/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_EXTABLE_H #define _ASM_X86_EXTABLE_H #include /* * The exception table consists of two addresses relative to the * exception table entry itself and a type selector field. * * The first address is of an instruction that is allowed to fault, the * second is the target at which the program should continue. * * The type entry is used by fixup_exception() to select the handler to * deal with the fault caused by the instruction in the first field. * * All the routines below use bits of fixup code that are out of line * with the main instruction path. This means when everything is well, * we don't even have to jump over them. Further, they do not intrude * on our cache or tlb entries. */ struct exception_table_entry { int insn, fixup, data; }; struct pt_regs; #define ARCH_HAS_RELATIVE_EXTABLE #define swap_ex_entry_fixup(a, b, tmp, delta) \ do { \ (a)->fixup = (b)->fixup + (delta); \ (b)->fixup = (tmp).fixup - (delta); \ (a)->data = (b)->data; \ (b)->data = (tmp).data; \ } while (0) extern int fixup_exception(struct pt_regs *regs, int trapnr, unsigned long error_code, unsigned long fault_addr); extern int ex_get_fixup_type(unsigned long ip); extern void early_fixup_exception(struct pt_regs *regs, int trapnr); #ifdef CONFIG_X86_MCE extern void __noreturn ex_handler_msr_mce(struct pt_regs *regs, bool wrmsr); #else static inline void __noreturn ex_handler_msr_mce(struct pt_regs *regs, bool wrmsr) { for (;;) cpu_relax(); } #endif #if defined(CONFIG_BPF_JIT) && defined(CONFIG_X86_64) bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs); #else static inline bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs) { return false; } #endif #endif