/* SPDX-License-Identifier: GPL-2.0 */ #ifndef ARCH_X86_KVM_CPUID_H #define ARCH_X86_KVM_CPUID_H #include "reverse_cpuid.h" #include #include #include extern u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly; void kvm_set_cpu_caps(void); void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu); void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu); struct kvm_cpuid_entry2 *kvm_find_cpuid_entry_index(struct kvm_vcpu *vcpu, u32 function, u32 index); struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu, u32 function); int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid, struct kvm_cpuid_entry2 __user *entries, unsigned int type); int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid *cpuid, struct kvm_cpuid_entry __user *entries); int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid, struct kvm_cpuid_entry2 __user *entries); int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid, struct kvm_cpuid_entry2 __user *entries); bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool exact_only); void __init kvm_init_xstate_sizes(void); u32 xstate_required_size(u64 xstate_bv, bool compacted); int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu); u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu); static inline int cpuid_maxphyaddr(struct kvm_vcpu *vcpu) { return vcpu->arch.maxphyaddr; } static inline bool kvm_vcpu_is_legal_gpa(struct kvm_vcpu *vcpu, gpa_t gpa) { return !(gpa & vcpu->arch.reserved_gpa_bits); } static inline bool kvm_vcpu_is_legal_aligned_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, gpa_t alignment) { return IS_ALIGNED(gpa, alignment) && kvm_vcpu_is_legal_gpa(vcpu, gpa); } static inline bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa) { return kvm_vcpu_is_legal_aligned_gpa(vcpu, gpa, PAGE_SIZE); } static __always_inline void cpuid_entry_override(struct kvm_cpuid_entry2 *entry, unsigned int leaf) { u32 *reg = cpuid_entry_get_reg(entry, leaf * 32); BUILD_BUG_ON(leaf >= ARRAY_SIZE(kvm_cpu_caps)); *reg = kvm_cpu_caps[leaf]; } static __always_inline bool guest_cpuid_has(struct kvm_vcpu *vcpu, unsigned int x86_feature) { const struct cpuid_reg cpuid = x86_feature_cpuid(x86_feature); struct kvm_cpuid_entry2 *entry; u32 *reg; /* * XSAVES is a special snowflake. Due to lack of a dedicated intercept * on SVM, KVM must assume that XSAVES (and thus XRSTORS) is usable by * the guest if the host supports XSAVES and *XSAVE* is exposed to the * guest. Because the guest can execute XSAVES and XRSTORS, i.e. can * indirectly consume XSS, KVM must ensure XSS is zeroed when running * the guest, i.e. must set XSAVES in vCPU capabilities. But to reject * direct XSS reads and writes (to minimize the virtualization hole and * honor userspace's CPUID), KVM needs to check the raw guest CPUID, * not KVM's view of guest capabilities. * * For all other features, guest capabilities are accurate. Expand * this allowlist with extreme vigilance. */ BUILD_BUG_ON(x86_feature != X86_FEATURE_XSAVES); entry = kvm_find_cpuid_entry_index(vcpu, cpuid.function, cpuid.index); if (!entry) return NULL; reg = __cpuid_entry_get_reg(entry, cpuid.reg); if (!reg) return false; return *reg & __feature_bit(x86_feature); } static inline bool guest_cpuid_is_amd_compatible(struct kvm_vcpu *vcpu) { return vcpu->arch.is_amd_compatible; } static inline bool guest_cpuid_is_intel_compatible(struct kvm_vcpu *vcpu) { return !guest_cpuid_is_amd_compatible(vcpu); } static inline int guest_cpuid_family(struct kvm_vcpu *vcpu) { struct kvm_cpuid_entry2 *best; best = kvm_find_cpuid_entry(vcpu, 0x1); if (!best) return -1; return x86_family(best->eax); } static inline int guest_cpuid_model(struct kvm_vcpu *vcpu) { struct kvm_cpuid_entry2 *best; best = kvm_find_cpuid_entry(vcpu, 0x1); if (!best) return -1; return x86_model(best->eax); } static inline bool cpuid_model_is_consistent(struct kvm_vcpu *vcpu) { return boot_cpu_data.x86_model == guest_cpuid_model(vcpu); } static inline int guest_cpuid_stepping(struct kvm_vcpu *vcpu) { struct kvm_cpuid_entry2 *best; best = kvm_find_cpuid_entry(vcpu, 0x1); if (!best) return -1; return x86_stepping(best->eax); } static inline bool supports_cpuid_fault(struct kvm_vcpu *vcpu) { return vcpu->arch.msr_platform_info & MSR_PLATFORM_INFO_CPUID_FAULT; } static inline bool cpuid_fault_enabled(struct kvm_vcpu *vcpu) { return vcpu->arch.msr_misc_features_enables & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT; } static __always_inline void kvm_cpu_cap_clear(unsigned int x86_feature) { unsigned int x86_leaf = __feature_leaf(x86_feature); kvm_cpu_caps[x86_leaf] &= ~__feature_bit(x86_feature); } static __always_inline void kvm_cpu_cap_set(unsigned int x86_feature) { unsigned int x86_leaf = __feature_leaf(x86_feature); kvm_cpu_caps[x86_leaf] |= __feature_bit(x86_feature); } static __always_inline u32 kvm_cpu_cap_get(unsigned int x86_feature) { unsigned int x86_leaf = __feature_leaf(x86_feature); return kvm_cpu_caps[x86_leaf] & __feature_bit(x86_feature); } static __always_inline bool kvm_cpu_cap_has(unsigned int x86_feature) { return !!kvm_cpu_cap_get(x86_feature); } static __always_inline void kvm_cpu_cap_check_and_set(unsigned int x86_feature) { if (boot_cpu_has(x86_feature)) kvm_cpu_cap_set(x86_feature); } static __always_inline bool guest_pv_has(struct kvm_vcpu *vcpu, unsigned int kvm_feature) { if (!vcpu->arch.pv_cpuid.enforce) return true; return vcpu->arch.pv_cpuid.features & (1u << kvm_feature); } static __always_inline void guest_cpu_cap_set(struct kvm_vcpu *vcpu, unsigned int x86_feature) { unsigned int x86_leaf = __feature_leaf(x86_feature); vcpu->arch.cpu_caps[x86_leaf] |= __feature_bit(x86_feature); } static __always_inline void guest_cpu_cap_clear(struct kvm_vcpu *vcpu, unsigned int x86_feature) { unsigned int x86_leaf = __feature_leaf(x86_feature); vcpu->arch.cpu_caps[x86_leaf] &= ~__feature_bit(x86_feature); } static __always_inline void guest_cpu_cap_change(struct kvm_vcpu *vcpu, unsigned int x86_feature, bool guest_has_cap) { if (guest_has_cap) guest_cpu_cap_set(vcpu, x86_feature); else guest_cpu_cap_clear(vcpu, x86_feature); } static __always_inline bool guest_cpu_cap_has(struct kvm_vcpu *vcpu, unsigned int x86_feature) { unsigned int x86_leaf = __feature_leaf(x86_feature); return vcpu->arch.cpu_caps[x86_leaf] & __feature_bit(x86_feature); } static inline bool kvm_vcpu_is_legal_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) { if (guest_cpu_cap_has(vcpu, X86_FEATURE_LAM)) cr3 &= ~(X86_CR3_LAM_U48 | X86_CR3_LAM_U57); return kvm_vcpu_is_legal_gpa(vcpu, cr3); } static inline bool guest_has_spec_ctrl_msr(struct kvm_vcpu *vcpu) { return (guest_cpu_cap_has(vcpu, X86_FEATURE_SPEC_CTRL) || guest_cpu_cap_has(vcpu, X86_FEATURE_AMD_STIBP) || guest_cpu_cap_has(vcpu, X86_FEATURE_AMD_IBRS) || guest_cpu_cap_has(vcpu, X86_FEATURE_AMD_SSBD)); } static inline bool guest_has_pred_cmd_msr(struct kvm_vcpu *vcpu) { return (guest_cpu_cap_has(vcpu, X86_FEATURE_SPEC_CTRL) || guest_cpu_cap_has(vcpu, X86_FEATURE_AMD_IBPB) || guest_cpu_cap_has(vcpu, X86_FEATURE_SBPB)); } #endif