tile L2 Hit */ #define KNL_OT_L2_HITF BIT_ULL(20) /* Other Tile L2 Hit */ #define KNL_MCDRAM_LOCAL BIT_ULL(21) #define KNL_MCDRAM_FAR BIT_ULL(22) #define KNL_DDR_LOCAL BIT_ULL(23) #define KNL_DDR_FAR BIT_ULL(24) #define KNL_DRAM_ANY (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \ KNL_DDR_LOCAL | KNL_DDR_FAR) #define KNL_L2_READ SLM_DMND_READ #define KNL_L2_WRITE SLM_DMND_WRITE #define KNL_L2_PREFETCH SLM_DMND_PREFETCH #define KNL_L2_ACCESS SLM_LLC_ACCESS #define KNL_L2_MISS (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \ KNL_DRAM_ANY | SNB_SNP_ANY | \ SNB_NON_DRAM) static __initconst const u64 knl_hw_cache_extra_regs [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [C(LL)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS, [C(RESULT_MISS)] = 0, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS, [C(RESULT_MISS)] = KNL_L2_WRITE | KNL_L2_MISS, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS, [C(RESULT_MISS)] = KNL_L2_PREFETCH | KNL_L2_MISS, }, }, }; /* * Used from PMIs where the LBRs are already disabled. * * This function could be called consecutively. It is required to remain in * disabled state if called consecutively. * * During consecutive calls, the same disable value will be written to related * registers, so the PMU state remains unchanged. * * intel_bts events don't coexist with intel PMU's BTS events because of * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them * disabled around intel PMU's event batching etc, only inside the PMI handler. * * Avoid PEBS_ENABLE MSR access in PMIs. * The GLOBAL_CTRL has been disabled. All the counters do not count anymore. * It doesn't matter if the PEBS is enabled or not. * Usually, the PEBS status are not changed in PMIs. It's unnecessary to * access PEBS_ENABLE MSR in disable_all()/enable_all(). * However, there are some cases which may change PEBS status, e.g. PMI * throttle. The PEBS_ENABLE should be updated where the status changes. */ static __always_inline void __intel_pmu_disable_all(bool bts) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0); if (bts && test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) intel_pmu_disable_bts(); } static __always_inline void intel_pmu_disable_all(void) { __intel_pmu_disable_all(true); intel_pmu_pebs_disable_all(); intel_pmu_lbr_disable_all(); } static void __intel_pmu_enable_all(int added, bool pmi) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl); intel_pmu_lbr_enable_all(pmi); if (cpuc->fixed_ctrl_val != cpuc->active_fixed_ctrl_val) { wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, cpuc->fixed_ctrl_val); cpuc->active_fixed_ctrl_val = cpuc->fixed_ctrl_val; } wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, intel_ctrl & ~cpuc->intel_ctrl_guest_mask); if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) { struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS]; if (WARN_ON_ONCE(!event)) return; intel_pmu_enable_bts(event->hw.config); } } static void intel_pmu_enable_all(int added) { intel_pmu_pebs_enable_all(); __intel_pmu_enable_all(added, false); } static noinline int __intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries, unsigned int cnt, unsigned long flags) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); intel_pmu_lbr_read(); cnt = min_t(unsigned int, cnt, x86_pmu.lbr_nr); memcpy(entries, cpuc->lbr_entries, sizeof(struct perf_branch_entry) * cnt); intel_pmu_enable_all(0); local_irq_restore(flags); return cnt; } static int intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries, unsigned int cnt) { unsigned long flags; /* must not have branches... */ local_irq_save(flags); __intel_pmu_disable_all(false); /* we don't care about BTS */ __intel_pmu_lbr_disable(); /* ... until here */ return __intel_pmu_snapshot_branch_stack(entries, cnt, flags); } static int intel_pmu_snapshot_arch_branch_stack(struct perf_branch_entry *entries, unsigned int cnt) { unsigned long flags; /* must not have branches... */ local_irq_save(flags); __intel_pmu_disable_all(false); /* we don't care about BTS */ __intel_pmu_arch_lbr_disable(); /* ... until here */ return __intel_pmu_snapshot_branch_stack(entries, cnt, flags); } /* * Workaround for: * Intel Errata AAK100 (model 26) * Intel Errata AAP53 (model 30) * Intel Errata BD53 (model 44) * * The official story: * These chips need to be 'reset' when adding counters by programming the * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either * in sequence on the same PMC or on different PMCs. * * In practice it appears some of these events do in fact count, and * we need to program all 4 events. */ static void intel_pmu_nhm_workaround(void) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); static const unsigned long nhm_magic[4] = { 0x4300B5, 0x4300D2, 0x4300B1, 0x4300B1 }; struct perf_event *event; int i; /* * The Errata requires below steps: * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL; * 2) Configure 4 PERFEVTSELx with the magic events and clear * the corresponding PMCx; * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL; * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL; * 5) Clear 4 pairs of ERFEVTSELx and PMCx; */ /* * The real steps we choose are a little different from above. * A) To reduce MSR operations, we don't run step 1) as they * are already cleared before this function is called; * B) Call x86_perf_event_update to save PMCx before configuring * PERFEVTSELx with magic number; * C) With step 5), we do clear only when the PERFEVTSELx is * not used currently. * D) Call x86_perf_event_set_period to restore PMCx; */ /* We always operate 4 pairs of PERF Counters */ for (i = 0; i < 4; i++) { event = cpuc->events[i]; if (event) static_call(x86_pmu_update)(event); } for (i = 0; i < 4; i++) { wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]); wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0); } wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf); wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0); for (i = 0; i < 4; i++) { event = cpuc->events[i]; if (event) { static_call(x86_pmu_set_period)(event); __x86_pmu_enable_event(&event->hw, ARCH_PERFMON_EVENTSEL_ENABLE); } else wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0); } } static void intel_pmu_nhm_enable_all(int added) { if (added) intel_pmu_nhm_workaround(); intel_pmu_enable_all(added); } static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on) { u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0; if (cpuc->tfa_shadow != val) { cpuc->tfa_shadow = val; wrmsrl(MSR_TSX_FORCE_ABORT, val); } } static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr) { /* * We're going to use PMC3, make sure TFA is set before we touch it. */ if (cntr == 3) intel_set_tfa(cpuc, true); } static void intel_tfa_pmu_enable_all(int added) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); /* * If we find PMC3 is no longer used when we enable the PMU, we can * clear TFA. */ if (!test_bit(3, cpuc->active_mask)) intel_set_tfa(cpuc, false); intel_pmu_enable_all(added); } static inline u64 intel_pmu_get_status(void) { u64 status; rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status); return status; } static inline void intel_pmu_ack_status(u64 ack) { wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack); } static inline bool event_is_checkpointed(struct perf_event *event) { return unlikely(event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0; } static inline void intel_set_masks(struct perf_event *event, int idx) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); if (event->attr.exclude_host) __set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask); if (event->attr.exclude_guest) __set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask); if (event_is_checkpointed(event)) __set_bit(idx, (unsigned long *)&cpuc->intel_cp_status); } static inline void intel_clear_masks(struct perf_event *event, int idx) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); __clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask); __clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask); __clear_bit(idx, (unsigned long *)&cpuc->intel_cp_status); } static void intel_pmu_disable_fixed(struct perf_event *event) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); struct hw_perf_event *hwc = &event->hw; int idx = hwc->idx; u64 mask; if (is_topdown_idx(idx)) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); /* * When there are other active TopDown events, * don't disable the fixed counter 3. */ if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx)) return; idx = INTEL_PMC_IDX_FIXED_SLOTS; } intel_clear_masks(event, idx); mask = intel_fixed_bits_by_idx(idx - INTEL_PMC_IDX_FIXED, INTEL_FIXED_BITS_MASK); cpuc->fixed_ctrl_val &= ~mask; } static void intel_pmu_disable_event(struct perf_event *event) { struct hw_perf_event *hwc = &event->hw; int idx = hwc->idx; switch (idx) { case 0 ... INTEL_PMC_IDX_FIXED - 1: intel_clear_masks(event, idx); x86_pmu_disable_event(event); break; case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1: case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END: intel_pmu_disable_fixed(event); break; case INTEL_PMC_IDX_FIXED_BTS: intel_pmu_disable_bts(); intel_pmu_drain_bts_buffer(); return; case INTEL_PMC_IDX_FIXED_VLBR: intel_clear_masks(event, idx); break; default: intel_clear_masks(event, idx); pr_warn("Failed to disable the event with invalid index %d\n", idx); return; } /* * Needs to be called after x86_pmu_disable_event, * so we don't trigger the event without PEBS bit set. */ if (unlikely(event->attr.precise_ip)) intel_pmu_pebs_disable(event); } static void intel_pmu_assign_event(struct perf_event *event, int idx) { if (is_pebs_pt(event)) perf_report_aux_output_id(event, idx); } static __always_inline bool intel_pmu_needs_branch_stack(struct perf_event *event) { return event->hw.flags & PERF_X86_EVENT_NEEDS_BRANCH_STACK; } static void intel_pmu_del_event(struct perf_event *event) { if (intel_pmu_needs_branch_stack(event)) intel_pmu_lbr_del(event); if (event->attr.precise_ip) intel_pmu_pebs_del(event); } static int icl_set_topdown_event_period(struct perf_event *event) { struct hw_perf_event *hwc = &event->hw; s64 left = local64_read(&hwc->period_left); /* * The values in PERF_METRICS MSR are derived from fixed counter 3. * Software should start both registers, PERF_METRICS and fixed * counter 3, from zero. * Clear PERF_METRICS and Fixed counter 3 in initialization. * After that, both MSRs will be cleared for each read. * Don't need to clear them again. */ if (left == x86_pmu.max_period) { wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0); wrmsrl(MSR_PERF_METRICS, 0); hwc->saved_slots = 0; hwc->saved_metric = 0; } if ((hwc->saved_slots) && is_slots_event(event)) { wrmsrl(MSR_CORE_PERF_FIXED_CTR3, hwc->saved_slots); wrmsrl(MSR_PERF_METRICS, hwc->saved_metric); } perf_event_update_userpage(event); return 0; } DEFINE_STATIC_CALL(intel_pmu_set_topdown_event_period, x86_perf_event_set_period); static inline u64 icl_get_metrics_event_value(u64 metric, u64 slots, int idx) { u32 val; /* * The metric is reported as an 8bit integer fraction * summing up to 0xff. * slots-in-metric = (Metric / 0xff) * slots */ val = (metric >> ((idx - INTEL_PMC_IDX_METRIC_BASE) * 8)) & 0xff; return mul_u64_u32_div(slots, val, 0xff); } static u64 icl_get_topdown_value(struct perf_event *event, u64 slots, u64 metrics) { int idx = event->hw.idx; u64 delta; if (is_metric_idx(idx)) delta = icl_get_metrics_event_value(metrics, slots, idx); else delta = slots; return delta; } static void __icl_update_topdown_event(struct perf_event *event, u64 slots, u64 metrics, u64 last_slots, u64 last_metrics) { u64 delta, last = 0; delta = icl_get_topdown_value(event, slots, metrics); if (last_slots) last = icl_get_topdown_value(event, last_slots, last_metrics); /* * The 8bit integer fraction of metric may be not accurate, * especially when the changes is very small. * For example, if only a few bad_spec happens, the fraction * may be reduced from 1 to 0. If so, the bad_spec event value * will be 0 which is definitely less than the last value. * Avoid update event->count for this case. */ if (delta > last) { delta -= last; local64_add(delta, &event->count); } } static void update_saved_topdown_regs(struct perf_event *event, u64 slots, u64 metrics, int metric_end) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); struct perf_event *other; int idx; event->hw.saved_slots = slots; event->hw.saved_metric = metrics; for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) { if (!is_topdown_idx(idx)) continue; other = cpuc->events[idx]; other->hw.saved_slots = slots; other->hw.saved_metric = metrics; } } /* * Update all active Topdown events. * * The PERF_METRICS and Fixed counter 3 are read separately. The values may be * modify by a NMI. PMU has to be disabled before calling this function. */ static u64 intel_update_topdown_event(struct perf_event *event, int metric_end) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); struct perf_event *other; u64 slots, metrics; bool reset = true; int idx; /* read Fixed counter 3 */ rdpmcl((3 | INTEL_PMC_FIXED_RDPMC_BASE), slots); if (!slots) return 0; /* read PERF_METRICS */ rdpmcl(INTEL_PMC_FIXED_RDPMC_METRICS, metrics); for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) { if (!is_topdown_idx(idx)) continue; other = cpuc->events[idx]; __icl_update_topdown_event(other, slots, metrics, event ? event->hw.saved_slots : 0, event ? event->hw.saved_metric : 0); } /* * Check and update this event, which may have been cleared * in active_mask e.g. x86_pmu_stop() */ if (event && !test_bit(event->hw.idx, cpuc->active_mask)) { __icl_update_topdown_event(event, slots, metrics, event->hw.saved_slots, event->hw.saved_metric); /* * In x86_pmu_stop(), the event is cleared in active_mask first, * then drain the delta, which indicates context switch for * counting. * Save metric and slots for context switch. * Don't need to reset the PERF_METRICS and Fixed counter 3. * Because the values will be restored in next schedule in. */ update_saved_topdown_regs(event, slots, metrics, metric_end); reset = false; } if (reset) { /* The fixed counter 3 has to be written before the PERF_METRICS. */ wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0); wrmsrl(MSR_PERF_METRICS, 0); if (event) update_saved_topdown_regs(event, 0, 0, metric_end); } return slots; } static u64 icl_update_topdown_event(struct perf_event *event) { return intel_update_topdown_event(event, INTEL_PMC_IDX_METRIC_BASE + x86_pmu.num_topdown_events - 1); } DEFINE_STATIC_CALL(intel_pmu_update_topdown_event, x86_perf_event_update); static void intel_pmu_read_topdown_event(struct perf_event *event) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); /* Only need to call update_topdown_event() once for group read. */ if ((cpuc->txn_flags & PERF_PMU_TXN_READ) && !is_slots_event(event)) return; perf_pmu_disable(event->pmu); static_call(intel_pmu_update_topdown_event)(event); perf_pmu_enable(event->pmu); } static void intel_pmu_read_event(struct perf_event *event) { if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD) intel_pmu_auto_reload_read(event); else if (is_topdown_count(event)) intel_pmu_read_topdown_event(event); else x86_perf_event_update(event); } static void intel_pmu_enable_fixed(struct perf_event *event) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); struct hw_perf_event *hwc = &event->hw; u64 mask, bits = 0; int idx = hwc->idx; if (is_topdown_idx(idx)) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); /* * When there are other active TopDown events, * don't enable the fixed counter 3 again. */ if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx)) return; idx = INTEL_PMC_IDX_FIXED_SLOTS; } intel_set_masks(event, idx); /* * Enable IRQ generation (0x8), if not PEBS, * and enable ring-3 counting (0x2) and ring-0 counting (0x1) * if requested: */ if (!event->attr.precise_ip) bits |= INTEL_FIXED_0_ENABLE_PMI; if (hwc->config & ARCH_PERFMON_EVENTSEL_USR) bits |= INTEL_FIXED_0_USER; if (hwc->config & ARCH_PERFMON_EVENTSEL_OS) bits |= INTEL_FIXED_0_KERNEL; /* * ANY bit is supported in v3 and up */ if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY) bits |= INTEL_FIXED_0_ANYTHREAD; idx -= INTEL_PMC_IDX_FIXED; bits = intel_fixed_bits_by_idx(idx, bits); mask = intel_fixed_bits_by_idx(idx, INTEL_FIXED_BITS_MASK); if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip) { bits |= intel_fixed_bits_by_idx(idx, ICL_FIXED_0_ADAPTIVE); mask |= intel_fixed_bits_by_idx(idx, ICL_FIXED_0_ADAPTIVE); } cpuc->fixed_ctrl_val &= ~mask; cpuc->fixed_ctrl_val |= bits; } static void intel_pmu_enable_event(struct perf_event *event) { u64 enable_mask = ARCH_PERFMON_EVENTSEL_ENABLE; struct hw_perf_event *hwc = &event->hw; int idx = hwc->idx; if (unlikely(event->attr.precise_ip)) intel_pmu_pebs_enable(event); switch (idx) { case 0 ... INTEL_PMC_IDX_FIXED - 1: if (branch_sample_counters(event)) enable_mask |= ARCH_PERFMON_EVENTSEL_BR_CNTR; intel_set_masks(event, idx); __x86_pmu_enable_event(hwc, enable_mask); break; case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1: case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END: intel_pmu_enable_fixed(event); break; case INTEL_PMC_IDX_FIXED_BTS: if (!__this_cpu_read(cpu_hw_events.enabled)) return; intel_pmu_enable_bts(hwc->config); break; case INTEL_PMC_IDX_FIXED_VLBR: intel_set_masks(event, idx); break; default: pr_warn("Failed to enable the event with invalid index %d\n", idx); } } static void intel_pmu_add_event(struct perf_event *event) { if (event->attr.precise_ip) intel_pmu_pebs_add(event); if (intel_pmu_needs_branch_stack(event)) intel_pmu_lbr_add(event); } /* * Save and restart an expired event. Called by NMI contexts, * so it has to be careful about preempting normal event ops: */ int intel_pmu_save_and_restart(struct perf_event *event) { static_call(x86_pmu_update)(event); /* * For a checkpointed counter always reset back to 0. This * avoids a situation where the counter overflows, aborts the * transaction and is then set back to shortly before the * overflow, and overflows and aborts again. */ if (unlikely(event_is_checkpointed(event))) { /* No race with NMIs because the counter should not be armed */ wrmsrl(event->hw.event_base, 0); local64_set(&event->hw.prev_count, 0); } return static_call(x86_pmu_set_period)(event); } static int intel_pmu_set_period(struct perf_event *event) { if (unlikely(is_topdown_count(event))) return static_call(intel_pmu_set_topdown_event_period)(event); return x86_perf_event_set_period(event); } static u64 intel_pmu_update(struct perf_event *event) { if (unlikely(is_topdown_count(event))) return static_call(intel_pmu_update_topdown_event)(event); return x86_perf_event_update(event); } static void intel_pmu_reset(void) { struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds); struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); unsigned long *cntr_mask = hybrid(cpuc->pmu, cntr_mask); unsigned long *fixed_cntr_mask = hybrid(cpuc->pmu, fixed_cntr_mask); unsigned long flags; int idx; if (!*(u64 *)cntr_mask) return; local_irq_save(flags); pr_info("clearing PMU state on CPU#%d\n", smp_processor_id()); for_each_set_bit(idx, cntr_mask, INTEL_PMC_MAX_GENERIC) { wrmsrl_safe(x86_pmu_config_addr(idx), 0ull); wrmsrl_safe(x86_pmu_event_addr(idx), 0ull); } for_each_set_bit(idx, fixed_cntr_mask, INTEL_PMC_MAX_FIXED) { if (fixed_counter_disabled(idx, cpuc->pmu)) continue; wrmsrl_safe(x86_pmu_fixed_ctr_addr(idx), 0ull); } if (ds) ds->bts_index = ds->bts_buffer_base; /* Ack all overflows and disable fixed counters */ if (x86_pmu.version >= 2) { intel_pmu_ack_status(intel_pmu_get_status()); wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0); } /* Reset LBRs and LBR freezing */ if (x86_pmu.lbr_nr) { update_debugctlmsr(get_debugctlmsr() & ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR)); } local_irq_restore(flags); } /* * We may be running with guest PEBS events created by KVM, and the * PEBS records are logged into the guest's DS and invisible to host. * * In the case of guest PEBS overflow, we only trigger a fake event * to emulate the PEBS overflow PMI for guest PEBS counters in KVM. * The guest will then vm-entry and check the guest DS area to read * the guest PEBS records. * * The contents and other behavior of the guest event do not matter. */ static void x86_pmu_handle_guest_pebs(struct pt_regs *regs, struct perf_sample_data *data) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); u64 guest_pebs_idxs = cpuc->pebs_enabled & ~cpuc->intel_ctrl_host_mask; struct perf_event *event = NULL; int bit; if (!unlikely(perf_guest_state())) return; if (!x86_pmu.pebs_ept || !x86_pmu.pebs_active || !guest_pebs_idxs) return; for_each_set_bit(bit, (unsigned long *)&guest_pebs_idxs, X86_PMC_IDX_MAX) { event = cpuc->events[bit]; if (!event->attr.precise_ip) continue; perf_sample_data_init(data, 0, event->hw.last_period); if (perf_event_overflow(event, data, regs)) x86_pmu_stop(event, 0); /* Inject one fake event is enough. */ break; } } static int handle_pmi_common(struct pt_regs *regs, u64 status) { struct perf_sample_data data; struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); int bit; int handled = 0; u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl); inc_irq_stat(apic_perf_irqs); /* * Ignore a range of extra bits in status that do not indicate * overflow by themselves. */ status &= ~(GLOBAL_STATUS_COND_CHG | GLOBAL_STATUS_ASIF | GLOBAL_STATUS_LBRS_FROZEN); if (!status) return 0; /* * In case multiple PEBS events are sampled at the same time, * it is possible to have GLOBAL_STATUS bit 62 set indicating * PEBS buffer overflow and also seeing at most 3 PEBS counters * having their bits set in the status register. This is a sign * that there was at least one PEBS record pending at the time * of the PMU interrupt. PEBS counters must only be processed * via the drain_pebs() calls and not via the regular sample * processing loop coming after that the function, otherwise * phony regular samples may be generated in the sampling buffer * not marked with the EXACT tag. Another possibility is to have * one PEBS event and at least one non-PEBS event which overflows * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will * not be set, yet the overflow status bit for the PEBS counter will * be on Skylake. * * To avoid this problem, we systematically ignore the PEBS-enabled * counters from the GLOBAL_STATUS mask and we always process PEBS * events via drain_pebs(). */ status &= ~(cpuc->pebs_enabled & x86_pmu.pebs_capable); /* * PEBS overflow sets bit 62 in the global status register */ if (__test_and_clear_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, (unsigned long *)&status)) { u64 pebs_enabled = cpuc->pebs_enabled; handled++; x86_pmu_handle_guest_pebs(regs, &data); x86_pmu.drain_pebs(regs, &data); status &= intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI; /* * PMI throttle may be triggered, which stops the PEBS event. * Although cpuc->pebs_enabled is updated accordingly, the * MSR_IA32_PEBS_ENABLE is not updated. Because the * cpuc->enabled has been forced to 0 in PMI. * Update the MSR if pebs_enabled is changed. */ if (pebs_enabled != cpuc->pebs_enabled) wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled); } /* * Intel PT */ if (__test_and_clear_bit(GLOBAL_STATUS_TRACE_TOPAPMI_BIT, (unsigned long *)&status)) { handled++; if (!perf_guest_handle_intel_pt_intr()) intel_pt_interrupt(); } /* * Intel Perf metrics */ if (__test_and_clear_bit(GLOBAL_STATUS_PERF_METRICS_OVF_BIT, (unsigned long *)&status)) { handled++; static_call(intel_pmu_update_topdown_event)(NULL); } /* * Checkpointed counters can lead to 'spurious' PMIs because the * rollback caused by the PMI will have cleared the overflow status * bit. Therefore always force probe these counters. */ status |= cpuc->intel_cp_status; for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) { struct perf_event *event = cpuc->events[bit]; handled++; if (!test_bit(bit, cpuc->active_mask)) continue; if (!intel_pmu_save_and_restart(event)) continue; perf_sample_data_init(&data, 0, event->hw.last_period); if (has_branch_stack(event)) intel_pmu_lbr_save_brstack(&data, cpuc, event); if (perf_event_overflow(event, &data, regs)) x86_pmu_stop(event, 0); } return handled; } /* * This handler is triggered by the local APIC, so the APIC IRQ handling * rules apply: */ static int intel_pmu_handle_irq(struct pt_regs *regs) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); bool late_ack = hybrid_bit(cpuc->pmu, late_ack); bool mid_ack = hybrid_bit(cpuc->pmu, mid_ack); int loops; u64 status; int handled; int pmu_enabled; /* * Save the PMU state. * It needs to be restored when leaving the handler. */ pmu_enabled = cpuc->enabled; /* * In general, the early ACK is only applied for old platforms. * For the big core starts from Haswell, the late ACK should be * applied. * For the small core after Tremont, we have to do the ACK right * before re-enabling counters, which is in the middle of the * NMI handler. */ if (!late_ack && !mid_ack) apic_write(APIC_LVTPC, APIC_DM_NMI); intel_bts_disable_local(); cpuc->enabled = 0; __intel_pmu_disable_all(true); handled = intel_pmu_drain_bts_buffer(); handled += intel_bts_interrupt(); status = intel_pmu_get_status(); if (!status) goto done; loops = 0; again: intel_pmu_lbr_read(); intel_pmu_ack_status(status); if (++loops > 100) { static bool warned; if (!warned) { WARN(1, "perfevents: irq loop stuck!\n"); perf_event_print_debug(); warned = true; } intel_pmu_reset(); goto done; } handled += handle_pmi_common(regs, status); /* * Repeat if there is more work to be done: */ status = intel_pmu_get_status(); if (status) goto again; done: if (mid_ack) apic_write(APIC_LVTPC, APIC_DM_NMI); /* Only restore PMU state when it's active. See x86_pmu_disable(). */ cpuc->enabled = pmu_enabled; if (pmu_enabled) __intel_pmu_enable_all(0, true); intel_bts_enable_local(); /* * Only unmask the NMI after the overflow counters * have been reset. This avoids spurious NMIs on * Haswell CPUs. */ if (late_ack) apic_write(APIC_LVTPC, APIC_DM_NMI); return handled; } static struct event_constraint * intel_bts_constraints(struct perf_event *event) { if (unlikely(intel_pmu_has_bts(event))) return &bts_constraint; return NULL; } /* * Note: matches a fake event, like Fixed2. */ static struct event_constraint * intel_vlbr_constraints(struct perf_event *event) { struct event_constraint *c = &vlbr_constraint; if (unlikely(constraint_match(c, event->hw.config))) { event->hw.flags |= c->flags; return c; } return NULL; } static int intel_alt_er(struct cpu_hw_events *cpuc, int idx, u64 config) { struct extra_reg *extra_regs = hybrid(cpuc->pmu, extra_regs); int alt_idx = idx; if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1)) return idx; if (idx == EXTRA_REG_RSP_0) alt_idx = EXTRA_REG_RSP_1; if (idx == EXTRA_REG_RSP_1) alt_idx = EXTRA_REG_RSP_0; if (config & ~extra_regs[alt_idx].valid_mask) return idx; return alt_idx; } static void intel_fixup_er(struct perf_event *event, int idx) { struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs); event->hw.extra_reg.idx = idx; if (idx == EXTRA_REG_RSP_0) { event->hw.config &= ~INTEL_ARCH_EVENT_MASK; event->hw.config |= extra_regs[EXTRA_REG_RSP_0].event; event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0; } else if (idx == EXTRA_REG_RSP_1) { event->hw.config &= ~INTEL_ARCH_EVENT_MASK; event->hw.config |= extra_regs[EXTRA_REG_RSP_1].event; event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1; } } /* * manage allocation of shared extra msr for certain events * * sharing can be: * per-cpu: to be shared between the various events on a single PMU * per-core: per-cpu + shared by HT threads */ static struct event_constraint * __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc, struct perf_event *event, struct hw_perf_event_extra *reg) { struct event_constraint *c = &emptyconstraint; struct er_account *era; unsigned long flags; int idx = reg->idx; /* * reg->alloc can be set due to existing state, so for fake cpuc we * need to ignore this, otherwise we might fail to allocate proper fake * state for this extra reg constraint. Also see the comment below. */ if (reg->alloc && !cpuc->is_fake) return NULL; /* call x86_get_event_constraint() */ again: era = &cpuc->shared_regs->regs[idx]; /* * we use spin_lock_irqsave() to avoid lockdep issues when * passing a fake cpuc */ raw_spin_lock_irqsave(&era->lock, flags); if (!atomic_read(&era->ref) || era->config == reg->config) { /* * If its a fake cpuc -- as per validate_{group,event}() we * shouldn't touch event state and we can avoid doing so * since both will only call get_event_constraints() once * on each event, this avoids the need for reg->alloc. * * Not doing the ER fixup will only result in era->reg being * wrong, but since we won't actually try and program hardware * this isn't a problem either. */ if (!cpuc->is_fake) { if (idx != reg->idx) intel_fixup_er(event, idx); /* * x86_schedule_events() can call get_event_constraints() * multiple times on events in the case of incremental * scheduling(). reg->alloc ensures we only do the ER * allocation once. */ reg->alloc = 1; } /* lock in msr value */ era->config = reg->config; era->reg = reg->reg; /* one more user */ atomic_inc(&era->ref); /* * need to call x86_get_event_constraint() * to check if associated event has constraints */ c = NULL; } else { idx = intel_alt_er(cpuc, idx, reg->config); if (idx != reg->idx) { raw_spin_unlock_irqrestore(&era->lock, flags); goto again; } } raw_spin_unlock_irqrestore(&era->lock, flags); return c; } static void __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc, struct hw_perf_event_extra *reg) { struct er_account *era; /* * Only put constraint if extra reg was actually allocated. Also takes * care of event which do not use an extra shared reg. * * Also, if this is a fake cpuc we shouldn't touch any event state * (reg->alloc) and we don't care about leaving inconsistent cpuc state * either since it'll be thrown out. */ if (!reg->alloc || cpuc->is_fake) return; era = &cpuc->shared_regs->regs[reg->idx]; /* one fewer user */ atomic_dec(&era->ref); /* allocate again next time */ reg->alloc = 0; } static struct event_constraint * intel_shared_regs_constraints(struct cpu_hw_events *cpuc, struct perf_event *event) { struct event_constraint *c = NULL, *d; struct hw_perf_event_extra *xreg, *breg; xreg = &event->hw.extra_reg; if (xreg->idx != EXTRA_REG_NONE) { c = __intel_shared_reg_get_constraints(cpuc, event, xreg); if (c == &emptyconstraint) return c; } breg = &event->hw.branch_reg; if (breg->idx != EXTRA_REG_NONE) { d = __intel_shared_reg_get_constraints(cpuc, event, breg); if (d == &emptyconstraint) { __intel_shared_reg_put_constraints(cpuc, xreg); c = d; } } return c; } struct event_constraint * x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx, struct perf_event *event) { struct event_constraint *event_constraints = hybrid(cpuc->pmu, event_constraints); struct event_constraint *c; if (event_constraints) { for_each_event_constraint(c, event_constraints) { if (constraint_match(c, event->hw.config)) { event->hw.flags |= c->flags; return c; } } } return &hybrid_var(cpuc->pmu, unconstrained); } static struct event_constraint * __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx, struct perf_event *event) { struct event_constraint *c; c = intel_vlbr_constraints(event); if (c) return c; c = intel_bts_constraints(event); if (c) return c; c = intel_shared_regs_constraints(cpuc, event); if (c) return c; c = intel_pebs_constraints(event); if (c) return c; return x86_get_event_constraints(cpuc, idx, event); } static void intel_start_scheduling(struct cpu_hw_events *cpuc) { struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; struct intel_excl_states *xl; int tid = cpuc->excl_thread_id; /* * nothing needed if in group validation mode */ if (cpuc->is_fake || !is_ht_workaround_enabled()) return; /* * no exclusion needed */ if (WARN_ON_ONCE(!excl_cntrs)) return; xl = &excl_cntrs->states[tid]; xl->sched_started = true; /* * lock shared state until we are done scheduling * in stop_event_scheduling() * makes scheduling appear as a transaction */ raw_spin_lock(&excl_cntrs->lock); } static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr) { struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; struct event_constraint *c = cpuc->event_constraint[idx]; struct intel_excl_states *xl; int tid = cpuc->excl_thread_id; if (cpuc->is_fake || !is_ht_workaround_enabled()) return; if (WARN_ON_ONCE(!excl_cntrs)) return; if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) return; xl = &excl_cntrs->states[tid]; lockdep_assert_held(&excl_cntrs->lock); if (c->flags & PERF_X86_EVENT_EXCL) xl->state[cntr] = INTEL_EXCL_EXCLUSIVE; else xl->state[cntr] = INTEL_EXCL_SHARED; } static void intel_stop_scheduling(struct cpu_hw_events *cpuc) { struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; struct intel_excl_states *xl; int tid = cpuc->excl_thread_id; /* * nothing needed if in group validation mode */ if (cpuc->is_fake || !is_ht_workaround_enabled()) return; /* * no exclusion needed */ if (WARN_ON_ONCE(!excl_cntrs)) return; xl = &excl_cntrs->states[tid]; xl->sched_started = false; /* * release shared state lock (acquired in intel_start_scheduling()) */ raw_spin_unlock(&excl_cntrs->lock); } static struct event_constraint * dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx) { WARN_ON_ONCE(!cpuc->constraint_list); if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) { struct event_constraint *cx; /* * grab pre-allocated constraint entry */ cx = &cpuc->constraint_list[idx]; /* * initialize dynamic constraint * with static constraint */ *cx = *c; /* * mark constraint as dynamic */ cx->flags |= PERF_X86_EVENT_DYNAMIC; c = cx; } return c; } static struct event_constraint * intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event, int idx, struct event_constraint *c) { struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; struct intel_excl_states *xlo; int tid = cpuc->excl_thread_id; int is_excl, i, w; /* * validating a group does not require * enforcing cross-thread exclusion */ if (cpuc->is_fake || !is_ht_workaround_enabled()) return c; /* * no exclusion needed */ if (WARN_ON_ONCE(!excl_cntrs)) return c; /* * because we modify the constraint, we need * to make a copy. Static constraints come * from static const tables. * * only needed when constraint has not yet * been cloned (marked dynamic) */ c = dyn_constraint(cpuc, c, idx); /* * From here on, the constraint is dynamic. * Either it was just allocated above, or it * was allocated during a earlier invocation * of this function */ /* * state of sibling HT */ xlo = &excl_cntrs->states[tid ^ 1]; /* * event requires exclusive counter access * across HT threads */ is_excl = c->flags & PERF_X86_EVENT_EXCL; if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) { event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT; if (!cpuc->n_excl++) WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1); } /* * Modify static constraint with current dynamic * state of thread * * EXCLUSIVE: sibling counter measuring exclusive event * SHARED : sibling counter measuring non-exclusive event * UNUSED : sibling counter unused */ w = c->weight; for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) { /* * exclusive event in sibling counter * our corresponding counter cannot be used * regardless of our event */ if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) { __clear_bit(i, c->idxmsk); w--; continue; } /* * if measuring an exclusive event, sibling * measuring non-exclusive, then counter cannot * be used */ if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) { __clear_bit(i, c->idxmsk); w--; continue; } } /* * if we return an empty mask, then switch * back to static empty constraint to avoid * the cost of freeing later on */ if (!w) c = &emptyconstraint; c->weight = w; return c; } static struct event_constraint * intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx, struct perf_event *event) { struct event_constraint *c1, *c2; c1 = cpuc->event_constraint[idx]; /* * first time only * - static constraint: no change across incremental scheduling calls * - dynamic constraint: handled by intel_get_excl_constraints() */ c2 = __intel_get_event_constraints(cpuc, idx, event); if (c1) { WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC)); bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX); c1->weight = c2->weight; c2 = c1; } if (cpuc->excl_cntrs) return intel_get_excl_constraints(cpuc, event, idx, c2); /* Not all counters support the branch counter feature. */ if (branch_sample_counters(event)) { c2 = dyn_constraint(cpuc, c2, idx); c2->idxmsk64 &= x86_pmu.lbr_counters; c2->weight = hweight64(c2->idxmsk64); } return c2; } static void intel_put_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event) { struct hw_perf_event *hwc = &event->hw; struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; int tid = cpuc->excl_thread_id; struct intel_excl_states *xl; /* * nothing needed if in group validation mode */ if (cpuc->is_fake) return; if (WARN_ON_ONCE(!excl_cntrs)) return; if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) { hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT; if (!--cpuc->n_excl) WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0); } /* * If event was actually assigned, then mark the counter state as * unused now. */ if (hwc->idx >= 0) { xl = &excl_cntrs->states[tid]; /* * put_constraint may be called from x86_schedule_events() * which already has the lock held so here make locking * conditional. */ if (!xl->sched_started) raw_spin_lock(&excl_cntrs->lock); xl->state[hwc->idx] = INTEL_EXCL_UNUSED; if (!xl->sched_started) raw_spin_unlock(&excl_cntrs->lock); } } static void intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event) { struct hw_perf_event_extra *reg; reg = &event->hw.extra_reg; if (reg->idx != EXTRA_REG_NONE) __intel_shared_reg_put_constraints(cpuc, reg); reg = &event->hw.branch_reg; if (reg->idx != EXTRA_REG_NONE) __intel_shared_reg_put_constraints(cpuc, reg); } static void intel_put_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event) { intel_put_shared_regs_event_constraints(cpuc, event); /* * is PMU has exclusive counter restrictions, then * all events are subject to and must call the * put_excl_constraints() routine */ if (cpuc->excl_cntrs) intel_put_excl_constraints(cpuc, event); } static void intel_pebs_aliases_core2(struct perf_event *event) { if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) { /* * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P * (0x003c) so that we can use it with PEBS. * * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't * PEBS capable. However we can use INST_RETIRED.ANY_P * (0x00c0), which is a PEBS capable event, to get the same * count. * * INST_RETIRED.ANY_P counts the number of cycles that retires * CNTMASK instructions. By setting CNTMASK to a value (16) * larger than the maximum number of instructions that can be * retired per cycle (4) and then inverting the condition, we * count all cycles that retire 16 or less instructions, which * is every cycle. * * Thereby we gain a PEBS capable cycle counter. */ u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16); alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK); event->hw.config = alt_config; } } static void intel_pebs_aliases_snb(struct perf_event *event) { if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) { /* * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P * (0x003c) so that we can use it with PEBS. * * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't * PEBS capable. However we can use UOPS_RETIRED.ALL * (0x01c2), which is a PEBS capable event, to get the same * count. * * UOPS_RETIRED.ALL counts the number of cycles that retires * CNTMASK micro-ops. By setting CNTMASK to a value (16) * larger than the maximum number of micro-ops that can be * retired per cycle (4) and then inverting the condition, we * count all cycles that retire 16 or less micro-ops, which * is every cycle. * * Thereby we gain a PEBS capable cycle counter. */ u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16); alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK); event->hw.config = alt_config; } } static void intel_pebs_aliases_precdist(struct perf_event *event) { if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) { /* * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P * (0x003c) so that we can use it with PEBS. * * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't * PEBS capable. However we can use INST_RETIRED.PREC_DIST * (0x01c0), which is a PEBS capable event, to get the same * count. * * The PREC_DIST event has special support to minimize sample * shadowing effects. One drawback is that it can be * only programmed on counter 1, but that seems like an * acceptable trade off. */ u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16); alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK); event->hw.config = alt_config; } } static void intel_pebs_aliases_ivb(struct perf_event *event) { if (event->attr.precise_ip < 3) return intel_pebs_aliases_snb(event); return intel_pebs_aliases_precdist(event); } static void intel_pebs_aliases_skl(struct perf_event *event) { if (event->attr.precise_ip < 3) return intel_pebs_aliases_core2(event); return intel_pebs_aliases_precdist(event); } static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event) { unsigned long flags = x86_pmu.large_pebs_flags; if (event->attr.use_clockid) flags &= ~PERF_SAMPLE_TIME; if (!event->attr.exclude_kernel) flags &= ~PERF_SAMPLE_REGS_USER; if (event->attr.sample_regs_user & ~PEBS_GP_REGS) flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR); return flags; } static int intel_pmu_bts_config(struct perf_event *event) { struct perf_event_attr *attr = &event->attr; if (unlikely(intel_pmu_has_bts(event))) { /* BTS is not supported by this architecture. */ if (!x86_pmu.bts_active) return -EOPNOTSUPP; /* BTS is currently only allowed for user-mode. */ if (!attr->exclude_kernel) return -EOPNOTSUPP; /* BTS is not allowed for precise events. */ if (attr->precise_ip) return -EOPNOTSUPP; /* disallow bts if conflicting events are present */ if (x86_add_exclusive(x86_lbr_exclusive_lbr)) return -EBUSY; event->destroy = hw_perf_lbr_event_destroy; } return 0; } static int core_pmu_hw_config(struct perf_event *event) { int ret = x86_pmu_hw_config(event); if (ret) return ret; return intel_pmu_bts_config(event); } #define INTEL_TD_METRIC_AVAILABLE_MAX (INTEL_TD_METRIC_RETIRING + \ ((x86_pmu.num_topdown_events - 1) << 8)) static bool is_available_metric_event(struct perf_event *event) { return is_metric_event(event) && event->attr.config <= INTEL_TD_METRIC_AVAILABLE_MAX; } static inline bool is_mem_loads_event(struct perf_event *event) { return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0xcd, .umask=0x01); } static inline bool is_mem_loads_aux_event(struct perf_event *event) { return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0x03, .umask=0x82); } static inline bool require_mem_loads_aux_event(struct perf_event *event) { if (!(x86_pmu.flags & PMU_FL_MEM_LOADS_AUX)) return false; if (is_hybrid()) return hybrid_pmu(event->pmu)->pmu_type == hybrid_big; return true; } static inline bool intel_pmu_has_cap(struct perf_event *event, int idx) { union perf_capabilities *intel_cap = &hybrid(event->pmu, intel_cap); return test_bit(idx, (unsigned long *)&intel_cap->capabilities); } static int intel_pmu_hw_config(struct perf_event *event) { int ret = x86_pmu_hw_config(event); if (ret) return ret; ret = intel_pmu_bts_config(event); if (ret) return ret; if (event->attr.precise_ip) { if ((event->attr.config & INTEL_ARCH_EVENT_MASK) == INTEL_FIXED_VLBR_EVENT) return -EINVAL; if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) { event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD; if (!(event->attr.sample_type & ~intel_pmu_large_pebs_flags(event)) && !has_aux_action(event)) { event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS; event->attach_state |= PERF_ATTACH_SCHED_CB; } } if (x86_pmu.pebs_aliases) x86_pmu.pebs_aliases(event); } if (needs_branch_stack(event)) { /* Avoid branch stack setup for counting events in SAMPLE READ */ if (is_sampling_event(event) || !(event->attr.sample_type & PERF_SAMPLE_READ)) event->hw.flags |= PERF_X86_EVENT_NEEDS_BRANCH_STACK; } if (branch_sample_counters(event)) { struct perf_event *leader, *sibling; int num = 0; if (!(x86_pmu.flags & PMU_FL_BR_CNTR) || (event->attr.config & ~INTEL_ARCH_EVENT_MASK)) return -EINVAL; /* * The branch counter logging is not supported in the call stack * mode yet, since we cannot simply flush the LBR during e.g., * multiplexing. Also, there is no obvious usage with the call * stack mode. Simply forbids it for now. * * If any events in the group enable the branch counter logging * feature, the group is treated as a branch counter logging * group, which requires the extra space to store the counters. */ leader = event->group_leader; if (branch_sample_call_stack(leader)) return -EINVAL; if (branch_sample_counters(leader)) num++; leader->hw.flags |= PERF_X86_EVENT_BRANCH_COUNTERS; for_each_sibling_event(sibling, leader) { if (branch_sample_call_stack(sibling)) return -EINVAL; if (branch_sample_counters(sibling)) num++; } if (num > fls(x86_pmu.lbr_counters)) return -EINVAL; /* * Only applying the PERF_SAMPLE_BRANCH_COUNTERS doesn't * require any branch stack setup. * Clear the bit to avoid unnecessary branch stack setup. */ if (0 == (event->attr.branch_sample_type & ~(PERF_SAMPLE_BRANCH_PLM_ALL | PERF_SAMPLE_BRANCH_COUNTERS))) event->hw.flags &= ~PERF_X86_EVENT_NEEDS_BRANCH_STACK; /* * Force the leader to be a LBR event. So LBRs can be reset * with the leader event. See intel_pmu_lbr_del() for details. */ if (!intel_pmu_needs_branch_stack(leader)) return -EINVAL; } if (intel_pmu_needs_branch_stack(event)) { ret = intel_pmu_setup_lbr_filter(event); if (ret) return ret; event->attach_state |= PERF_ATTACH_SCHED_CB; /* * BTS is set up earlier in this path, so don't account twice */ if (!unlikely(intel_pmu_has_bts(event))) { /* disallow lbr if conflicting events are present */ if (x86_add_exclusive(x86_lbr_exclusive_lbr)) return -EBUSY; event->destroy = hw_perf_lbr_event_destroy; } } if (event->attr.aux_output) { if (!event->attr.precise_ip) return -EINVAL; event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT; } if ((event->attr.type == PERF_TYPE_HARDWARE) || (event->attr.type == PERF_TYPE_HW_CACHE)) return 0; /* * Config Topdown slots and metric events * * The slots event on Fixed Counter 3 can support sampling, * which will be handled normally in x86_perf_event_update(). * * Metric events don't support sampling and require being paired * with a slots event as group leader. When the slots event * is used in a metrics group, it too cannot support sampling. */ if (intel_pmu_has_cap(event, PERF_CAP_METRICS_IDX) && is_topdown_event(event)) { if (event->attr.config1 || event->attr.config2) return -EINVAL; /* * The TopDown metrics events and slots event don't * support any filters. */ if (event->attr.config & X86_ALL_EVENT_FLAGS) return -EINVAL; if (is_available_metric_event(event)) { struct perf_event *leader = event->group_leader; /* The metric events don't support sampling. */ if (is_sampling_event(event)) return -EINVAL; /* The metric events require a slots group leader. */ if (!is_slots_event(leader)) return -EINVAL; /* * The leader/SLOTS must not be a sampling event for * metric use; hardware requires it starts at 0 when used * in conjunction with MSR_PERF_METRICS. */ if (is_sampling_event(leader)) return -EINVAL; event->event_caps |= PERF_EV_CAP_SIBLING; /* * Only once we have a METRICs sibling do we * need TopDown magic. */ leader->hw.flags |= PERF_X86_EVENT_TOPDOWN; event->hw.flags |= PERF_X86_EVENT_TOPDOWN; } } /* * The load latency event X86_CONFIG(.event=0xcd, .umask=0x01) on SPR * doesn't function quite right. As a work-around it needs to always be * co-scheduled with a auxiliary event X86_CONFIG(.event=0x03, .umask=0x82). * The actual count of this second event is irrelevant it just needs * to be active to make the first event function correctly. * * In a group, the auxiliary event must be in front of the load latency * event. The rule is to simplify the implementation of the check. * That's because perf cannot have a complete group at the moment. */ if (require_mem_loads_aux_event(event) && (event->attr.sample_type & PERF_SAMPLE_DATA_SRC) && is_mem_loads_event(event)) { struct perf_event *leader = event->group_leader; struct perf_event *sibling = NULL; /* * When this memload event is also the first event (no group * exists yet), then there is no aux event before it. */ if (leader == event) return -ENODATA; if (!is_mem_loads_aux_event(leader)) { for_each_sibling_event(sibling, leader) { if (is_mem_loads_aux_event(sibling)) break; } if (list_entry_is_head(sibling, &leader->sibling_list, sibling_list)) return -ENODATA; } } if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY)) return 0; if (x86_pmu.version < 3) return -EINVAL; ret = perf_allow_cpu(&event->attr); if (ret) return ret; event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY; return 0; } /* * Currently, the only caller of this function is the atomic_switch_perf_msrs(). * The host perf context helps to prepare the values of the real hardware for * a set of msrs that need to be switched atomically in a vmx transaction. * * For example, the pseudocode needed to add a new msr should look like: * * arr[(*nr)++] = (struct perf_guest_switch_msr){ * .msr = the hardware msr address, * .host = the value the hardware has when it doesn't run a guest, * .guest = the value the hardware has when it runs a guest, * }; * * These values have nothing to do with the emulated values the guest sees * when it uses {RD,WR}MSR, which should be handled by the KVM context, * specifically in the intel_pmu_{get,set}_msr(). */ static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr, void *data) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs; struct kvm_pmu *kvm_pmu = (struct kvm_pmu *)data; u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl); u64 pebs_mask = cpuc->pebs_enabled & x86_pmu.pebs_capable; int global_ctrl, pebs_enable; /* * In addition to obeying exclude_guest/exclude_host, remove bits being * used for PEBS when running a guest, because PEBS writes to virtual * addresses (not physical addresses). */ *nr = 0; global_ctrl = (*nr)++; arr[global_ctrl] = (struct perf_guest_switch_msr){ .msr = MSR_CORE_PERF_GLOBAL_CTRL, .host = intel_ctrl & ~cpuc->intel_ctrl_guest_mask, .guest = intel_ctrl & ~cpuc->intel_ctrl_host_mask & ~pebs_mask, }; if (!x86_pmu.pebs) return arr; /* * If PMU counter has PEBS enabled it is not enough to * disable counter on a guest entry since PEBS memory * write can overshoot guest entry and corrupt guest * memory. Disabling PEBS solves the problem. * * Don't do this if the CPU already enforces it. */ if (x86_pmu.pebs_no_isolation) { arr[(*nr)++] = (struct perf_guest_switch_msr){ .msr = MSR_IA32_PEBS_ENABLE, .host = cpuc->pebs_enabled, .guest = 0, }; return arr; } if (!kvm_pmu || !x86_pmu.pebs_ept) return arr; arr[(*nr)++] = (struct perf_guest_switch_msr){ .msr = MSR_IA32_DS_AREA, .host = (unsigned long)cpuc->ds, .guest = kvm_pmu->ds_area, }; if (x86_pmu.intel_cap.pebs_baseline) { arr[(*nr)++] = (struct perf_guest_switch_msr){ .msr = MSR_PEBS_DATA_CFG, .host = cpuc->active_pebs_data_cfg, .guest = kvm_pmu->pebs_data_cfg, }; } pebs_enable = (*nr)++; arr[pebs_enable] = (struct perf_guest_switch_msr){ .msr = MSR_IA32_PEBS_ENABLE, .host = cpuc->pebs_enabled & ~cpuc->intel_ctrl_guest_mask, .guest = pebs_mask & ~cpuc->intel_ctrl_host_mask, }; if (arr[pebs_enable].host) { /* Disable guest PEBS if host PEBS is enabled. */ arr[pebs_enable].guest = 0; } else { /* Disable guest PEBS thoroughly for cross-mapped PEBS counters. */ arr[pebs_enable].guest &= ~kvm_pmu->host_cross_mapped_mask; arr[global_ctrl].guest &= ~kvm_pmu->host_cross_mapped_mask; /* Set hw GLOBAL_CTRL bits for PEBS counter when it runs for guest */ arr[global_ctrl].guest |= arr[pebs_enable].guest; } return arr; } static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr, void *data) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs; int idx; for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) { struct perf_event *event = cpuc->events[idx]; arr[idx].msr = x86_pmu_config_addr(idx); arr[idx].host = arr[idx].guest = 0; if (!test_bit(idx, cpuc->active_mask)) continue; arr[idx].host = arr[idx].guest = event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE; if (event->attr.exclude_host) arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE; else if (event->attr.exclude_guest) arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE; } *nr = x86_pmu_max_num_counters(cpuc->pmu); return arr; } static void core_pmu_enable_event(struct perf_event *event) { if (!event->attr.exclude_host) x86_pmu_enable_event(event); } static void core_pmu_enable_all(int added) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); int idx; for_each_set_bit(idx, x86_pmu.cntr_mask, X86_PMC_IDX_MAX) { struct hw_perf_event *hwc = &cpuc->events[idx]->hw; if (!test_bit(idx, cpuc->active_mask) || cpuc->events[idx]->attr.exclude_host) continue; __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE); } } static int hsw_hw_config(struct perf_event *event) { int ret = intel_pmu_hw_config(event); if (ret) return ret; if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE)) return 0; event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED); /* * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with * PEBS or in ANY thread mode. Since the results are non-sensical forbid * this combination. */ if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) && ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) || event->attr.precise_ip > 0)) return -EOPNOTSUPP; if (event_is_checkpointed(event)) { /* * Sampling of checkpointed events can cause situations where * the CPU constantly aborts because of a overflow, which is * then checkpointed back and ignored. Forbid checkpointing * for sampling. * * But still allow a long sampling period, so that perf stat * from KVM works. */ if (event->attr.sample_period > 0 && event->attr.sample_period < 0x7fffffff) return -EOPNOTSUPP; } return 0; } static struct event_constraint counter0_constraint = INTEL_ALL_EVENT_CONSTRAINT(0, 0x1); static struct event_constraint counter1_constraint = INTEL_ALL_EVENT_CONSTRAINT(0, 0x2); static struct event_constraint counter0_1_constraint = INTEL_ALL_EVENT_CONSTRAINT(0, 0x3); static struct event_constraint counter2_constraint = EVENT_CONSTRAINT(0, 0x4, 0); static struct event_constraint fixed0_constraint = FIXED_EVENT_CONSTRAINT(0x00c0, 0); static struct event_constraint fixed0_counter0_constraint = INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL); static struct event_constraint fixed0_counter0_1_constraint = INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000003ULL); static struct event_constraint counters_1_7_constraint = INTEL_ALL_EVENT_CONSTRAINT(0, 0xfeULL); static struct event_constraint * hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx, struct perf_event *event) { struct event_constraint *c; c = intel_get_event_constraints(cpuc, idx, event); /* Handle special quirk on in_tx_checkpointed only in counter 2 */ if (event->hw.config & HSW_IN_TX_CHECKPOINTED) { if (c->idxmsk64 & (1U << 2)) return &counter2_constraint; return &emptyconstraint; } return c; } static struct event_constraint * icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx, struct perf_event *event) { /* * Fixed counter 0 has less skid. * Force instruction:ppp in Fixed counter 0 */ if ((event->attr.precise_ip == 3) && constraint_match(&fixed0_constraint, event->hw.config)) return &fixed0_constraint; return hsw_get_event_constraints(cpuc, idx, event); } static struct event_constraint * glc_get_event_constraints(struct cpu_hw_events *cpuc, int idx, struct perf_event *event) { struct event_constraint *c; c = icl_get_event_constraints(cpuc, idx, event); /* * The :ppp indicates the Precise Distribution (PDist) facility, which * is only supported on the GP counter 0. If a :ppp event which is not * available on the GP counter 0, error out. * Exception: Instruction PDIR is only available on the fixed counter 0. */ if ((event->attr.precise_ip == 3) && !constraint_match(&fixed0_constraint, event->hw.config)) { if (c->idxmsk64 & BIT_ULL(0)) return &counter0_constraint; return &emptyconstraint; } return c; } static struct event_constraint * glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx, struct perf_event *event) { struct event_constraint *c; /* :ppp means to do reduced skid PEBS which is PMC0 only. */ if (event->attr.precise_ip == 3) return &counter0_constraint; c = intel_get_event_constraints(cpuc, idx, event); return c; } static struct event_constraint * tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx, struct perf_event *event) { struct event_constraint *c; c = intel_get_event_constraints(cpuc, idx, event); /* * :ppp means to do reduced skid PEBS, * which is available on PMC0 and fixed counter 0. */ if (event->attr.precise_ip == 3) { /* Force instruction:ppp on PMC0 and Fixed counter 0 */ if (constraint_match(&fixed0_constraint, event->hw.config)) return &fixed0_counter0_constraint; return &counter0_constraint; } return c; } static bool allow_tsx_force_abort = true; static struct event_constraint * tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx, struct perf_event *event) { struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event); /* * Without TFA we must not use PMC3. */ if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) { c = dyn_constraint(cpuc, c, idx); c->idxmsk64 &= ~(1ULL << 3); c->weight--; } return c; } static struct event_constraint * adl_get_event_constraints(struct cpu_hw_events *cpuc, int idx, struct perf_event *event) { struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu); if (pmu->pmu_type == hybrid_big) return glc_get_event_constraints(cpuc, idx, event); else if (pmu->pmu_type == hybrid_small) return tnt_get_event_constraints(cpuc, idx, event); WARN_ON(1); return &emptyconstraint; } static struct event_constraint * cmt_get_event_constraints(struct cpu_hw_events *cpuc, int idx, struct perf_event *event) { struct event_constraint *c; c = intel_get_event_constraints(cpuc, idx, event); /* * The :ppp indicates the Precise Distribution (PDist) facility, which * is only supported on the GP counter 0 & 1 and Fixed counter 0. * If a :ppp event which is not available on the above eligible counters, * error out. */ if (event->attr.precise_ip == 3) { /* Force instruction:ppp on PMC0, 1 and Fixed counter 0 */ if (constraint_match(&fixed0_constraint, event->hw.config)) { /* The fixed counter 0 doesn't support LBR event logging. */ if (branch_sample_counters(event)) return &counter0_1_constraint; else return &fixed0_counter0_1_constraint; } switch (c->idxmsk64 & 0x3ull) { case 0x1: return &counter0_constraint; case 0x2: return &counter1_constraint; case 0x3: return &counter0_1_constraint; } return &emptyconstraint; } return c; } static struct event_constraint * rwc_get_event_constraints(struct cpu_hw_events *cpuc, int idx, struct perf_event *event) { struct event_constraint *c; c = glc_get_event_constraints(cpuc, idx, event); /* The Retire Latency is not supported by the fixed counter 0. */ if (event->attr.precise_ip && (event->attr.sample_type & PERF_SAMPLE_WEIGHT_TYPE) && constraint_match(&fixed0_constraint, event->hw.config)) { /* * The Instruction PDIR is only available * on the fixed counter 0. Error out for this case. */ if (event->attr.precise_ip == 3) return &emptyconstraint; return &counters_1_7_constraint; } return c; } static struct event_constraint * mtl_get_event_constraints(struct cpu_hw_events *cpuc, int idx, struct perf_event *event) { struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu); if (pmu->pmu_type == hybrid_big) return rwc_get_event_constraints(cpuc, idx, event); if (pmu->pmu_type == hybrid_small) return cmt_get_event_constraints(cpuc, idx, event); WARN_ON(1); return &emptyconstraint; } static int adl_hw_config(struct perf_event *event) { struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu); if (pmu->pmu_type == hybrid_big) return hsw_hw_config(event); else if (pmu->pmu_type == hybrid_small) return intel_pmu_hw_config(event); WARN_ON(1); return -EOPNOTSUPP; } static enum hybrid_cpu_type adl_get_hybrid_cpu_type(void) { return HYBRID_INTEL_CORE; } static inline bool erratum_hsw11(struct perf_event *event) { return (event->hw.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0xc0, .umask=0x01); } static struct event_constraint * arl_h_get_event_constraints(struct cpu_hw_events *cpuc, int idx, struct perf_event *event) { struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu); if (pmu->pmu_type == hybrid_tiny) return cmt_get_event_constraints(cpuc, idx, event); return mtl_get_event_constraints(cpuc, idx, event); } static int arl_h_hw_config(struct perf_event *event) { struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu); if (pmu->pmu_type == hybrid_tiny) return intel_pmu_hw_config(event); return adl_hw_config(event); } /* * The HSW11 requires a period larger than 100 which is the same as the BDM11. * A minimum period of 128 is enforced as well for the INST_RETIRED.ALL. * * The message 'interrupt took too long' can be observed on any counter which * was armed with a period < 32 and two events expired in the same NMI. * A minimum period of 32 is enforced for the rest of the events. */ static void hsw_limit_period(struct perf_event *event, s64 *left) { *left = max(*left, erratum_hsw11(event) ? 128 : 32); } /* * Broadwell: * * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine * the two to enforce a minimum period of 128 (the smallest value that has bits * 0-5 cleared and >= 100). * * Because of how the code in x86_perf_event_set_period() works, the truncation * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period * to make up for the 'lost' events due to carrying the 'error' in period_left. * * Therefore the effective (average) period matches the requested period, * despite coarser hardware granularity. */ static void bdw_limit_period(struct perf_event *event, s64 *left) { if (erratum_hsw11(event)) { if (*left < 128) *left = 128; *left &= ~0x3fULL; } } static void nhm_limit_period(struct perf_event *event, s64 *left) { *left = max(*left, 32LL); } static void glc_limit_period(struct perf_event *event, s64 *left) { if (event->attr.precise_ip == 3) *left = max(*left, 128LL); } PMU_FORMAT_ATTR(event, "config:0-7" ); PMU_FORMAT_ATTR(umask, "config:8-15" ); PMU_FORMAT_ATTR(edge, "config:18" ); PMU_FORMAT_ATTR(pc, "config:19" ); PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */ PMU_FORMAT_ATTR(inv, "config:23" ); PMU_FORMAT_ATTR(cmask, "config:24-31" ); PMU_FORMAT_ATTR(in_tx, "config:32" ); PMU_FORMAT_ATTR(in_tx_cp, "config:33" ); PMU_FORMAT_ATTR(eq, "config:36" ); /* v6 + */ static ssize_t umask2_show(struct device *dev, struct device_attribute *attr, char *page) { u64 mask = hybrid(dev_get_drvdata(dev), config_mask) & ARCH_PERFMON_EVENTSEL_UMASK2; if (mask == ARCH_PERFMON_EVENTSEL_UMASK2) return sprintf(page, "config:8-15,40-47\n"); /* Roll back to the old format if umask2 is not supported. */ return sprintf(page, "config:8-15\n"); } static struct device_attribute format_attr_umask2 = __ATTR(umask, 0444, umask2_show, NULL); static struct attribute *format_evtsel_ext_attrs[] = { &format_attr_umask2.attr, &format_attr_eq.attr, NULL }; static umode_t evtsel_ext_is_visible(struct kobject *kobj, struct attribute *attr, int i) { struct device *dev = kobj_to_dev(kobj); u64 mask; /* * The umask and umask2 have different formats but share the * same attr name. In update mode, the previous value of the * umask is unconditionally removed before is_visible. If * umask2 format is not enumerated, it's impossible to roll * back to the old format. * Does the check in umask2_show rather than is_visible. */ if (i == 0) return attr->mode; mask = hybrid(dev_get_drvdata(dev), config_mask); if (i == 1) return (mask & ARCH_PERFMON_EVENTSEL_EQ) ? attr->mode : 0; return 0; } static struct attribute *intel_arch_formats_attr[] = { &format_attr_event.attr, &format_attr_umask.attr, &format_attr_edge.attr, &format_attr_pc.attr, &format_attr_inv.attr, &format_attr_cmask.attr, NULL, }; ssize_t intel_event_sysfs_show(char *page, u64 config) { u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT); return x86_event_sysfs_show(page, config, event); } static struct intel_shared_regs *allocate_shared_regs(int cpu) { struct intel_shared_regs *regs; int i; regs = kzalloc_node(sizeof(struct intel_shared_regs), GFP_KERNEL, cpu_to_node(cpu)); if (regs) { /* * initialize the locks to keep lockdep happy */ for (i = 0; i < EXTRA_REG_MAX; i++) raw_spin_lock_init(®s->regs[i].lock); regs->core_id = -1; } return regs; } static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu) { struct intel_excl_cntrs *c; c = kzalloc_node(sizeof(struct intel_excl_cntrs), GFP_KERNEL, cpu_to_node(cpu)); if (c) { raw_spin_lock_init(&c->lock); c->core_id = -1; } return c; } int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu) { cpuc->pebs_record_size = x86_pmu.pebs_record_size; if (is_hybrid() || x86_pmu.extra_regs || x86_pmu.lbr_sel_map) { cpuc->shared_regs = allocate_shared_regs(cpu); if (!cpuc->shared_regs) goto err; } if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA | PMU_FL_BR_CNTR)) { size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint); cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu)); if (!cpuc->constraint_list) goto err_shared_regs; } if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) { cpuc->excl_cntrs = allocate_excl_cntrs(cpu); if (!cpuc->excl_cntrs) goto err_constraint_list; cpuc->excl_thread_id = 0; } return 0; err_constraint_list: kfree(cpuc->constraint_list); cpuc->constraint_list = NULL; err_shared_regs: kfree(cpuc->shared_regs); cpuc->shared_regs = NULL; err: return -ENOMEM; } static int intel_pmu_cpu_prepare(int cpu) { return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu); } static void flip_smm_bit(void *data) { unsigned long set = *(unsigned long *)data; if (set > 0) { msr_set_bit(MSR_IA32_DEBUGCTLMSR, DEBUGCTLMSR_FREEZE_IN_SMM_BIT); } else { msr_clear_bit(MSR_IA32_DEBUGCTLMSR, DEBUGCTLMSR_FREEZE_IN_SMM_BIT); } } static void intel_pmu_check_counters_mask(u64 *cntr_mask, u64 *fixed_cntr_mask, u64 *intel_ctrl) { unsigned int bit; bit = fls64(*cntr_mask); if (bit > INTEL_PMC_MAX_GENERIC) { WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!", bit, INTEL_PMC_MAX_GENERIC); *cntr_mask &= GENMASK_ULL(INTEL_PMC_MAX_GENERIC - 1, 0); } *intel_ctrl = *cntr_mask; bit = fls64(*fixed_cntr_mask); if (bit > INTEL_PMC_MAX_FIXED) { WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!", bit, INTEL_PMC_MAX_FIXED); *fixed_cntr_mask &= GENMASK_ULL(INTEL_PMC_MAX_FIXED - 1, 0); } *intel_ctrl |= *fixed_cntr_mask << INTEL_PMC_IDX_FIXED; } static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints, u64 cntr_mask, u64 fixed_cntr_mask, u64 intel_ctrl); static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs); static inline bool intel_pmu_broken_perf_cap(void) { /* The Perf Metric (Bit 15) is always cleared */ if (boot_cpu_data.x86_vfm == INTEL_METEORLAKE || boot_cpu_data.x86_vfm == INTEL_METEORLAKE_L) return true; return false; } static void update_pmu_cap(struct x86_hybrid_pmu *pmu) { unsigned int sub_bitmaps, eax, ebx, ecx, edx; cpuid(ARCH_PERFMON_EXT_LEAF, &sub_bitmaps, &ebx, &ecx, &edx); if (ebx & ARCH_PERFMON_EXT_UMASK2) pmu->config_mask |= ARCH_PERFMON_EVENTSEL_UMASK2; if (ebx & ARCH_PERFMON_EXT_EQ) pmu->config_mask |= ARCH_PERFMON_EVENTSEL_EQ; if (sub_bitmaps & ARCH_PERFMON_NUM_COUNTER_LEAF_BIT) { cpuid_count(ARCH_PERFMON_EXT_LEAF, ARCH_PERFMON_NUM_COUNTER_LEAF, &eax, &ebx, &ecx, &edx); pmu->cntr_mask64 = eax; pmu->fixed_cntr_mask64 = ebx; } if (!intel_pmu_broken_perf_cap()) { /* Perf Metric (Bit 15) and PEBS via PT (Bit 16) are hybrid enumeration */ rdmsrl(MSR_IA32_PERF_CAPABILITIES, pmu->intel_cap.capabilities); } } static void intel_pmu_check_hybrid_pmus(struct x86_hybrid_pmu *pmu) { intel_pmu_check_counters_mask(&pmu->cntr_mask64, &pmu->fixed_cntr_mask64, &pmu->intel_ctrl); pmu->pebs_events_mask = intel_pmu_pebs_mask(pmu->cntr_mask64); pmu->unconstrained = (struct event_constraint) __EVENT_CONSTRAINT(0, pmu->cntr_mask64, 0, x86_pmu_num_counters(&pmu->pmu), 0, 0); if (pmu->intel_cap.perf_metrics) pmu->intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS; else pmu->intel_ctrl &= ~(1ULL << GLOBAL_CTRL_EN_PERF_METRICS); if (pmu->intel_cap.pebs_output_pt_available) pmu->pmu.capabilities |= PERF_PMU_CAP_AUX_OUTPUT; else pmu->pmu.capabilities &= ~PERF_PMU_CAP_AUX_OUTPUT; intel_pmu_check_event_constraints(pmu->event_constraints, pmu->cntr_mask64, pmu->fixed_cntr_mask64, pmu->intel_ctrl); intel_pmu_check_extra_regs(pmu->extra_regs); } static struct x86_hybrid_pmu *find_hybrid_pmu_for_cpu(void) { u8 cpu_type = get_this_hybrid_cpu_type(); int i; /* * This is running on a CPU model that is known to have hybrid * configurations. But the CPU told us it is not hybrid, shame * on it. There should be a fixup function provided for these * troublesome CPUs (->get_hybrid_cpu_type). */ if (cpu_type == HYBRID_INTEL_NONE) { if (x86_pmu.get_hybrid_cpu_type) cpu_type = x86_pmu.get_hybrid_cpu_type(); else return NULL; } /* * This essentially just maps between the 'hybrid_cpu_type' * and 'hybrid_pmu_type' enums except for ARL-H processor * which needs to compare atom uarch native id since ARL-H * contains two different atom uarchs. */ for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) { enum hybrid_pmu_type pmu_type = x86_pmu.hybrid_pmu[i].pmu_type; u32 native_id; if (cpu_type == HYBRID_INTEL_CORE && pmu_type == hybrid_big) return &x86_pmu.hybrid_pmu[i]; if (cpu_type == HYBRID_INTEL_ATOM) { if (x86_pmu.num_hybrid_pmus == 2 && pmu_type == hybrid_small) return &x86_pmu.hybrid_pmu[i]; native_id = get_this_hybrid_cpu_native_id(); if (native_id == skt_native_id && pmu_type == hybrid_small) return &x86_pmu.hybrid_pmu[i]; if (native_id == cmt_native_id && pmu_type == hybrid_tiny) return &x86_pmu.hybrid_pmu[i]; } } return NULL; } static bool init_hybrid_pmu(int cpu) { struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); struct x86_hybrid_pmu *pmu = find_hybrid_pmu_for_cpu(); if (WARN_ON_ONCE(!pmu || (pmu->pmu.type == -1))) { cpuc->pmu = NULL; return false; } /* Only check and dump the PMU information for the first CPU */ if (!cpumask_empty(&pmu->supported_cpus)) goto end; if (this_cpu_has(X86_FEATURE_ARCH_PERFMON_EXT)) update_pmu_cap(pmu); intel_pmu_check_hybrid_pmus(pmu); if (!check_hw_exists(&pmu->pmu, pmu->cntr_mask, pmu->fixed_cntr_mask)) return false; pr_info("%s PMU driver: ", pmu->name); if (pmu->intel_cap.pebs_output_pt_available) pr_cont("PEBS-via-PT "); pr_cont("\n"); x86_pmu_show_pmu_cap(&pmu->pmu); end: cpumask_set_cpu(cpu, &pmu->supported_cpus); cpuc->pmu = &pmu->pmu; return true; } static void intel_pmu_cpu_starting(int cpu) { struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); int core_id = topology_core_id(cpu); int i; if (is_hybrid() && !init_hybrid_pmu(cpu)) return; init_debug_store_on_cpu(cpu); /* * Deal with CPUs that don't clear their LBRs on power-up. */ intel_pmu_lbr_reset(); cpuc->lbr_sel = NULL; if (x86_pmu.flags & PMU_FL_TFA) { WARN_ON_ONCE(cpuc->tfa_shadow); cpuc->tfa_shadow = ~0ULL; intel_set_tfa(cpuc, false); } if (x86_pmu.version > 1) flip_smm_bit(&x86_pmu.attr_freeze_on_smi); /* * Disable perf metrics if any added CPU doesn't support it. * * Turn off the check for a hybrid architecture, because the * architecture MSR, MSR_IA32_PERF_CAPABILITIES, only indicate * the architecture features. The perf metrics is a model-specific * feature for now. The corresponding bit should always be 0 on * a hybrid platform, e.g., Alder Lake. */ if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics) { union perf_capabilities perf_cap; rdmsrl(MSR_IA32_PERF_CAPABILITIES, perf_cap.capabilities); if (!perf_cap.perf_metrics) { x86_pmu.intel_cap.perf_metrics = 0; x86_pmu.intel_ctrl &= ~(1ULL << GLOBAL_CTRL_EN_PERF_METRICS); } } if (!cpuc->shared_regs) return; if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) { for_each_cpu(i, topology_sibling_cpumask(cpu)) { struct intel_shared_regs *pc; pc = per_cpu(cpu_hw_events, i).shared_regs; if (pc && pc->core_id == core_id) { cpuc->kfree_on_online[0] = cpuc->shared_regs; cpuc->shared_regs = pc; break; } } cpuc->shared_regs->core_id = core_id; cpuc->shared_regs->refcnt++; } if (x86_pmu.lbr_sel_map) cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR]; if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) { for_each_cpu(i, topology_sibling_cpumask(cpu)) { struct cpu_hw_events *sibling; struct intel_excl_cntrs *c; sibling = &per_cpu(cpu_hw_events, i); c = sibling->excl_cntrs; if (c && c->core_id == core_id) { cpuc->kfree_on_online[1] = cpuc->excl_cntrs; cpuc->excl_cntrs = c; if (!sibling->excl_thread_id) cpuc->excl_thread_id = 1; break; } } cpuc->excl_cntrs->core_id = core_id; cpuc->excl_cntrs->refcnt++; } } static void free_excl_cntrs(struct cpu_hw_events *cpuc) { struct intel_excl_cntrs *c; c = cpuc->excl_cntrs; if (c) { if (c->core_id == -1 || --c->refcnt == 0) kfree(c); cpuc->excl_cntrs = NULL; } kfree(cpuc->constraint_list); cpuc->constraint_list = NULL; } static void intel_pmu_cpu_dying(int cpu) { fini_debug_store_on_cpu(cpu); } void intel_cpuc_finish(struct cpu_hw_events *cpuc) { struct intel_shared_regs *pc; pc = cpuc->shared_regs; if (pc) { if (pc->core_id == -1 || --pc->refcnt == 0) kfree(pc); cpuc->shared_regs = NULL; } free_excl_cntrs(cpuc); } static void intel_pmu_cpu_dead(int cpu) { struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); intel_cpuc_finish(cpuc); if (is_hybrid() && cpuc->pmu) cpumask_clear_cpu(cpu, &hybrid_pmu(cpuc->pmu)->supported_cpus); } static void intel_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in) { intel_pmu_pebs_sched_task(pmu_ctx, sched_in); intel_pmu_lbr_sched_task(pmu_ctx, sched_in); } static void intel_pmu_swap_task_ctx(struct perf_event_pmu_context *prev_epc, struct perf_event_pmu_context *next_epc) { intel_pmu_lbr_swap_task_ctx(prev_epc, next_epc); } static int intel_pmu_check_period(struct perf_event *event, u64 value) { return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0; } static void intel_aux_output_init(void) { /* Refer also intel_pmu_aux_output_match() */ if (x86_pmu.intel_cap.pebs_output_pt_available) x86_pmu.assign = intel_pmu_assign_event; } static int intel_pmu_aux_output_match(struct perf_event *event) { /* intel_pmu_assign_event() is needed, refer intel_aux_output_init() */ if (!x86_pmu.intel_cap.pebs_output_pt_available) return 0; return is_intel_pt_event(event); } static void intel_pmu_filter(struct pmu *pmu, int cpu, bool *ret) { struct x86_hybrid_pmu *hpmu = hybrid_pmu(pmu); *ret = !cpumask_test_cpu(cpu, &hpmu->supported_cpus); } PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63"); PMU_FORMAT_ATTR(ldlat, "config1:0-15"); PMU_FORMAT_ATTR(frontend, "config1:0-23"); PMU_FORMAT_ATTR(snoop_rsp, "config1:0-63"); static struct attribute *intel_arch3_formats_attr[] = { &format_attr_event.attr, &format_attr_umask.attr, &format_attr_edge.attr, &format_attr_pc.attr, &format_attr_any.attr, &format_attr_inv.attr, &format_attr_cmask.attr, NULL, }; static struct attribute *hsw_format_attr[] = { &format_attr_in_tx.attr, &format_attr_in_tx_cp.attr, &format_attr_offcore_rsp.attr, &format_attr_ldlat.attr, NULL }; static struct attribute *nhm_format_attr[] = { &format_attr_offcore_rsp.attr, &format_attr_ldlat.attr, NULL }; static struct attribute *slm_format_attr[] = { &format_attr_offcore_rsp.attr, NULL }; static struct attribute *cmt_format_attr[] = { &format_attr_offcore_rsp.attr, &format_attr_ldlat.attr, &format_attr_snoop_rsp.attr, NULL }; static struct attribute *skl_format_attr[] = { &format_attr_frontend.attr, NULL, }; static __initconst const struct x86_pmu core_pmu = { .name = "core", .handle_irq = x86_pmu_handle_irq, .disable_all = x86_pmu_disable_all, .enable_all = core_pmu_enable_all, .enable = core_pmu_enable_event, .disable = x86_pmu_disable_event, .hw_config = core_pmu_hw_config, .schedule_events = x86_schedule_events, .eventsel = MSR_ARCH_PERFMON_EVENTSEL0, .perfctr = MSR_ARCH_PERFMON_PERFCTR0, .fixedctr = MSR_ARCH_PERFMON_FIXED_CTR0, .event_map = intel_pmu_event_map, .max_events = ARRAY_SIZE(intel_perfmon_event_map), .apic = 1, .large_pebs_flags = LARGE_PEBS_FLAGS, /* * Intel PMCs cannot be accessed sanely above 32-bit width, * so we install an artificial 1<<31 period regardless of * the generic event period: */ .max_period = (1ULL<<31) - 1, .get_event_constraints = intel_get_event_constraints, .put_event_constraints = intel_put_event_constraints, .event_constraints = intel_core_event_constraints, .guest_get_msrs = core_guest_get_msrs, .format_attrs = intel_arch_formats_attr, .events_sysfs_show = intel_event_sysfs_show, /* * Virtual (or funny metal) CPU can define x86_pmu.extra_regs * together with PMU version 1 and thus be using core_pmu with * shared_regs. We need following callbacks here to allocate * it properly. */ .cpu_prepare = intel_pmu_cpu_prepare, .cpu_starting = intel_pmu_cpu_starting, .cpu_dying = intel_pmu_cpu_dying, .cpu_dead = intel_pmu_cpu_dead, .check_period = intel_pmu_check_period, .lbr_reset = intel_pmu_lbr_reset_64, .lbr_read = intel_pmu_lbr_read_64, .lbr_save = intel_pmu_lbr_save, .lbr_restore = intel_pmu_lbr_restore, }; static __initconst const struct x86_pmu intel_pmu = { .name = "Intel", .handle_irq = intel_pmu_handle_irq, .disable_all = intel_pmu_disable_all, .enable_all = intel_pmu_enable_all, .enable = intel_pmu_enable_event, .disable = intel_pmu_disable_event, .add = intel_pmu_add_event, .del = intel_pmu_del_event, .read = intel_pmu_read_event, .set_period = intel_pmu_set_period, .update = intel_pmu_update, .hw_config = intel_pmu_hw_config, .schedule_events = x86_schedule_events, .eventsel = MSR_ARCH_PERFMON_EVENTSEL0, .perfctr = MSR_ARCH_PERFMON_PERFCTR0, .fixedctr = MSR_ARCH_PERFMON_FIXED_CTR0, .event_map = intel_pmu_event_map, .max_events = ARRAY_SIZE(intel_perfmon_event_map), .apic = 1, .large_pebs_flags = LARGE_PEBS_FLAGS, /* * Intel PMCs cannot be accessed sanely above 32 bit width, * so we install an artificial 1<<31 period regardless of * the generic event period: */ .max_period = (1ULL << 31) - 1, .get_event_constraints = intel_get_event_constraints, .put_event_constraints = intel_put_event_constraints, .pebs_aliases = intel_pebs_aliases_core2, .format_attrs = intel_arch3_formats_attr, .events_sysfs_show = intel_event_sysfs_show, .cpu_prepare = intel_pmu_cpu_prepare, .cpu_starting = intel_pmu_cpu_starting, .cpu_dying = intel_pmu_cpu_dying, .cpu_dead = intel_pmu_cpu_dead, .guest_get_msrs = intel_guest_get_msrs, .sched_task = intel_pmu_sched_task, .swap_task_ctx = intel_pmu_swap_task_ctx, .check_period = intel_pmu_check_period, .aux_output_match = intel_pmu_aux_output_match, .lbr_reset = intel_pmu_lbr_reset_64, .lbr_read = intel_pmu_lbr_read_64, .lbr_save = intel_pmu_lbr_save, .lbr_restore = intel_pmu_lbr_restore, /* * SMM has access to all 4 rings and while traditionally SMM code only * ran in CPL0, 2021-era firmware is starting to make use of CPL3 in SMM. * * Since the EVENTSEL.{USR,OS} CPL filtering makes no distinction * between SMM or not, this results in what should be pure userspace * counters including SMM data. * * This is a clear privilege issue, therefore globally disable * counting SMM by default. */ .attr_freeze_on_smi = 1, }; static __init void intel_clovertown_quirk(void) { /* * PEBS is unreliable due to: * * AJ67 - PEBS may experience CPL leaks * AJ68 - PEBS PMI may be delayed by one event * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12] * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS * * AJ67 could be worked around by restricting the OS/USR flags. * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI. * * AJ106 could possibly be worked around by not allowing LBR * usage from PEBS, including the fixup. * AJ68 could possibly be worked around by always programming * a pebs_event_reset[0] value and coping with the lost events. * * But taken together it might just make sense to not enable PEBS on * these chips. */ pr_warn("PEBS disabled due to CPU errata\n"); x86_pmu.pebs = 0; x86_pmu.pebs_constraints = NULL; } static const struct x86_cpu_desc isolation_ucodes[] = { INTEL_CPU_DESC(INTEL_HASWELL, 3, 0x0000001f), INTEL_CPU_DESC(INTEL_HASWELL_L, 1, 0x0000001e), INTEL_CPU_DESC(INTEL_HASWELL_G, 1, 0x00000015), INTEL_CPU_DESC(INTEL_HASWELL_X, 2, 0x00000037), INTEL_CPU_DESC(INTEL_HASWELL_X, 4, 0x0000000a), INTEL_CPU_DESC(INTEL_BROADWELL, 4, 0x00000023), INTEL_CPU_DESC(INTEL_BROADWELL_G, 1, 0x00000014), INTEL_CPU_DESC(INTEL_BROADWELL_D, 2, 0x00000010), INTEL_CPU_DESC(INTEL_BROADWELL_D, 3, 0x07000009), INTEL_CPU_DESC(INTEL_BROADWELL_D, 4, 0x0f000009), INTEL_CPU_DESC(INTEL_BROADWELL_D, 5, 0x0e000002), INTEL_CPU_DESC(INTEL_BROADWELL_X, 1, 0x0b000014), INTEL_CPU_DESC(INTEL_SKYLAKE_X, 3, 0x00000021), INTEL_CPU_DESC(INTEL_SKYLAKE_X, 4, 0x00000000), INTEL_CPU_DESC(INTEL_SKYLAKE_X, 5, 0x00000000), INTEL_CPU_DESC(INTEL_SKYLAKE_X, 6, 0x00000000), INTEL_CPU_DESC(INTEL_SKYLAKE_X, 7, 0x00000000), INTEL_CPU_DESC(INTEL_SKYLAKE_X, 11, 0x00000000), INTEL_CPU_DESC(INTEL_SKYLAKE_L, 3, 0x0000007c), INTEL_CPU_DESC(INTEL_SKYLAKE, 3, 0x0000007c), INTEL_CPU_DESC(INTEL_KABYLAKE, 9, 0x0000004e), INTEL_CPU_DESC(INTEL_KABYLAKE_L, 9, 0x0000004e), INTEL_CPU_DESC(INTEL_KABYLAKE_L, 10, 0x0000004e), INTEL_CPU_DESC(INTEL_KABYLAKE_L, 11, 0x0000004e), INTEL_CPU_DESC(INTEL_KABYLAKE_L, 12, 0x0000004e), INTEL_CPU_DESC(INTEL_KABYLAKE, 10, 0x0000004e), INTEL_CPU_DESC(INTEL_KABYLAKE, 11, 0x0000004e), INTEL_CPU_DESC(INTEL_KABYLAKE, 12, 0x0000004e), INTEL_CPU_DESC(INTEL_KABYLAKE, 13, 0x0000004e), {} }; static void intel_check_pebs_isolation(void) { x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes); } static __init void intel_pebs_isolation_quirk(void) { WARN_ON_ONCE(x86_pmu.check_microcode); x86_pmu.check_microcode = intel_check_pebs_isolation; intel_check_pebs_isolation(); } static const struct x86_cpu_desc pebs_ucodes[] = { INTEL_CPU_DESC(INTEL_SANDYBRIDGE, 7, 0x00000028), INTEL_CPU_DESC(INTEL_SANDYBRIDGE_X, 6, 0x00000618), INTEL_CPU_DESC(INTEL_SANDYBRIDGE_X, 7, 0x0000070c), {} }; static bool intel_snb_pebs_broken(void) { return !x86_cpu_has_min_microcode_rev(pebs_ucodes); } static void intel_snb_check_microcode(void) { if (intel_snb_pebs_broken() == x86_pmu.pebs_broken) return; /* * Serialized by the microcode lock.. */ if (x86_pmu.pebs_broken) { pr_info("PEBS enabled due to microcode update\n"); x86_pmu.pebs_broken = 0; } else { pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n"); x86_pmu.pebs_broken = 1; } } static bool is_lbr_from(unsigned long msr) { unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr; return x86_pmu.lbr_from <= msr && msr < lbr_from_nr; } /* * Under certain circumstances, access certain MSR may cause #GP. * The function tests if the input MSR can be safely accessed. */ static bool check_msr(unsigned long msr, u64 mask) { u64 val_old, val_new, val_tmp; /* * Disable the check for real HW, so we don't * mess with potentially enabled registers: */ if (!boot_cpu_has(X86_FEATURE_HYPERVISOR)) return true; /* * Read the current value, change it and read it back to see if it * matches, this is needed to detect certain hardware emulators * (qemu/kvm) that don't trap on the MSR access and always return 0s. */ if (rdmsrl_safe(msr, &val_old)) return false; /* * Only change the bits which can be updated by wrmsrl. */ val_tmp = val_old ^ mask; if (is_lbr_from(msr)) val_tmp = lbr_from_signext_quirk_wr(val_tmp); if (wrmsrl_safe(msr, val_tmp) || rdmsrl_safe(msr, &val_new)) return false; /* * Quirk only affects validation in wrmsr(), so wrmsrl()'s value * should equal rdmsrl()'s even with the quirk. */ if (val_new != val_tmp) return false; if (is_lbr_from(msr)) val_old = lbr_from_signext_quirk_wr(val_old); /* Here it's sure that the MSR can be safely accessed. * Restore the old value and return. */ wrmsrl(msr, val_old); return true; } static __init void intel_sandybridge_quirk(void) { x86_pmu.check_microcode = intel_snb_check_microcode; cpus_read_lock(); intel_snb_check_microcode(); cpus_read_unlock(); } static const struct { int id; char *name; } intel_arch_events_map[] __initconst = { { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" }, { PERF_COUNT_HW_INSTRUCTIONS, "instructions" }, { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" }, { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" }, { PERF_COUNT_HW_CACHE_MISSES, "cache misses" }, { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" }, { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" }, }; static __init void intel_arch_events_quirk(void) { int bit; /* disable event that reported as not present by cpuid */ for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) { intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0; pr_warn("CPUID marked event: \'%s\' unavailable\n", intel_arch_events_map[bit].name); } } static __init void intel_nehalem_quirk(void) { union cpuid10_ebx ebx; ebx.full = x86_pmu.events_maskl; if (ebx.split.no_branch_misses_retired) { /* * Erratum AAJ80 detected, we work it around by using * the BR_MISP_EXEC.ANY event. This will over-count * branch-misses, but it's still much better than the * architectural event which is often completely bogus: */ intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89; ebx.split.no_branch_misses_retired = 0; x86_pmu.events_maskl = ebx.full; pr_info("CPU erratum AAJ80 worked around\n"); } } /* * enable software workaround for errata: * SNB: BJ122 * IVB: BV98 * HSW: HSD29 * * Only needed when HT is enabled. However detecting * if HT is enabled is difficult (model specific). So instead, * we enable the workaround in the early boot, and verify if * it is needed in a later initcall phase once we have valid * topology information to check if HT is actually enabled */ static __init void intel_ht_bug(void) { x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED; x86_pmu.start_scheduling = intel_start_scheduling; x86_pmu.commit_scheduling = intel_commit_scheduling; x86_pmu.stop_scheduling = intel_stop_scheduling; } EVENT_ATTR_STR(mem-loads, mem_ld_hsw, "event=0xcd,umask=0x1,ldlat=3"); EVENT_ATTR_STR(mem-stores, mem_st_hsw, "event=0xd0,umask=0x82") /* Haswell special events */ EVENT_ATTR_STR(tx-start, tx_start, "event=0xc9,umask=0x1"); EVENT_ATTR_STR(tx-commit, tx_commit, "event=0xc9,umask=0x2"); EVENT_ATTR_STR(tx-abort, tx_abort, "event=0xc9,umask=0x4"); EVENT_ATTR_STR(tx-capacity, tx_capacity, "event=0x54,umask=0x2"); EVENT_ATTR_STR(tx-conflict, tx_conflict, "event=0x54,umask=0x1"); EVENT_ATTR_STR(el-start, el_start, "event=0xc8,umask=0x1"); EVENT_ATTR_STR(el-commit, el_commit, "event=0xc8,umask=0x2"); EVENT_ATTR_STR(el-abort, el_abort, "event=0xc8,umask=0x4"); EVENT_ATTR_STR(el-capacity, el_capacity, "event=0x54,umask=0x2"); EVENT_ATTR_STR(el-conflict, el_conflict, "event=0x54,umask=0x1"); EVENT_ATTR_STR(cycles-t, cycles_t, "event=0x3c,in_tx=1"); EVENT_ATTR_STR(cycles-ct, cycles_ct, "event=0x3c,in_tx=1,in_tx_cp=1"); static struct attribute *hsw_events_attrs[] = { EVENT_PTR(td_slots_issued), EVENT_PTR(td_slots_retired), EVENT_PTR(td_fetch_bubbles), EVENT_PTR(td_total_slots), EVENT_PTR(td_total_slots_scale), EVENT_PTR(td_recovery_bubbles), EVENT_PTR(td_recovery_bubbles_scale), NULL }; static struct attribute *hsw_mem_events_attrs[] = { EVENT_PTR(mem_ld_hsw), EVENT_PTR(mem_st_hsw), NULL, }; static struct attribute *hsw_tsx_events_attrs[] = { EVENT_PTR(tx_start), EVENT_PTR(tx_commit), EVENT_PTR(tx_abort), EVENT_PTR(tx_capacity), EVENT_PTR(tx_conflict), EVENT_PTR(el_start), EVENT_PTR(el_commit), EVENT_PTR(el_abort), EVENT_PTR(el_capacity), EVENT_PTR(el_conflict), EVENT_PTR(cycles_t), EVENT_PTR(cycles_ct), NULL }; EVENT_ATTR_STR(tx-capacity-read, tx_capacity_read, "event=0x54,umask=0x80"); EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2"); EVENT_ATTR_STR(el-capacity-read, el_capacity_read, "event=0x54,umask=0x80"); EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2"); static struct attribute *icl_events_attrs[] = { EVENT_PTR(mem_ld_hsw), EVENT_PTR(mem_st_hsw), NULL, }; static struct attribute *icl_td_events_attrs[] = { EVENT_PTR(slots), EVENT_PTR(td_retiring), EVENT_PTR(td_bad_spec), EVENT_PTR(td_fe_bound), EVENT_PTR(td_be_bound), NULL, }; static struct attribute *icl_tsx_events_attrs[] = { EVENT_PTR(tx_start), EVENT_PTR(tx_abort), EVENT_PTR(tx_commit), EVENT_PTR(tx_capacity_read), EVENT_PTR(tx_capacity_write), EVENT_PTR(tx_conflict), EVENT_PTR(el_start), EVENT_PTR(el_abort), EVENT_PTR(el_commit), EVENT_PTR(el_capacity_read), EVENT_PTR(el_capacity_write), EVENT_PTR(el_conflict), EVENT_PTR(cycles_t), EVENT_PTR(cycles_ct), NULL, }; EVENT_ATTR_STR(mem-stores, mem_st_spr, "event=0xcd,umask=0x2"); EVENT_ATTR_STR(mem-loads-aux, mem_ld_aux, "event=0x03,umask=0x82"); static struct attribute *glc_events_attrs[] = { EVENT_PTR(mem_ld_hsw), EVENT_PTR(mem_st_spr), EVENT_PTR(mem_ld_aux), NULL, }; static struct attribute *glc_td_events_attrs[] = { EVENT_PTR(slots), EVENT_PTR(td_retiring), EVENT_PTR(td_bad_spec), EVENT_PTR(td_fe_bound), EVENT_PTR(td_be_bound), EVENT_PTR(td_heavy_ops), EVENT_PTR(td_br_mispredict), EVENT_PTR(td_fetch_lat), EVENT_PTR(td_mem_bound), NULL, }; static struct attribute *glc_tsx_events_attrs[] = { EVENT_PTR(tx_start), EVENT_PTR(tx_abort), EVENT_PTR(tx_commit), EVENT_PTR(tx_capacity_read), EVENT_PTR(tx_capacity_write), EVENT_PTR(tx_conflict), EVENT_PTR(cycles_t), EVENT_PTR(cycles_ct), NULL, }; static ssize_t freeze_on_smi_show(struct device *cdev, struct device_attribute *attr, char *buf) { return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi); } static DEFINE_MUTEX(freeze_on_smi_mutex); static ssize_t freeze_on_smi_store(struct device *cdev, struct device_attribute *attr, const char *buf, size_t count) { unsigned long val; ssize_t ret; ret = kstrtoul(buf, 0, &val); if (ret) return ret; if (val > 1) return -EINVAL; mutex_lock(&freeze_on_smi_mutex); if (x86_pmu.attr_freeze_on_smi == val) goto done; x86_pmu.attr_freeze_on_smi = val; cpus_read_lock(); on_each_cpu(flip_smm_bit, &val, 1); cpus_read_unlock(); done: mutex_unlock(&freeze_on_smi_mutex); return count; } static void update_tfa_sched(void *ignored) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); /* * check if PMC3 is used * and if so force schedule out for all event types all contexts */ if (test_bit(3, cpuc->active_mask)) perf_pmu_resched(x86_get_pmu(smp_processor_id())); } static ssize_t show_sysctl_tfa(struct device *cdev, struct device_attribute *attr, char *buf) { return snprintf(buf, 40, "%d\n", allow_tsx_force_abort); } static ssize_t set_sysctl_tfa(struct device *cdev, struct device_attribute *attr, const char *buf, size_t count) { bool val; ssize_t ret; ret = kstrtobool(buf, &val); if (ret) return ret; /* no change */ if (val == allow_tsx_force_abort) return count; allow_tsx_force_abort = val; cpus_read_lock(); on_each_cpu(update_tfa_sched, NULL, 1); cpus_read_unlock(); return count; } static DEVICE_ATTR_RW(freeze_on_smi); static ssize_t branches_show(struct device *cdev, struct device_attribute *attr, char *buf) { return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr); } static DEVICE_ATTR_RO(branches); static ssize_t branch_counter_nr_show(struct device *cdev, struct device_attribute *attr, char *buf) { return snprintf(buf, PAGE_SIZE, "%d\n", fls(x86_pmu.lbr_counters)); } static DEVICE_ATTR_RO(branch_counter_nr); static ssize_t branch_counter_width_show(struct device *cdev, struct device_attribute *attr, char *buf) { return snprintf(buf, PAGE_SIZE, "%d\n", LBR_INFO_BR_CNTR_BITS); } static DEVICE_ATTR_RO(branch_counter_width); static struct attribute *lbr_attrs[] = { &dev_attr_branches.attr, &dev_attr_branch_counter_nr.attr, &dev_attr_branch_counter_width.attr, NULL }; static umode_t lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i) { /* branches */ if (i == 0) return x86_pmu.lbr_nr ? attr->mode : 0; return (x86_pmu.flags & PMU_FL_BR_CNTR) ? attr->mode : 0; } static char pmu_name_str[30]; static DEVICE_STRING_ATTR_RO(pmu_name, 0444, pmu_name_str); static struct attribute *intel_pmu_caps_attrs[] = { &dev_attr_pmu_name.attr.attr, NULL }; static DEVICE_ATTR(allow_tsx_force_abort, 0644, show_sysctl_tfa, set_sysctl_tfa); static struct attribute *intel_pmu_attrs[] = { &dev_attr_freeze_on_smi.attr, &dev_attr_allow_tsx_force_abort.attr, NULL, }; static umode_t default_is_visible(struct kobject *kobj, struct attribute *attr, int i) { if (attr == &dev_attr_allow_tsx_force_abort.attr) return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0; return attr->mode; } static umode_t tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i) { return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0; } static umode_t pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i) { return x86_pmu.pebs ? attr->mode : 0; } static umode_t mem_is_visible(struct kobject *kobj, struct attribute *attr, int i) { if (attr == &event_attr_mem_ld_aux.attr.attr) return x86_pmu.flags & PMU_FL_MEM_LOADS_AUX ? attr->mode : 0; return pebs_is_visible(kobj, attr, i); } static umode_t exra_is_visible(struct kobject *kobj, struct attribute *attr, int i) { return x86_pmu.version >= 2 ? attr->mode : 0; } static umode_t td_is_visible(struct kobject *kobj, struct attribute *attr, int i) { /* * Hide the perf metrics topdown events * if the feature is not enumerated. */ if (x86_pmu.num_topdown_events) return x86_pmu.intel_cap.perf_metrics ? attr->mode : 0; return attr->mode; } static struct attribute_group group_events_td = { .name = "events", .is_visible = td_is_visible, }; static struct attribute_group group_events_mem = { .name = "events", .is_visible = mem_is_visible, }; static struct attribute_group group_events_tsx = { .name = "events", .is_visible = tsx_is_visible, }; static struct attribute_group group_caps_gen = { .name = "caps", .attrs = intel_pmu_caps_attrs, }; static struct attribute_group group_caps_lbr = { .name = "caps", .attrs = lbr_attrs, .is_visible = lbr_is_visible, }; static struct attribute_group group_format_extra = { .name = "format", .is_visible = exra_is_visible, }; static struct attribute_group group_format_extra_skl = { .name = "format", .is_visible = exra_is_visible, }; static struct attribute_group group_format_evtsel_ext = { .name = "format", .attrs = format_evtsel_ext_attrs, .is_visible = evtsel_ext_is_visible, }; static struct attribute_group group_default = { .attrs = intel_pmu_attrs, .is_visible = default_is_visible, }; static const struct attribute_group *attr_update[] = { &group_events_td, &group_events_mem, &group_events_tsx, &group_caps_gen, &group_caps_lbr, &group_format_extra, &group_format_extra_skl, &group_format_evtsel_ext, &group_default, NULL, }; EVENT_ATTR_STR_HYBRID(slots, slots_adl, "event=0x00,umask=0x4", hybrid_big); EVENT_ATTR_STR_HYBRID(topdown-retiring, td_retiring_adl, "event=0xc2,umask=0x0;event=0x00,umask=0x80", hybrid_big_small); EVENT_ATTR_STR_HYBRID(topdown-bad-spec, td_bad_spec_adl, "event=0x73,umask=0x0;event=0x00,umask=0x81", hybrid_big_small); EVENT_ATTR_STR_HYBRID(topdown-fe-bound, td_fe_bound_adl, "event=0x71,umask=0x0;event=0x00,umask=0x82", hybrid_big_small); EVENT_ATTR_STR_HYBRID(topdown-be-bound, td_be_bound_adl, "event=0x74,umask=0x0;event=0x00,umask=0x83", hybrid_big_small); EVENT_ATTR_STR_HYBRID(topdown-heavy-ops, td_heavy_ops_adl, "event=0x00,umask=0x84", hybrid_big); EVENT_ATTR_STR_HYBRID(topdown-br-mispredict, td_br_mis_adl, "event=0x00,umask=0x85", hybrid_big); EVENT_ATTR_STR_HYBRID(topdown-fetch-lat, td_fetch_lat_adl, "event=0x00,umask=0x86", hybrid_big); EVENT_ATTR_STR_HYBRID(topdown-mem-bound, td_mem_bound_adl, "event=0x00,umask=0x87", hybrid_big); static struct attribute *adl_hybrid_events_attrs[] = { EVENT_PTR(slots_adl), EVENT_PTR(td_retiring_adl), EVENT_PTR(td_bad_spec_adl), EVENT_PTR(td_fe_bound_adl), EVENT_PTR(td_be_bound_adl), EVENT_PTR(td_heavy_ops_adl), EVENT_PTR(td_br_mis_adl), EVENT_PTR(td_fetch_lat_adl), EVENT_PTR(td_mem_bound_adl), NULL, }; EVENT_ATTR_STR_HYBRID(topdown-retiring, td_retiring_lnl, "event=0xc2,umask=0x02;event=0x00,umask=0x80", hybrid_big_small); EVENT_ATTR_STR_HYBRID(topdown-fe-bound, td_fe_bound_lnl, "event=0x9c,umask=0x01;event=0x00,umask=0x82", hybrid_big_small); EVENT_ATTR_STR_HYBRID(topdown-be-bound, td_be_bound_lnl, "event=0xa4,umask=0x02;event=0x00,umask=0x83", hybrid_big_small); static struct attribute *lnl_hybrid_events_attrs[] = { EVENT_PTR(slots_adl), EVENT_PTR(td_retiring_lnl), EVENT_PTR(td_bad_spec_adl), EVENT_PTR(td_fe_bound_lnl), EVENT_PTR(td_be_bound_lnl), EVENT_PTR(td_heavy_ops_adl), EVENT_PTR(td_br_mis_adl), EVENT_PTR(td_fetch_lat_adl), EVENT_PTR(td_mem_bound_adl), NULL }; /* The event string must be in PMU IDX order. */ EVENT_ATTR_STR_HYBRID(topdown-retiring, td_retiring_arl_h, "event=0xc2,umask=0x02;event=0x00,umask=0x80;event=0xc2,umask=0x0", hybrid_big_small_tiny); EVENT_ATTR_STR_HYBRID(topdown-bad-spec, td_bad_spec_arl_h, "event=0x73,umask=0x0;event=0x00,umask=0x81;event=0x73,umask=0x0", hybrid_big_small_tiny); EVENT_ATTR_STR_HYBRID(topdown-fe-bound, td_fe_bound_arl_h, "event=0x9c,umask=0x01;event=0x00,umask=0x82;event=0x71,umask=0x0", hybrid_big_small_tiny); EVENT_ATTR_STR_HYBRID(topdown-be-bound, td_be_bound_arl_h, "event=0xa4,umask=0x02;event=0x00,umask=0x83;event=0x74,umask=0x0", hybrid_big_small_tiny); static struct attribute *arl_h_hybrid_events_attrs[] = { EVENT_PTR(slots_adl), EVENT_PTR(td_retiring_arl_h), EVENT_PTR(td_bad_spec_arl_h), EVENT_PTR(td_fe_bound_arl_h), EVENT_PTR(td_be_bound_arl_h), EVENT_PTR(td_heavy_ops_adl), EVENT_PTR(td_br_mis_adl), EVENT_PTR(td_fetch_lat_adl), EVENT_PTR(td_mem_bound_adl), NULL, }; /* Must be in IDX order */ EVENT_ATTR_STR_HYBRID(mem-loads, mem_ld_adl, "event=0xd0,umask=0x5,ldlat=3;event=0xcd,umask=0x1,ldlat=3", hybrid_big_small); EVENT_ATTR_STR_HYBRID(mem-stores, mem_st_adl, "event=0xd0,umask=0x6;event=0xcd,umask=0x2", hybrid_big_small); EVENT_ATTR_STR_HYBRID(mem-loads-aux, mem_ld_aux_adl, "event=0x03,umask=0x82", hybrid_big); static struct attribute *adl_hybrid_mem_attrs[] = { EVENT_PTR(mem_ld_adl), EVENT_PTR(mem_st_adl), EVENT_PTR(mem_ld_aux_adl), NULL, }; static struct attribute *mtl_hybrid_mem_attrs[] = { EVENT_PTR(mem_ld_adl), EVENT_PTR(mem_st_adl), NULL }; EVENT_ATTR_STR_HYBRID(mem-loads, mem_ld_arl_h, "event=0xd0,umask=0x5,ldlat=3;event=0xcd,umask=0x1,ldlat=3;event=0xd0,umask=0x5,ldlat=3", hybrid_big_small_tiny); EVENT_ATTR_STR_HYBRID(mem-stores, mem_st_arl_h, "event=0xd0,umask=0x6;event=0xcd,umask=0x2;event=0xd0,umask=0x6", hybrid_big_small_tiny); static struct attribute *arl_h_hybrid_mem_attrs[] = { EVENT_PTR(mem_ld_arl_h), EVENT_PTR(mem_st_arl_h), NULL, }; EVENT_ATTR_STR_HYBRID(tx-start, tx_start_adl, "event=0xc9,umask=0x1", hybrid_big); EVENT_ATTR_STR_HYBRID(tx-commit, tx_commit_adl, "event=0xc9,umask=0x2", hybrid_big); EVENT_ATTR_STR_HYBRID(tx-abort, tx_abort_adl, "event=0xc9,umask=0x4", hybrid_big); EVENT_ATTR_STR_HYBRID(tx-conflict, tx_conflict_adl, "event=0x54,umask=0x1", hybrid_big); EVENT_ATTR_STR_HYBRID(cycles-t, cycles_t_adl, "event=0x3c,in_tx=1", hybrid_big); EVENT_ATTR_STR_HYBRID(cycles-ct, cycles_ct_adl, "event=0x3c,in_tx=1,in_tx_cp=1", hybrid_big); EVENT_ATTR_STR_HYBRID(tx-capacity-read, tx_capacity_read_adl, "event=0x54,umask=0x80", hybrid_big); EVENT_ATTR_STR_HYBRID(tx-capacity-write, tx_capacity_write_adl, "event=0x54,umask=0x2", hybrid_big); static struct attribute *adl_hybrid_tsx_attrs[] = { EVENT_PTR(tx_start_adl), EVENT_PTR(tx_abort_adl), EVENT_PTR(tx_commit_adl), EVENT_PTR(tx_capacity_read_adl), EVENT_PTR(tx_capacity_write_adl), EVENT_PTR(tx_conflict_adl), EVENT_PTR(cycles_t_adl), EVENT_PTR(cycles_ct_adl), NULL, }; FORMAT_ATTR_HYBRID(in_tx, hybrid_big); FORMAT_ATTR_HYBRID(in_tx_cp, hybrid_big); FORMAT_ATTR_HYBRID(offcore_rsp, hybrid_big_small_tiny); FORMAT_ATTR_HYBRID(ldlat, hybrid_big_small_tiny); FORMAT_ATTR_HYBRID(frontend, hybrid_big); #define ADL_HYBRID_RTM_FORMAT_ATTR \ FORMAT_HYBRID_PTR(in_tx), \ FORMAT_HYBRID_PTR(in_tx_cp) #define ADL_HYBRID_FORMAT_ATTR \ FORMAT_HYBRID_PTR(offcore_rsp), \ FORMAT_HYBRID_PTR(ldlat), \ FORMAT_HYBRID_PTR(frontend) static struct attribute *adl_hybrid_extra_attr_rtm[] = { ADL_HYBRID_RTM_FORMAT_ATTR, ADL_HYBRID_FORMAT_ATTR, NULL }; static struct attribute *adl_hybrid_extra_attr[] = { ADL_HYBRID_FORMAT_ATTR, NULL }; FORMAT_ATTR_HYBRID(snoop_rsp, hybrid_small_tiny); static struct attribute *mtl_hybrid_extra_attr_rtm[] = { ADL_HYBRID_RTM_FORMAT_ATTR, ADL_HYBRID_FORMAT_ATTR, FORMAT_HYBRID_PTR(snoop_rsp), NULL }; static struct attribute *mtl_hybrid_extra_attr[] = { ADL_HYBRID_FORMAT_ATTR, FORMAT_HYBRID_PTR(snoop_rsp), NULL }; static bool is_attr_for_this_pmu(struct kobject *kobj, struct attribute *attr) { struct device *dev = kobj_to_dev(kobj); struct x86_hybrid_pmu *pmu = container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu); struct perf_pmu_events_hybrid_attr *pmu_attr = container_of(attr, struct perf_pmu_events_hybrid_attr, attr.attr); return pmu->pmu_type & pmu_attr->pmu_type; } static umode_t hybrid_events_is_visible(struct kobject *kobj, struct attribute *attr, int i) { return is_attr_for_this_pmu(kobj, attr) ? attr->mode : 0; } static inline int hybrid_find_supported_cpu(struct x86_hybrid_pmu *pmu) { int cpu = cpumask_first(&pmu->supported_cpus); return (cpu >= nr_cpu_ids) ? -1 : cpu; } static umode_t hybrid_tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i) { struct device *dev = kobj_to_dev(kobj); struct x86_hybrid_pmu *pmu = container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu); int cpu = hybrid_find_supported_cpu(pmu); return (cpu >= 0) && is_attr_for_this_pmu(kobj, attr) && cpu_has(&cpu_data(cpu), X86_FEATURE_RTM) ? attr->mode : 0; } static umode_t hybrid_format_is_visible(struct kobject *kobj, struct attribute *attr, int i) { struct device *dev = kobj_to_dev(kobj); struct x86_hybrid_pmu *pmu = container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu); struct perf_pmu_format_hybrid_attr *pmu_attr = container_of(attr, struct perf_pmu_format_hybrid_attr, attr.attr); int cpu = hybrid_find_supported_cpu(pmu); return (cpu >= 0) && (pmu->pmu_type & pmu_attr->pmu_type) ? attr->mode : 0; } static umode_t hybrid_td_is_visible(struct kobject *kobj, struct attribute *attr, int i) { struct device *dev = kobj_to_dev(kobj); struct x86_hybrid_pmu *pmu = container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu); if (!is_attr_for_this_pmu(kobj, attr)) return 0; /* Only the big core supports perf metrics */ if (pmu->pmu_type == hybrid_big) return pmu->intel_cap.perf_metrics ? attr->mode : 0; return attr->mode; } static struct attribute_group hybrid_group_events_td = { .name = "events", .is_visible = hybrid_td_is_visible, }; static struct attribute_group hybrid_group_events_mem = { .name = "events", .is_visible = hybrid_events_is_visible, }; static struct attribute_group hybrid_group_events_tsx = { .name = "events", .is_visible = hybrid_tsx_is_visible, }; static struct attribute_group hybrid_group_format_extra = { .name = "format", .is_visible = hybrid_format_is_visible, }; static ssize_t intel_hybrid_get_attr_cpus(struct device *dev, struct device_attribute *attr, char *buf) { struct x86_hybrid_pmu *pmu = container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu); return cpumap_print_to_pagebuf(true, buf, &pmu->supported_cpus); } static DEVICE_ATTR(cpus, S_IRUGO, intel_hybrid_get_attr_cpus, NULL); static struct attribute *intel_hybrid_cpus_attrs[] = { &dev_attr_cpus.attr, NULL, }; static struct attribute_group hybrid_group_cpus = { .attrs = intel_hybrid_cpus_attrs, }; static const struct attribute_group *hybrid_attr_update[] = { &hybrid_group_events_td, &hybrid_group_events_mem, &hybrid_group_events_tsx, &group_caps_gen, &group_caps_lbr, &hybrid_group_format_extra, &group_format_evtsel_ext, &group_default, &hybrid_group_cpus, NULL, }; static struct attribute *empty_attrs; static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints, u64 cntr_mask, u64 fixed_cntr_mask, u64 intel_ctrl) { struct event_constraint *c; if (!event_constraints) return; /* * event on fixed counter2 (REF_CYCLES) only works on this * counter, so do not extend mask to generic counters */ for_each_event_constraint(c, event_constraints) { /* * Don't extend the topdown slots and metrics * events to the generic counters. */ if (c->idxmsk64 & INTEL_PMC_MSK_TOPDOWN) { /* * Disable topdown slots and metrics events, * if slots event is not in CPUID. */ if (!(INTEL_PMC_MSK_FIXED_SLOTS & intel_ctrl)) c->idxmsk64 = 0; c->weight = hweight64(c->idxmsk64); continue; } if (c->cmask == FIXED_EVENT_FLAGS) { /* Disabled fixed counters which are not in CPUID */ c->idxmsk64 &= intel_ctrl; /* * Don't extend the pseudo-encoding to the * generic counters */ if (!use_fixed_pseudo_encoding(c->code)) c->idxmsk64 |= cntr_mask; } c->idxmsk64 &= cntr_mask | (fixed_cntr_mask << INTEL_PMC_IDX_FIXED); c->weight = hweight64(c->idxmsk64); } } static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs) { struct extra_reg *er; /* * Access extra MSR may cause #GP under certain circumstances. * E.g. KVM doesn't support offcore event * Check all extra_regs here. */ if (!extra_regs) return; for (er = extra_regs; er->msr; er++) { er->extra_msr_access = check_msr(er->msr, 0x11UL); /* Disable LBR select mapping */ if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access) x86_pmu.lbr_sel_map = NULL; } } static inline int intel_pmu_v6_addr_offset(int index, bool eventsel) { return MSR_IA32_PMC_V6_STEP * index; } static const struct { enum hybrid_pmu_type id; char *name; } intel_hybrid_pmu_type_map[] __initconst = { { hybrid_small, "cpu_atom" }, { hybrid_big, "cpu_core" }, { hybrid_tiny, "cpu_lowpower" }, }; static __always_inline int intel_pmu_init_hybrid(enum hybrid_pmu_type pmus) { unsigned long pmus_mask = pmus; struct x86_hybrid_pmu *pmu; int idx = 0, bit; x86_pmu.num_hybrid_pmus = hweight_long(pmus_mask); x86_pmu.hybrid_pmu = kcalloc(x86_pmu.num_hybrid_pmus, sizeof(struct x86_hybrid_pmu), GFP_KERNEL); if (!x86_pmu.hybrid_pmu) return -ENOMEM; static_branch_enable(&perf_is_hybrid); x86_pmu.filter = intel_pmu_filter; for_each_set_bit(bit, &pmus_mask, ARRAY_SIZE(intel_hybrid_pmu_type_map)) { pmu = &x86_pmu.hybrid_pmu[idx++]; pmu->pmu_type = intel_hybrid_pmu_type_map[bit].id; pmu->name = intel_hybrid_pmu_type_map[bit].name; pmu->cntr_mask64 = x86_pmu.cntr_mask64; pmu->fixed_cntr_mask64 = x86_pmu.fixed_cntr_mask64; pmu->pebs_events_mask = intel_pmu_pebs_mask(pmu->cntr_mask64); pmu->config_mask = X86_RAW_EVENT_MASK; pmu->unconstrained = (struct event_constraint) __EVENT_CONSTRAINT(0, pmu->cntr_mask64, 0, x86_pmu_num_counters(&pmu->pmu), 0, 0); pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities; if (pmu->pmu_type & hybrid_small_tiny) { pmu->intel_cap.perf_metrics = 0; pmu->intel_cap.pebs_output_pt_available = 1; pmu->mid_ack = true; } else if (pmu->pmu_type & hybrid_big) { pmu->intel_cap.perf_metrics = 1; pmu->intel_cap.pebs_output_pt_available = 0; pmu->late_ack = true; } } return 0; } static __always_inline void intel_pmu_ref_cycles_ext(void) { if (!(x86_pmu.events_maskl & (INTEL_PMC_MSK_FIXED_REF_CYCLES >> INTEL_PMC_IDX_FIXED))) intel_perfmon_event_map[PERF_COUNT_HW_REF_CPU_CYCLES] = 0x013c; } static __always_inline void intel_pmu_init_glc(struct pmu *pmu) { x86_pmu.late_ack = true; x86_pmu.limit_period = glc_limit_period; x86_pmu.pebs_aliases = NULL; x86_pmu.pebs_prec_dist = true; x86_pmu.pebs_block = true; x86_pmu.flags |= PMU_FL_HAS_RSP_1; x86_pmu.flags |= PMU_FL_NO_HT_SHARING; x86_pmu.flags |= PMU_FL_INSTR_LATENCY; x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04); x86_pmu.lbr_pt_coexist = true; x86_pmu.num_topdown_events = 8; static_call_update(intel_pmu_update_topdown_event, &icl_update_topdown_event); static_call_update(intel_pmu_set_topdown_event_period, &icl_set_topdown_event_period); memcpy(hybrid_var(pmu, hw_cache_event_ids), glc_hw_cache_event_ids, sizeof(hw_cache_event_ids)); memcpy(hybrid_var(pmu, hw_cache_extra_regs), glc_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); hybrid(pmu, event_constraints) = intel_glc_event_constraints; hybrid(pmu, pebs_constraints) = intel_glc_pebs_event_constraints; intel_pmu_ref_cycles_ext(); } static __always_inline void intel_pmu_init_grt(struct pmu *pmu) { x86_pmu.mid_ack = true; x86_pmu.limit_period = glc_limit_period; x86_pmu.pebs_aliases = NULL; x86_pmu.pebs_prec_dist = true; x86_pmu.pebs_block = true; x86_pmu.lbr_pt_coexist = true; x86_pmu.flags |= PMU_FL_HAS_RSP_1; x86_pmu.flags |= PMU_FL_INSTR_LATENCY; memcpy(hybrid_var(pmu, hw_cache_event_ids), glp_hw_cache_event_ids, sizeof(hw_cache_event_ids)); memcpy(hybrid_var(pmu, hw_cache_extra_regs), tnt_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); hybrid_var(pmu, hw_cache_event_ids)[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1; hybrid(pmu, event_constraints) = intel_grt_event_constraints; hybrid(pmu, pebs_constraints) = intel_grt_pebs_event_constraints; hybrid(pmu, extra_regs) = intel_grt_extra_regs; intel_pmu_ref_cycles_ext(); } static __always_inline void intel_pmu_init_lnc(struct pmu *pmu) { intel_pmu_init_glc(pmu); hybrid(pmu, event_constraints) = intel_lnc_event_constraints; hybrid(pmu, pebs_constraints) = intel_lnc_pebs_event_constraints; hybrid(pmu, extra_regs) = intel_lnc_extra_regs; } static __always_inline void intel_pmu_init_skt(struct pmu *pmu) { intel_pmu_init_grt(pmu); hybrid(pmu, event_constraints) = intel_skt_event_constraints; hybrid(pmu, extra_regs) = intel_cmt_extra_regs; } __init int intel_pmu_init(void) { struct attribute **extra_skl_attr = &empty_attrs; struct attribute **extra_attr = &empty_attrs; struct attribute **td_attr = &empty_attrs; struct attribute **mem_attr = &empty_attrs; struct attribute **tsx_attr = &empty_attrs; union cpuid10_edx edx; union cpuid10_eax eax; union cpuid10_ebx ebx; unsigned int fixed_mask; bool pmem = false; int version, i; char *name; struct x86_hybrid_pmu *pmu; if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) { switch (boot_cpu_data.x86) { case 0x6: return p6_pmu_init(); case 0xb: return knc_pmu_init(); case 0xf: return p4_pmu_init(); } return -ENODEV; } /* * Check whether the Architectural PerfMon supports * Branch Misses Retired hw_event or not. */ cpuid(10, &eax.full, &ebx.full, &fixed_mask, &edx.full); if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT) return -ENODEV; version = eax.split.version_id; if (version < 2) x86_pmu = core_pmu; else x86_pmu = intel_pmu; x86_pmu.version = version; x86_pmu.cntr_mask64 = GENMASK_ULL(eax.split.num_counters - 1, 0); x86_pmu.cntval_bits = eax.split.bit_width; x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1; x86_pmu.events_maskl = ebx.full; x86_pmu.events_mask_len = eax.split.mask_length; x86_pmu.pebs_events_mask = intel_pmu_pebs_mask(x86_pmu.cntr_mask64); x86_pmu.pebs_capable = PEBS_COUNTER_MASK; /* * Quirk: v2 perfmon does not report fixed-purpose events, so * assume at least 3 events, when not running in a hypervisor: */ if (version > 1 && version < 5) { int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR); x86_pmu.fixed_cntr_mask64 = GENMASK_ULL(max((int)edx.split.num_counters_fixed, assume) - 1, 0); } else if (version >= 5) x86_pmu.fixed_cntr_mask64 = fixed_mask; if (boot_cpu_has(X86_FEATURE_PDCM)) { u64 capabilities; rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities); x86_pmu.intel_cap.capabilities = capabilities; } if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) { x86_pmu.lbr_reset = intel_pmu_lbr_reset_32; x86_pmu.lbr_read = intel_pmu_lbr_read_32; } if (boot_cpu_has(X86_FEATURE_ARCH_LBR)) intel_pmu_arch_lbr_init(); intel_ds_init(); x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */ if (version >= 5) { x86_pmu.intel_cap.anythread_deprecated = edx.split.anythread_deprecated; if (x86_pmu.intel_cap.anythread_deprecated) pr_cont(" AnyThread deprecated, "); } /* * Install the hw-cache-events table: */ switch (boot_cpu_data.x86_vfm) { case INTEL_CORE_YONAH: pr_cont("Core events, "); name = "core"; break; case INTEL_CORE2_MEROM: x86_add_quirk(intel_clovertown_quirk); fallthrough; case INTEL_CORE2_MEROM_L: case INTEL_CORE2_PENRYN: case INTEL_CORE2_DUNNINGTON: memcpy(hw_cache_event_ids, core2_hw_cache_event_ids, sizeof(hw_cache_event_ids)); intel_pmu_lbr_init_core(); x86_pmu.event_constraints = intel_core2_event_constraints; x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints; pr_cont("Core2 events, "); name = "core2"; break; case INTEL_NEHALEM: case INTEL_NEHALEM_EP: case INTEL_NEHALEM_EX: memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids, sizeof(hw_cache_event_ids)); memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); intel_pmu_lbr_init_nhm(); x86_pmu.event_constraints = intel_nehalem_event_constraints; x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints; x86_pmu.enable_all = intel_pmu_nhm_enable_all; x86_pmu.extra_regs = intel_nehalem_extra_regs; x86_pmu.limit_period = nhm_limit_period; mem_attr = nhm_mem_events_attrs; /* UOPS_ISSUED.STALLED_CYCLES */ intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1); /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */ intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1); intel_pmu_pebs_data_source_nhm(); x86_add_quirk(intel_nehalem_quirk); x86_pmu.pebs_no_tlb = 1; extra_attr = nhm_format_attr; pr_cont("Nehalem events, "); name = "nehalem"; break; case INTEL_ATOM_BONNELL: case INTEL_ATOM_BONNELL_MID: case INTEL_ATOM_SALTWELL: case INTEL_ATOM_SALTWELL_MID: case INTEL_ATOM_SALTWELL_TABLET: memcpy(hw_cache_event_ids, atom_hw_cache_event_ids, sizeof(hw_cache_event_ids)); intel_pmu_lbr_init_atom(); x86_pmu.event_constraints = intel_gen_event_constraints; x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints; x86_pmu.pebs_aliases = intel_pebs_aliases_core2; pr_cont("Atom events, "); name = "bonnell"; break; case INTEL_ATOM_SILVERMONT: case INTEL_ATOM_SILVERMONT_D: case INTEL_ATOM_SILVERMONT_MID: case INTEL_ATOM_AIRMONT: case INTEL_ATOM_AIRMONT_MID: memcpy(hw_cache_event_ids, slm_hw_cache_event_ids, sizeof(hw_cache_event_ids)); memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); intel_pmu_lbr_init_slm(); x86_pmu.event_constraints = intel_slm_event_constraints; x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints; x86_pmu.extra_regs = intel_slm_extra_regs; x86_pmu.flags |= PMU_FL_HAS_RSP_1; td_attr = slm_events_attrs; extra_attr = slm_format_attr; pr_cont("Silvermont events, "); name = "silvermont"; break; case INTEL_ATOM_GOLDMONT: case INTEL_ATOM_GOLDMONT_D: memcpy(hw_cache_event_ids, glm_hw_cache_event_ids, sizeof(hw_cache_event_ids)); memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); intel_pmu_lbr_init_skl(); x86_pmu.event_constraints = intel_slm_event_constraints; x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints; x86_pmu.extra_regs = intel_glm_extra_regs; /* * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS * for precise cycles. * :pp is identical to :ppp */ x86_pmu.pebs_aliases = NULL; x86_pmu.pebs_prec_dist = true; x86_pmu.lbr_pt_coexist = true; x86_pmu.flags |= PMU_FL_HAS_RSP_1; td_attr = glm_events_attrs; extra_attr = slm_format_attr; pr_cont("Goldmont events, "); name = "goldmont"; break; case INTEL_ATOM_GOLDMONT_PLUS: memcpy(hw_cache_event_ids, glp_hw_cache_event_ids, sizeof(hw_cache_event_ids)); memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); intel_pmu_lbr_init_skl(); x86_pmu.event_constraints = intel_slm_event_constraints; x86_pmu.extra_regs = intel_glm_extra_regs; /* * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS * for precise cycles. */ x86_pmu.pebs_aliases = NULL; x86_pmu.pebs_prec_dist = true; x86_pmu.lbr_pt_coexist = true; x86_pmu.pebs_capable = ~0ULL; x86_pmu.flags |= PMU_FL_HAS_RSP_1; x86_pmu.flags |= PMU_FL_PEBS_ALL; x86_pmu.get_event_constraints = glp_get_event_constraints; td_attr = glm_events_attrs; /* Goldmont Plus has 4-wide pipeline */ event_attr_td_total_slots_scale_glm.event_str = "4"; extra_attr = slm_format_attr; pr_cont("Goldmont plus events, "); name = "goldmont_plus"; break; case INTEL_ATOM_TREMONT_D: case INTEL_ATOM_TREMONT: case INTEL_ATOM_TREMONT_L: x86_pmu.late_ack = true; memcpy(hw_cache_event_ids, glp_hw_cache_event_ids, sizeof(hw_cache_event_ids)); memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1; intel_pmu_lbr_init_skl(); x86_pmu.event_constraints = intel_slm_event_constraints; x86_pmu.extra_regs = intel_tnt_extra_regs; /* * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS * for precise cycles. */ x86_pmu.pebs_aliases = NULL; x86_pmu.pebs_prec_dist = true; x86_pmu.lbr_pt_coexist = true; x86_pmu.flags |= PMU_FL_HAS_RSP_1; x86_pmu.get_event_constraints = tnt_get_event_constraints; td_attr = tnt_events_attrs; extra_attr = slm_format_attr; pr_cont("Tremont events, "); name = "Tremont"; break; case INTEL_ATOM_GRACEMONT: intel_pmu_init_grt(NULL); intel_pmu_pebs_data_source_grt(); x86_pmu.pebs_latency_data = grt_latency_data; x86_pmu.get_event_constraints = tnt_get_event_constraints; td_attr = tnt_events_attrs; mem_attr = grt_mem_attrs; extra_attr = nhm_format_attr; pr_cont("Gracemont events, "); name = "gracemont"; break; case INTEL_ATOM_CRESTMONT: case INTEL_ATOM_CRESTMONT_X: intel_pmu_init_grt(NULL); x86_pmu.extra_regs = intel_cmt_extra_regs; intel_pmu_pebs_data_source_cmt(); x86_pmu.pebs_latency_data = cmt_latency_data; x86_pmu.get_event_constraints = cmt_get_event_constraints; td_attr = cmt_events_attrs; mem_attr = grt_mem_attrs; extra_attr = cmt_format_attr; pr_cont("Crestmont events, "); name = "crestmont"; break; case INTEL_WESTMERE: case INTEL_WESTMERE_EP: case INTEL_WESTMERE_EX: memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids, sizeof(hw_cache_event_ids)); memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); intel_pmu_lbr_init_nhm(); x86_pmu.event_constraints = intel_westmere_event_constraints; x86_pmu.enable_all = intel_pmu_nhm_enable_all; x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints; x86_pmu.extra_regs = intel_westmere_extra_regs; x86_pmu.flags |= PMU_FL_HAS_RSP_1; mem_attr = nhm_mem_events_attrs; /* UOPS_ISSUED.STALLED_CYCLES */ intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1); /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */ intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1); intel_pmu_pebs_data_source_nhm(); extra_attr = nhm_format_attr; pr_cont("Westmere events, "); name = "westmere"; break; case INTEL_SANDYBRIDGE: case INTEL_SANDYBRIDGE_X: x86_add_quirk(intel_sandybridge_quirk); x86_add_quirk(intel_ht_bug); memcpy(hw_cache_event_ids, snb_hw_cache_event_ids, sizeof(hw_cache_event_ids)); memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); intel_pmu_lbr_init_snb(); x86_pmu.event_constraints = intel_snb_event_constraints; x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints; x86_pmu.pebs_aliases = intel_pebs_aliases_snb; if (boot_cpu_data.x86_vfm == INTEL_SANDYBRIDGE_X) x86_pmu.extra_regs = intel_snbep_extra_regs; else x86_pmu.extra_regs = intel_snb_extra_regs; /* all extra regs are per-cpu when HT is on */ x86_pmu.flags |= PMU_FL_HAS_RSP_1; x86_pmu.flags |= PMU_FL_NO_HT_SHARING; td_attr = snb_events_attrs; mem_attr = snb_mem_events_attrs; /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */ intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1); /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/ intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1); extra_attr = nhm_format_attr; pr_cont("SandyBridge events, "); name = "sandybridge"; break; case INTEL_IVYBRIDGE: case INTEL_IVYBRIDGE_X: x86_add_quirk(intel_ht_bug); memcpy(hw_cache_event_ids, snb_hw_cache_event_ids, sizeof(hw_cache_event_ids)); /* dTLB-load-misses on IVB is different than SNB */ hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */ memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); intel_pmu_lbr_init_snb(); x86_pmu.event_constraints = intel_ivb_event_constraints; x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints; x86_pmu.pebs_aliases = intel_pebs_aliases_ivb; x86_pmu.pebs_prec_dist = true; if (boot_cpu_data.x86_vfm == INTEL_IVYBRIDGE_X) x86_pmu.extra_regs = intel_snbep_extra_regs; else x86_pmu.extra_regs = intel_snb_extra_regs; /* all extra regs are per-cpu when HT is on */ x86_pmu.flags |= PMU_FL_HAS_RSP_1; x86_pmu.flags |= PMU_FL_NO_HT_SHARING; td_attr = snb_events_attrs; mem_attr = snb_mem_events_attrs; /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */ intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1); extra_attr = nhm_format_attr; pr_cont("IvyBridge events, "); name = "ivybridge"; break; case INTEL_HASWELL: case INTEL_HASWELL_X: case INTEL_HASWELL_L: case INTEL_HASWELL_G: x86_add_quirk(intel_ht_bug); x86_add_quirk(intel_pebs_isolation_quirk); x86_pmu.late_ack = true; memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids)); memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); intel_pmu_lbr_init_hsw(); x86_pmu.event_constraints = intel_hsw_event_constraints; x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints; x86_pmu.extra_regs = intel_snbep_extra_regs; x86_pmu.pebs_aliases = intel_pebs_aliases_ivb; x86_pmu.pebs_prec_dist = true; /* all extra regs are per-cpu when HT is on */ x86_pmu.flags |= PMU_FL_HAS_RSP_1; x86_pmu.flags |= PMU_FL_NO_HT_SHARING; x86_pmu.hw_config = hsw_hw_config; x86_pmu.get_event_constraints = hsw_get_event_constraints; x86_pmu.limit_period = hsw_limit_period; x86_pmu.lbr_double_abort = true; extra_attr = boot_cpu_has(X86_FEATURE_RTM) ? hsw_format_attr : nhm_format_attr; td_attr = hsw_events_attrs; mem_attr = hsw_mem_events_attrs; tsx_attr = hsw_tsx_events_attrs; pr_cont("Haswell events, "); name = "haswell"; break; case INTEL_BROADWELL: case INTEL_BROADWELL_D: case INTEL_BROADWELL_G: case INTEL_BROADWELL_X: x86_add_quirk(intel_pebs_isolation_quirk); x86_pmu.late_ack = true; memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids)); memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */ hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ | BDW_L3_MISS|HSW_SNOOP_DRAM; hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS| HSW_SNOOP_DRAM; hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ| BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM; hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE| BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM; intel_pmu_lbr_init_hsw(); x86_pmu.event_constraints = intel_bdw_event_constraints; x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints; x86_pmu.extra_regs = intel_snbep_extra_regs; x86_pmu.pebs_aliases = intel_pebs_aliases_ivb; x86_pmu.pebs_prec_dist = true; /* all extra regs are per-cpu when HT is on */ x86_pmu.flags |= PMU_FL_HAS_RSP_1; x86_pmu.flags |= PMU_FL_NO_HT_SHARING; x86_pmu.hw_config = hsw_hw_config; x86_pmu.get_event_constraints = hsw_get_event_constraints; x86_pmu.limit_period = bdw_limit_period; extra_attr = boot_cpu_has(X86_FEATURE_RTM) ? hsw_format_attr : nhm_format_attr; td_attr = hsw_events_attrs; mem_attr = hsw_mem_events_attrs; tsx_attr = hsw_tsx_events_attrs; pr_cont("Broadwell events, "); name = "broadwell"; break; case INTEL_XEON_PHI_KNL: case INTEL_XEON_PHI_KNM: memcpy(hw_cache_event_ids, slm_hw_cache_event_ids, sizeof(hw_cache_event_ids)); memcpy(hw_cache_extra_regs, knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); intel_pmu_lbr_init_knl(); x86_pmu.event_constraints = intel_slm_event_constraints; x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints; x86_pmu.extra_regs = intel_knl_extra_regs; /* all extra regs are per-cpu when HT is on */ x86_pmu.flags |= PMU_FL_HAS_RSP_1; x86_pmu.flags |= PMU_FL_NO_HT_SHARING; extra_attr = slm_format_attr; pr_cont("Knights Landing/Mill events, "); name = "knights-landing"; break; case INTEL_SKYLAKE_X: pmem = true; fallthrough; case INTEL_SKYLAKE_L: case INTEL_SKYLAKE: case INTEL_KABYLAKE_L: case INTEL_KABYLAKE: case INTEL_COMETLAKE_L: case INTEL_COMETLAKE: x86_add_quirk(intel_pebs_isolation_quirk); x86_pmu.late_ack = true; memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids)); memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); intel_pmu_lbr_init_skl(); /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */ event_attr_td_recovery_bubbles.event_str_noht = "event=0xd,umask=0x1,cmask=1"; event_attr_td_recovery_bubbles.event_str_ht = "event=0xd,umask=0x1,cmask=1,any=1"; x86_pmu.event_constraints = intel_skl_event_constraints; x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints; x86_pmu.extra_regs = intel_skl_extra_regs; x86_pmu.pebs_aliases = intel_pebs_aliases_skl; x86_pmu.pebs_prec_dist = true; /* all extra regs are per-cpu when HT is on */ x86_pmu.flags |= PMU_FL_HAS_RSP_1; x86_pmu.flags |= PMU_FL_NO_HT_SHARING; x86_pmu.hw_config = hsw_hw_config; x86_pmu.get_event_constraints = hsw_get_event_constraints; extra_attr = boot_cpu_has(X86_FEATURE_RTM) ? hsw_format_attr : nhm_format_attr; extra_skl_attr = skl_format_attr; td_attr = hsw_events_attrs; mem_attr = hsw_mem_events_attrs; tsx_attr = hsw_tsx_events_attrs; intel_pmu_pebs_data_source_skl(pmem); /* * Processors with CPUID.RTM_ALWAYS_ABORT have TSX deprecated by default. * TSX force abort hooks are not required on these systems. Only deploy * workaround when microcode has not enabled X86_FEATURE_RTM_ALWAYS_ABORT. */ if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT) && !boot_cpu_has(X86_FEATURE_RTM_ALWAYS_ABORT)) { x86_pmu.flags |= PMU_FL_TFA; x86_pmu.get_event_constraints = tfa_get_event_constraints; x86_pmu.enable_all = intel_tfa_pmu_enable_all; x86_pmu.commit_scheduling = intel_tfa_commit_scheduling; } pr_cont("Skylake events, "); name = "skylake"; break; case INTEL_ICELAKE_X: case INTEL_ICELAKE_D: x86_pmu.pebs_ept = 1; pmem = true; fallthrough; case INTEL_ICELAKE_L: case INTEL_ICELAKE: case INTEL_TIGERLAKE_L: case INTEL_TIGERLAKE: case INTEL_ROCKETLAKE: x86_pmu.late_ack = true; memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids)); memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1; intel_pmu_lbr_init_skl(); x86_pmu.event_constraints = intel_icl_event_constraints; x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints; x86_pmu.extra_regs = intel_icl_extra_regs; x86_pmu.pebs_aliases = NULL; x86_pmu.pebs_prec_dist = true; x86_pmu.flags |= PMU_FL_HAS_RSP_1; x86_pmu.flags |= PMU_FL_NO_HT_SHARING; x86_pmu.hw_config = hsw_hw_config; x86_pmu.get_event_constraints = icl_get_event_constraints; extra_attr = boot_cpu_has(X86_FEATURE_RTM) ? hsw_format_attr : nhm_format_attr; extra_skl_attr = skl_format_attr; mem_attr = icl_events_attrs; td_attr = icl_td_events_attrs; tsx_attr = icl_tsx_events_attrs; x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04); x86_pmu.lbr_pt_coexist = true; intel_pmu_pebs_data_source_skl(pmem); x86_pmu.num_topdown_events = 4; static_call_update(intel_pmu_update_topdown_event, &icl_update_topdown_event); static_call_update(intel_pmu_set_topdown_event_period, &icl_set_topdown_event_period); pr_cont("Icelake events, "); name = "icelake"; break; case INTEL_SAPPHIRERAPIDS_X: case INTEL_EMERALDRAPIDS_X: x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX; x86_pmu.extra_regs = intel_glc_extra_regs; pr_cont("Sapphire Rapids events, "); name = "sapphire_rapids"; goto glc_common; case INTEL_GRANITERAPIDS_X: case INTEL_GRANITERAPIDS_D: x86_pmu.extra_regs = intel_rwc_extra_regs; pr_cont("Granite Rapids events, "); name = "granite_rapids"; glc_common: intel_pmu_init_glc(NULL); x86_pmu.pebs_ept = 1; x86_pmu.hw_config = hsw_hw_config; x86_pmu.get_event_constraints = glc_get_event_constraints; extra_attr = boot_cpu_has(X86_FEATURE_RTM) ? hsw_format_attr : nhm_format_attr; extra_skl_attr = skl_format_attr; mem_attr = glc_events_attrs; td_attr = glc_td_events_attrs; tsx_attr = glc_tsx_events_attrs; intel_pmu_pebs_data_source_skl(true); break; case INTEL_ALDERLAKE: case INTEL_ALDERLAKE_L: case INTEL_RAPTORLAKE: case INTEL_RAPTORLAKE_P: case INTEL_RAPTORLAKE_S: /* * Alder Lake has 2 types of CPU, core and atom. * * Initialize the common PerfMon capabilities here. */ intel_pmu_init_hybrid(hybrid_big_small); x86_pmu.pebs_latency_data = grt_latency_data; x86_pmu.get_event_constraints = adl_get_event_constraints; x86_pmu.hw_config = adl_hw_config; x86_pmu.get_hybrid_cpu_type = adl_get_hybrid_cpu_type; td_attr = adl_hybrid_events_attrs; mem_attr = adl_hybrid_mem_attrs; tsx_attr = adl_hybrid_tsx_attrs; extra_attr = boot_cpu_has(X86_FEATURE_RTM) ? adl_hybrid_extra_attr_rtm : adl_hybrid_extra_attr; /* Initialize big core specific PerfMon capabilities.*/ pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX]; intel_pmu_init_glc(&pmu->pmu); if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) { pmu->cntr_mask64 <<= 2; pmu->cntr_mask64 |= 0x3; pmu->fixed_cntr_mask64 <<= 1; pmu->fixed_cntr_mask64 |= 0x1; } else { pmu->cntr_mask64 = x86_pmu.cntr_mask64; pmu->fixed_cntr_mask64 = x86_pmu.fixed_cntr_mask64; } /* * Quirk: For some Alder Lake machine, when all E-cores are disabled in * a BIOS, the leaf 0xA will enumerate all counters of P-cores. However, * the X86_FEATURE_HYBRID_CPU is still set. The above codes will * mistakenly add extra counters for P-cores. Correct the number of * counters here. */ if ((x86_pmu_num_counters(&pmu->pmu) > 8) || (x86_pmu_num_counters_fixed(&pmu->pmu) > 4)) { pmu->cntr_mask64 = x86_pmu.cntr_mask64; pmu->fixed_cntr_mask64 = x86_pmu.fixed_cntr_mask64; } pmu->pebs_events_mask = intel_pmu_pebs_mask(pmu->cntr_mask64); pmu->unconstrained = (struct event_constraint) __EVENT_CONSTRAINT(0, pmu->cntr_mask64, 0, x86_pmu_num_counters(&pmu->pmu), 0, 0); pmu->extra_regs = intel_glc_extra_regs; /* Initialize Atom core specific PerfMon capabilities.*/ pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX]; intel_pmu_init_grt(&pmu->pmu); x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX; intel_pmu_pebs_data_source_adl(); pr_cont("Alderlake Hybrid events, "); name = "alderlake_hybrid"; break; case INTEL_METEORLAKE: case INTEL_METEORLAKE_L: case INTEL_ARROWLAKE_U: intel_pmu_init_hybrid(hybrid_big_small); x86_pmu.pebs_latency_data = cmt_latency_data; x86_pmu.get_event_constraints = mtl_get_event_constraints; x86_pmu.hw_config = adl_hw_config; td_attr = adl_hybrid_events_attrs; mem_attr = mtl_hybrid_mem_attrs; tsx_attr = adl_hybrid_tsx_attrs; extra_attr = boot_cpu_has(X86_FEATURE_RTM) ? mtl_hybrid_extra_attr_rtm : mtl_hybrid_extra_attr; /* Initialize big core specific PerfMon capabilities.*/ pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX]; intel_pmu_init_glc(&pmu->pmu); pmu->extra_regs = intel_rwc_extra_regs; /* Initialize Atom core specific PerfMon capabilities.*/ pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX]; intel_pmu_init_grt(&pmu->pmu); pmu->extra_regs = intel_cmt_extra_regs; intel_pmu_pebs_data_source_mtl(); pr_cont("Meteorlake Hybrid events, "); name = "meteorlake_hybrid"; break; case INTEL_LUNARLAKE_M: case INTEL_ARROWLAKE: intel_pmu_init_hybrid(hybrid_big_small); x86_pmu.pebs_latency_data = lnl_latency_data; x86_pmu.get_event_constraints = mtl_get_event_constraints; x86_pmu.hw_config = adl_hw_config; td_attr = lnl_hybrid_events_attrs; mem_attr = mtl_hybrid_mem_attrs; tsx_attr = adl_hybrid_tsx_attrs; extra_attr = boot_cpu_has(X86_FEATURE_RTM) ? mtl_hybrid_extra_attr_rtm : mtl_hybrid_extra_attr; /* Initialize big core specific PerfMon capabilities.*/ pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX]; intel_pmu_init_lnc(&pmu->pmu); /* Initialize Atom core specific PerfMon capabilities.*/ pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX]; intel_pmu_init_skt(&pmu->pmu); intel_pmu_pebs_data_source_lnl(); pr_cont("Lunarlake Hybrid events, "); name = "lunarlake_hybrid"; break; case INTEL_ARROWLAKE_H: intel_pmu_init_hybrid(hybrid_big_small_tiny); x86_pmu.pebs_latency_data = arl_h_latency_data; x86_pmu.get_event_constraints = arl_h_get_event_constraints; x86_pmu.hw_config = arl_h_hw_config; td_attr = arl_h_hybrid_events_attrs; mem_attr = arl_h_hybrid_mem_attrs; tsx_attr = adl_hybrid_tsx_attrs; extra_attr = boot_cpu_has(X86_FEATURE_RTM) ? mtl_hybrid_extra_attr_rtm : mtl_hybrid_extra_attr; /* Initialize big core specific PerfMon capabilities. */ pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX]; intel_pmu_init_lnc(&pmu->pmu); /* Initialize Atom core specific PerfMon capabilities. */ pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX]; intel_pmu_init_skt(&pmu->pmu); /* Initialize Lower Power Atom specific PerfMon capabilities. */ pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_TINY_IDX]; intel_pmu_init_grt(&pmu->pmu); pmu->extra_regs = intel_cmt_extra_regs; intel_pmu_pebs_data_source_arl_h(); pr_cont("ArrowLake-H Hybrid events, "); name = "arrowlake_h_hybrid"; break; default: switch (x86_pmu.version) { case 1: x86_pmu.event_constraints = intel_v1_event_constraints; pr_cont("generic architected perfmon v1, "); name = "generic_arch_v1"; break; case 2: case 3: case 4: /* * default constraints for v2 and up */ x86_pmu.event_constraints = intel_gen_event_constraints; pr_cont("generic architected perfmon, "); name = "generic_arch_v2+"; break; default: /* * The default constraints for v5 and up can support up to * 16 fixed counters. For the fixed counters 4 and later, * the pseudo-encoding is applied. * The constraints may be cut according to the CPUID enumeration * by inserting the EVENT_CONSTRAINT_END. */ if (fls64(x86_pmu.fixed_cntr_mask64) > INTEL_PMC_MAX_FIXED) x86_pmu.fixed_cntr_mask64 &= GENMASK_ULL(INTEL_PMC_MAX_FIXED - 1, 0); intel_v5_gen_event_constraints[fls64(x86_pmu.fixed_cntr_mask64)].weight = -1; x86_pmu.event_constraints = intel_v5_gen_event_constraints; pr_cont("generic architected perfmon, "); name = "generic_arch_v5+"; break; } } snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name); if (!is_hybrid()) { group_events_td.attrs = td_attr; group_events_mem.attrs = mem_attr; group_events_tsx.attrs = tsx_attr; group_format_extra.attrs = extra_attr; group_format_extra_skl.attrs = extra_skl_attr; x86_pmu.attr_update = attr_update; } else { hybrid_group_events_td.attrs = td_attr; hybrid_group_events_mem.attrs = mem_attr; hybrid_group_events_tsx.attrs = tsx_attr; hybrid_group_format_extra.attrs = extra_attr; x86_pmu.attr_update = hybrid_attr_update; } intel_pmu_check_counters_mask(&x86_pmu.cntr_mask64, &x86_pmu.fixed_cntr_mask64, &x86_pmu.intel_ctrl); /* AnyThread may be deprecated on arch perfmon v5 or later */ if (x86_pmu.intel_cap.anythread_deprecated) x86_pmu.format_attrs = intel_arch_formats_attr; intel_pmu_check_event_constraints(x86_pmu.event_constraints, x86_pmu.cntr_mask64, x86_pmu.fixed_cntr_mask64, x86_pmu.intel_ctrl); /* * Access LBR MSR may cause #GP under certain circumstances. * Check all LBR MSR here. * Disable LBR access if any LBR MSRs can not be accessed. */ if (x86_pmu.lbr_tos && !check_msr(x86_pmu.lbr_tos, 0x3UL)) x86_pmu.lbr_nr = 0; for (i = 0; i < x86_pmu.lbr_nr; i++) { if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) && check_msr(x86_pmu.lbr_to + i, 0xffffUL))) x86_pmu.lbr_nr = 0; } if (x86_pmu.lbr_nr) { intel_pmu_lbr_init(); pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr); /* only support branch_stack snapshot for perfmon >= v2 */ if (x86_pmu.disable_all == intel_pmu_disable_all) { if (boot_cpu_has(X86_FEATURE_ARCH_LBR)) { static_call_update(perf_snapshot_branch_stack, intel_pmu_snapshot_arch_branch_stack); } else { static_call_update(perf_snapshot_branch_stack, intel_pmu_snapshot_branch_stack); } } } intel_pmu_check_extra_regs(x86_pmu.extra_regs); /* Support full width counters using alternative MSR range */ if (x86_pmu.intel_cap.full_width_write) { x86_pmu.max_period = x86_pmu.cntval_mask >> 1; x86_pmu.perfctr = MSR_IA32_PMC0; pr_cont("full-width counters, "); } /* Support V6+ MSR Aliasing */ if (x86_pmu.version >= 6) { x86_pmu.perfctr = MSR_IA32_PMC_V6_GP0_CTR; x86_pmu.eventsel = MSR_IA32_PMC_V6_GP0_CFG_A; x86_pmu.fixedctr = MSR_IA32_PMC_V6_FX0_CTR; x86_pmu.addr_offset = intel_pmu_v6_addr_offset; } if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics) x86_pmu.intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS; if (x86_pmu.intel_cap.pebs_timing_info) x86_pmu.flags |= PMU_FL_RETIRE_LATENCY; intel_aux_output_init(); return 0; } /* * HT bug: phase 2 init * Called once we have valid topology information to check * whether or not HT is enabled * If HT is off, then we disable the workaround */ static __init int fixup_ht_bug(void) { int c; /* * problem not present on this CPU model, nothing to do */ if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED)) return 0; if (topology_max_smt_threads() > 1) { pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n"); return 0; } cpus_read_lock(); hardlockup_detector_perf_stop(); x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED); x86_pmu.start_scheduling = NULL; x86_pmu.commit_scheduling = NULL; x86_pmu.stop_scheduling = NULL; hardlockup_detector_perf_restart(); for_each_online_cpu(c) free_excl_cntrs(&per_cpu(cpu_hw_events, c)); cpus_read_unlock(); pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n"); return 0; } subsys_initcall(fixup_ht_bug)