// SPDX-License-Identifier: GPL-2.0-only /* * AMD CPU Microcode Update Driver for Linux * * This driver allows to upgrade microcode on F10h AMD * CPUs and later. * * Copyright (C) 2008-2011 Advanced Micro Devices Inc. * 2013-2018 Borislav Petkov * * Author: Peter Oruba * * Based on work by: * Tigran Aivazian * * early loader: * Copyright (C) 2013 Advanced Micro Devices, Inc. * * Author: Jacob Shin * Fixes: Borislav Petkov */ #define pr_fmt(fmt) "microcode: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include "internal.h" struct ucode_patch { struct list_head plist; void *data; unsigned int size; u32 patch_id; u16 equiv_cpu; }; static LIST_HEAD(microcode_cache); #define UCODE_MAGIC 0x00414d44 #define UCODE_EQUIV_CPU_TABLE_TYPE 0x00000000 #define UCODE_UCODE_TYPE 0x00000001 #define SECTION_HDR_SIZE 8 #define CONTAINER_HDR_SZ 12 struct equiv_cpu_entry { u32 installed_cpu; u32 fixed_errata_mask; u32 fixed_errata_compare; u16 equiv_cpu; u16 res; } __packed; struct microcode_header_amd { u32 data_code; u32 patch_id; u16 mc_patch_data_id; u8 mc_patch_data_len; u8 init_flag; u32 mc_patch_data_checksum; u32 nb_dev_id; u32 sb_dev_id; u16 processor_rev_id; u8 nb_rev_id; u8 sb_rev_id; u8 bios_api_rev; u8 reserved1[3]; u32 match_reg[8]; } __packed; struct microcode_amd { struct microcode_header_amd hdr; unsigned int mpb[]; }; static struct equiv_cpu_table { unsigned int num_entries; struct equiv_cpu_entry *entry; } equiv_table; union zen_patch_rev { struct { __u32 rev : 8, stepping : 4, model : 4, __reserved : 4, ext_model : 4, ext_fam : 8; }; __u32 ucode_rev; }; union cpuid_1_eax { struct { __u32 stepping : 4, model : 4, family : 4, __reserved0 : 4, ext_model : 4, ext_fam : 8, __reserved1 : 4; }; __u32 full; }; /* * This points to the current valid container of microcode patches which we will * save from the initrd/builtin before jettisoning its contents. @mc is the * microcode patch we found to match. */ struct cont_desc { struct microcode_amd *mc; u32 psize; u8 *data; size_t size; }; /* * Microcode patch container file is prepended to the initrd in cpio * format. See Documentation/arch/x86/microcode.rst */ static const char ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin"; /* * This is CPUID(1).EAX on the BSP. It is used in two ways: * * 1. To ignore the equivalence table on Zen1 and newer. * * 2. To match which patches to load because the patch revision ID * already contains the f/m/s for which the microcode is destined * for. */ static u32 bsp_cpuid_1_eax __ro_after_init; static union cpuid_1_eax ucode_rev_to_cpuid(unsigned int val) { union zen_patch_rev p; union cpuid_1_eax c; p.ucode_rev = val; c.full = 0; c.stepping = p.stepping; c.model = p.model; c.ext_model = p.ext_model; c.family = 0xf; c.ext_fam = p.ext_fam; return c; } static u16 find_equiv_id(struct equiv_cpu_table *et, u32 sig) { unsigned int i; /* Zen and newer do not need an equivalence table. */ if (x86_family(bsp_cpuid_1_eax) >= 0x17) return 0; if (!et || !et->num_entries) return 0; for (i = 0; i < et->num_entries; i++) { struct equiv_cpu_entry *e = &et->entry[i]; if (sig == e->installed_cpu) return e->equiv_cpu; } return 0; } /* * Check whether there is a valid microcode container file at the beginning * of @buf of size @buf_size. */ static bool verify_container(const u8 *buf, size_t buf_size) { u32 cont_magic; if (buf_size <= CONTAINER_HDR_SZ) { pr_debug("Truncated microcode container header.\n"); return false; } cont_magic = *(const u32 *)buf; if (cont_magic != UCODE_MAGIC) { pr_debug("Invalid magic value (0x%08x).\n", cont_magic); return false; } return true; } /* * Check whether there is a valid, non-truncated CPU equivalence table at the * beginning of @buf of size @buf_size. */ static bool verify_equivalence_table(const u8 *buf, size_t buf_size) { const u32 *hdr = (const u32 *)buf; u32 cont_type, equiv_tbl_len; if (!verify_container(buf, buf_size)) return false; /* Zen and newer do not need an equivalence table. */ if (x86_family(bsp_cpuid_1_eax) >= 0x17) return true; cont_type = hdr[1]; if (cont_type != UCODE_EQUIV_CPU_TABLE_TYPE) { pr_debug("Wrong microcode container equivalence table type: %u.\n", cont_type); return false; } buf_size -= CONTAINER_HDR_SZ; equiv_tbl_len = hdr[2]; if (equiv_tbl_len < sizeof(struct equiv_cpu_entry) || buf_size < equiv_tbl_len) { pr_debug("Truncated equivalence table.\n"); return false; } return true; } /* * Check whether there is a valid, non-truncated microcode patch section at the * beginning of @buf of size @buf_size. * * On success, @sh_psize returns the patch size according to the section header, * to the caller. */ static bool __verify_patch_section(const u8 *buf, size_t buf_size, u32 *sh_psize) { u32 p_type, p_size; const u32 *hdr; if (buf_size < SECTION_HDR_SIZE) { pr_debug("Truncated patch section.\n"); return false; } hdr = (const u32 *)buf; p_type = hdr[0]; p_size = hdr[1]; if (p_type != UCODE_UCODE_TYPE) { pr_debug("Invalid type field (0x%x) in container file section header.\n", p_type); return false; } if (p_size < sizeof(struct microcode_header_amd)) { pr_debug("Patch of size %u too short.\n", p_size); return false; } *sh_psize = p_size; return true; } /* * Check whether the passed remaining file @buf_size is large enough to contain * a patch of the indicated @sh_psize (and also whether this size does not * exceed the per-family maximum). @sh_psize is the size read from the section * header. */ static unsigned int __verify_patch_size(u32 sh_psize, size_t buf_size) { u8 family = x86_family(bsp_cpuid_1_eax); u32 max_size; if (family >= 0x15) return min_t(u32, sh_psize, buf_size); #define F1XH_MPB_MAX_SIZE 2048 #define F14H_MPB_MAX_SIZE 1824 switch (family) { case 0x10 ... 0x12: max_size = F1XH_MPB_MAX_SIZE; break; case 0x14: max_size = F14H_MPB_MAX_SIZE; break; default: WARN(1, "%s: WTF family: 0x%x\n", __func__, family); return 0; } if (sh_psize > min_t(u32, buf_size, max_size)) return 0; return sh_psize; } /* * Verify the patch in @buf. * * Returns: * negative: on error * positive: patch is not for this family, skip it * 0: success */ static int verify_patch(const u8 *buf, size_t buf_size, u32 *patch_size) { u8 family = x86_family(bsp_cpuid_1_eax); struct microcode_header_amd *mc_hdr; unsigned int ret; u32 sh_psize; u16 proc_id; u8 patch_fam; if (!__verify_patch_section(buf, buf_size, &sh_psize)) return -1; /* * The section header length is not included in this indicated size * but is present in the leftover file length so we need to subtract * it before passing this value to the function below. */ buf_size -= SECTION_HDR_SIZE; /* * Check if the remaining buffer is big enough to contain a patch of * size sh_psize, as the section claims. */ if (buf_size < sh_psize) { pr_debug("Patch of size %u truncated.\n", sh_psize); return -1; } ret = __verify_patch_size(sh_psize, buf_size); if (!ret) { pr_debug("Per-family patch size mismatch.\n"); return -1; } *patch_size = sh_psize; mc_hdr = (struct microcode_header_amd *)(buf + SECTION_HDR_SIZE); if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) { pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n", mc_hdr->patch_id); return -1; } proc_id = mc_hdr->processor_rev_id; patch_fam = 0xf + (proc_id >> 12); if (patch_fam != family) return 1; return 0; } static bool mc_patch_matches(struct microcode_amd *mc, u16 eq_id) { /* Zen and newer do not need an equivalence table. */ if (x86_family(bsp_cpuid_1_eax) >= 0x17) return ucode_rev_to_cpuid(mc->hdr.patch_id).full == bsp_cpuid_1_eax; else return eq_id == mc->hdr.processor_rev_id; } /* * This scans the ucode blob for the proper container as we can have multiple * containers glued together. Returns the equivalence ID from the equivalence * table or 0 if none found. * Returns the amount of bytes consumed while scanning. @desc contains all the * data we're going to use in later stages of the application. */ static size_t parse_container(u8 *ucode, size_t size, struct cont_desc *desc) { struct equiv_cpu_table table; size_t orig_size = size; u32 *hdr = (u32 *)ucode; u16 eq_id; u8 *buf; if (!verify_equivalence_table(ucode, size)) return 0; buf = ucode; table.entry = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ); table.num_entries = hdr[2] / sizeof(struct equiv_cpu_entry); /* * Find the equivalence ID of our CPU in this table. Even if this table * doesn't contain a patch for the CPU, scan through the whole container * so that it can be skipped in case there are other containers appended. */ eq_id = find_equiv_id(&table, bsp_cpuid_1_eax); buf += hdr[2] + CONTAINER_HDR_SZ; size -= hdr[2] + CONTAINER_HDR_SZ; /* * Scan through the rest of the container to find where it ends. We do * some basic sanity-checking too. */ while (size > 0) { struct microcode_amd *mc; u32 patch_size; int ret; ret = verify_patch(buf, size, &patch_size); if (ret < 0) { /* * Patch verification failed, skip to the next container, if * there is one. Before exit, check whether that container has * found a patch already. If so, use it. */ goto out; } else if (ret > 0) { goto skip; } mc = (struct microcode_amd *)(buf + SECTION_HDR_SIZE); if (mc_patch_matches(mc, eq_id)) { desc->psize = patch_size; desc->mc = mc; } skip: /* Skip patch section header too: */ buf += patch_size + SECTION_HDR_SIZE; size -= patch_size + SECTION_HDR_SIZE; } out: /* * If we have found a patch (desc->mc), it means we're looking at the * container which has a patch for this CPU so return 0 to mean, @ucode * already points to the proper container. Otherwise, we return the size * we scanned so that we can advance to the next container in the * buffer. */ if (desc->mc) { desc->data = ucode; desc->size = orig_size - size; return 0; } return orig_size - size; } /* * Scan the ucode blob for the proper container as we can have multiple * containers glued together. */ static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc) { while (size) { size_t s = parse_container(ucode, size, desc); if (!s) return; /* catch wraparound */ if (size >= s) { ucode += s; size -= s; } else { return; } } } static int __apply_microcode_amd(struct microcode_amd *mc, unsigned int psize) { unsigned long p_addr = (unsigned long)&mc->hdr.data_code; u32 rev, dummy; native_wrmsrl(MSR_AMD64_PATCH_LOADER, p_addr); if (x86_family(bsp_cpuid_1_eax) == 0x17) { unsigned long p_addr_end = p_addr + psize - 1; invlpg(p_addr); /* * Flush next page too if patch image is crossing a page * boundary. */ if (p_addr >> PAGE_SHIFT != p_addr_end >> PAGE_SHIFT) invlpg(p_addr_end); } /* verify patch application was successful */ native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy); if (rev != mc->hdr.patch_id) return -1; return 0; } /* * Early load occurs before we can vmalloc(). So we look for the microcode * patch container file in initrd, traverse equivalent cpu table, look for a * matching microcode patch, and update, all in initrd memory in place. * When vmalloc() is available for use later -- on 64-bit during first AP load, * and on 32-bit during save_microcode_in_initrd_amd() -- we can call * load_microcode_amd() to save equivalent cpu table and microcode patches in * kernel heap memory. * * Returns true if container found (sets @desc), false otherwise. */ static bool early_apply_microcode(u32 old_rev, void *ucode, size_t size) { struct cont_desc desc = { 0 }; struct microcode_amd *mc; bool ret = false; scan_containers(ucode, size, &desc); mc = desc.mc; if (!mc) return ret; /* * Allow application of the same revision to pick up SMT-specific * changes even if the revision of the other SMT thread is already * up-to-date. */ if (old_rev > mc->hdr.patch_id) return ret; return !__apply_microcode_amd(mc, desc.psize); } static bool get_builtin_microcode(struct cpio_data *cp) { char fw_name[36] = "amd-ucode/microcode_amd.bin"; u8 family = x86_family(bsp_cpuid_1_eax); struct firmware fw; if (IS_ENABLED(CONFIG_X86_32)) return false; if (family >= 0x15) snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%02hhxh.bin", family); if (firmware_request_builtin(&fw, fw_name)) { cp->size = fw.size; cp->data = (void *)fw.data; return true; } return false; } static void __init find_blobs_in_containers(struct cpio_data *ret) { struct cpio_data cp; if (!get_builtin_microcode(&cp)) cp = find_microcode_in_initrd(ucode_path); *ret = cp; } void __init load_ucode_amd_bsp(struct early_load_data *ed, unsigned int cpuid_1_eax) { struct cpio_data cp = { }; u32 dummy; bsp_cpuid_1_eax = cpuid_1_eax; native_rdmsr(MSR_AMD64_PATCH_LEVEL, ed->old_rev, dummy); /* Needed in load_microcode_amd() */ ucode_cpu_info[0].cpu_sig.sig = cpuid_1_eax; find_blobs_in_containers(&cp); if (!(cp.data && cp.size)) return; if (early_apply_microcode(ed->old_rev, cp.data, cp.size)) native_rdmsr(MSR_AMD64_PATCH_LEVEL, ed->new_rev, dummy); } static enum ucode_state _load_microcode_amd(u8 family, const u8 *data, size_t size); static int __init save_microcode_in_initrd(void) { unsigned int cpuid_1_eax = native_cpuid_eax(1); struct cpuinfo_x86 *c = &boot_cpu_data; struct cont_desc desc = { 0 }; enum ucode_state ret; struct cpio_data cp; if (dis_ucode_ldr || c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) return 0; find_blobs_in_containers(&cp); if (!(cp.data && cp.size)) return -EINVAL; scan_containers(cp.data, cp.size, &desc); if (!desc.mc) return -EINVAL; ret = _load_microcode_amd(x86_family(cpuid_1_eax), desc.data, desc.size); if (ret > UCODE_UPDATED) return -EINVAL; return 0; } early_initcall(save_microcode_in_initrd); static inline bool patch_cpus_equivalent(struct ucode_patch *p, struct ucode_patch *n, bool ignore_stepping) { /* Zen and newer hardcode the f/m/s in the patch ID */ if (x86_family(bsp_cpuid_1_eax) >= 0x17) { union cpuid_1_eax p_cid = ucode_rev_to_cpuid(p->patch_id); union cpuid_1_eax n_cid = ucode_rev_to_cpuid(n->patch_id); if (ignore_stepping) { p_cid.stepping = 0; n_cid.stepping = 0; } return p_cid.full == n_cid.full; } else { return p->equiv_cpu == n->equiv_cpu; } } /* * a small, trivial cache of per-family ucode patches */ static struct ucode_patch *cache_find_patch(struct ucode_cpu_info *uci, u16 equiv_cpu) { struct ucode_patch *p; struct ucode_patch n; n.equiv_cpu = equiv_cpu; n.patch_id = uci->cpu_sig.rev; WARN_ON_ONCE(!n.patch_id); list_for_each_entry(p, µcode_cache, plist) if (patch_cpus_equivalent(p, &n, false)) return p; return NULL; } static inline int patch_newer(struct ucode_patch *p, struct ucode_patch *n) { /* Zen and newer hardcode the f/m/s in the patch ID */ if (x86_family(bsp_cpuid_1_eax) >= 0x17) { union zen_patch_rev zp, zn; zp.ucode_rev = p->patch_id; zn.ucode_rev = n->patch_id; if (zn.stepping != zp.stepping) return -1; return zn.rev > zp.rev; } else { return n->patch_id > p->patch_id; } } static void update_cache(struct ucode_patch *new_patch) { struct ucode_patch *p; int ret; list_for_each_entry(p, µcode_cache, plist) { if (patch_cpus_equivalent(p, new_patch, true)) { ret = patch_newer(p, new_patch); if (ret < 0) continue; else if (!ret) { /* we already have the latest patch */ kfree(new_patch->data); kfree(new_patch); return; } list_replace(&p->plist, &new_patch->plist); kfree(p->data); kfree(p); return; } } /* no patch found, add it */ list_add_tail(&new_patch->plist, µcode_cache); } static void free_cache(void) { struct ucode_patch *p, *tmp; list_for_each_entry_safe(p, tmp, µcode_cache, plist) { __list_del(p->plist.prev, p->plist.next); kfree(p->data); kfree(p); } } static struct ucode_patch *find_patch(unsigned int cpu) { struct ucode_cpu_info *uci = ucode_cpu_info + cpu; u32 rev, dummy __always_unused; u16 equiv_id = 0; /* fetch rev if not populated yet: */ if (!uci->cpu_sig.rev) { rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy); uci->cpu_sig.rev = rev; } if (x86_family(bsp_cpuid_1_eax) < 0x17) { equiv_id = find_equiv_id(&equiv_table, uci->cpu_sig.sig); if (!equiv_id) return NULL; } return cache_find_patch(uci, equiv_id); } void reload_ucode_amd(unsigned int cpu) { u32 rev, dummy __always_unused; struct microcode_amd *mc; struct ucode_patch *p; p = find_patch(cpu); if (!p) return; mc = p->data; rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy); if (rev < mc->hdr.patch_id) { if (!__apply_microcode_amd(mc, p->size)) pr_info_once("reload revision: 0x%08x\n", mc->hdr.patch_id); } } static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig) { struct cpuinfo_x86 *c = &cpu_data(cpu); struct ucode_cpu_info *uci = ucode_cpu_info + cpu; struct ucode_patch *p; csig->sig = cpuid_eax(0x00000001); csig->rev = c->microcode; /* * a patch could have been loaded early, set uci->mc so that * mc_bp_resume() can call apply_microcode() */ p = find_patch(cpu); if (p && (p->patch_id == csig->rev)) uci->mc = p->data; return 0; } static enum ucode_state apply_microcode_amd(int cpu) { struct cpuinfo_x86 *c = &cpu_data(cpu); struct microcode_amd *mc_amd; struct ucode_cpu_info *uci; struct ucode_patch *p; enum ucode_state ret; u32 rev; BUG_ON(raw_smp_processor_id() != cpu); uci = ucode_cpu_info + cpu; p = find_patch(cpu); if (!p) return UCODE_NFOUND; rev = uci->cpu_sig.rev; mc_amd = p->data; uci->mc = p->data; /* need to apply patch? */ if (rev > mc_amd->hdr.patch_id) { ret = UCODE_OK; goto out; } if (__apply_microcode_amd(mc_amd, p->size)) { pr_err("CPU%d: update failed for patch_level=0x%08x\n", cpu, mc_amd->hdr.patch_id); return UCODE_ERROR; } rev = mc_amd->hdr.patch_id; ret = UCODE_UPDATED; out: uci->cpu_sig.rev = rev; c->microcode = rev; /* Update boot_cpu_data's revision too, if we're on the BSP: */ if (c->cpu_index == boot_cpu_data.cpu_index) boot_cpu_data.microcode = rev; return ret; } void load_ucode_amd_ap(unsigned int cpuid_1_eax) { unsigned int cpu = smp_processor_id(); ucode_cpu_info[cpu].cpu_sig.sig = cpuid_1_eax; apply_microcode_amd(cpu); } static size_t install_equiv_cpu_table(const u8 *buf, size_t buf_size) { u32 equiv_tbl_len; const u32 *hdr; if (!verify_equivalence_table(buf, buf_size)) return 0; hdr = (const u32 *)buf; equiv_tbl_len = hdr[2]; /* Zen and newer do not need an equivalence table. */ if (x86_family(bsp_cpuid_1_eax) >= 0x17) goto out; equiv_table.entry = vmalloc(equiv_tbl_len); if (!equiv_table.entry) { pr_err("failed to allocate equivalent CPU table\n"); return 0; } memcpy(equiv_table.entry, buf + CONTAINER_HDR_SZ, equiv_tbl_len); equiv_table.num_entries = equiv_tbl_len / sizeof(struct equiv_cpu_entry); out: /* add header length */ return equiv_tbl_len + CONTAINER_HDR_SZ; } static void free_equiv_cpu_table(void) { if (x86_family(bsp_cpuid_1_eax) >= 0x17) return; vfree(equiv_table.entry); memset(&equiv_table, 0, sizeof(equiv_table)); } static void cleanup(void) { free_equiv_cpu_table(); free_cache(); } /* * Return a non-negative value even if some of the checks failed so that * we can skip over the next patch. If we return a negative value, we * signal a grave error like a memory allocation has failed and the * driver cannot continue functioning normally. In such cases, we tear * down everything we've used up so far and exit. */ static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover, unsigned int *patch_size) { struct microcode_header_amd *mc_hdr; struct ucode_patch *patch; u16 proc_id; int ret; ret = verify_patch(fw, leftover, patch_size); if (ret) return ret; patch = kzalloc(sizeof(*patch), GFP_KERNEL); if (!patch) { pr_err("Patch allocation failure.\n"); return -EINVAL; } patch->data = kmemdup(fw + SECTION_HDR_SIZE, *patch_size, GFP_KERNEL); if (!patch->data) { pr_err("Patch data allocation failure.\n"); kfree(patch); return -EINVAL; } patch->size = *patch_size; mc_hdr = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE); proc_id = mc_hdr->processor_rev_id; INIT_LIST_HEAD(&patch->plist); patch->patch_id = mc_hdr->patch_id; patch->equiv_cpu = proc_id; pr_debug("%s: Adding patch_id: 0x%08x, proc_id: 0x%04x\n", __func__, patch->patch_id, proc_id); /* ... and add to cache. */ update_cache(patch); return 0; } /* Scan the blob in @data and add microcode patches to the cache. */ static enum ucode_state __load_microcode_amd(u8 family, const u8 *data, size_t size) { u8 *fw = (u8 *)data; size_t offset; offset = install_equiv_cpu_table(data, size); if (!offset) return UCODE_ERROR; fw += offset; size -= offset; if (*(u32 *)fw != UCODE_UCODE_TYPE) { pr_err("invalid type field in container file section header\n"); free_equiv_cpu_table(); return UCODE_ERROR; } while (size > 0) { unsigned int crnt_size = 0; int ret; ret = verify_and_add_patch(family, fw, size, &crnt_size); if (ret < 0) return UCODE_ERROR; fw += crnt_size + SECTION_HDR_SIZE; size -= (crnt_size + SECTION_HDR_SIZE); } return UCODE_OK; } static enum ucode_state _load_microcode_amd(u8 family, const u8 *data, size_t size) { enum ucode_state ret; /* free old equiv table */ free_equiv_cpu_table(); ret = __load_microcode_amd(family, data, size); if (ret != UCODE_OK) cleanup(); return ret; } static enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t size) { struct cpuinfo_x86 *c; unsigned int nid, cpu; struct ucode_patch *p; enum ucode_state ret; ret = _load_microcode_amd(family, data, size); if (ret != UCODE_OK) return ret; for_each_node(nid) { cpu = cpumask_first(cpumask_of_node(nid)); c = &cpu_data(cpu); p = find_patch(cpu); if (!p) continue; if (c->microcode >= p->patch_id) continue; ret = UCODE_NEW; } return ret; } /* * AMD microcode firmware naming convention, up to family 15h they are in * the legacy file: * * amd-ucode/microcode_amd.bin * * This legacy file is always smaller than 2K in size. * * Beginning with family 15h, they are in family-specific firmware files: * * amd-ucode/microcode_amd_fam15h.bin * amd-ucode/microcode_amd_fam16h.bin * ... * * These might be larger than 2K. */ static enum ucode_state request_microcode_amd(int cpu, struct device *device) { char fw_name[36] = "amd-ucode/microcode_amd.bin"; struct cpuinfo_x86 *c = &cpu_data(cpu); enum ucode_state ret = UCODE_NFOUND; const struct firmware *fw; if (force_minrev) return UCODE_NFOUND; if (c->x86 >= 0x15) snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86); if (request_firmware_direct(&fw, (const char *)fw_name, device)) { pr_debug("failed to load file %s\n", fw_name); goto out; } ret = UCODE_ERROR; if (!verify_container(fw->data, fw->size)) goto fw_release; ret = load_microcode_amd(c->x86, fw->data, fw->size); fw_release: release_firmware(fw); out: return ret; } static void microcode_fini_cpu_amd(int cpu) { struct ucode_cpu_info *uci = ucode_cpu_info + cpu; uci->mc = NULL; } static struct microcode_ops microcode_amd_ops = { .request_microcode_fw = request_microcode_amd, .collect_cpu_info = collect_cpu_info_amd, .apply_microcode = apply_microcode_amd, .microcode_fini_cpu = microcode_fini_cpu_amd, .nmi_safe = true, }; struct microcode_ops * __init init_amd_microcode(void) { struct cpuinfo_x86 *c = &boot_cpu_data; if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) { pr_warn("AMD CPU family 0x%x not supported\n", c->x86); return NULL; } return µcode_amd_ops; } void __exit exit_amd_microcode(void) { cleanup(); }