/* SPDX-License-Identifier: GPL-2.0-only */ /* * Kernel-based Virtual Machine driver for Linux * * This module enables machines with Intel VT-x extensions to run virtual * machines without emulation or binary translation. * * MMU support * * Copyright (C) 2006 Qumranet, Inc. * Copyright 2010 Red Hat, Inc. and/or its affiliates. * * Authors: * Yaniv Kamay * Avi Kivity */ /* * The MMU needs to be able to access/walk 32-bit and 64-bit guest page tables, * as well as guest EPT tables, so the code in this file is compiled thrice, * once per guest PTE type. The per-type defines are #undef'd at the end. */ #if PTTYPE == 64 #define pt_element_t u64 #define guest_walker guest_walker64 #define FNAME(name) paging##64_##name #define PT_LEVEL_BITS 9 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT #define PT_HAVE_ACCESSED_DIRTY(mmu) true #ifdef CONFIG_X86_64 #define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL #else #define PT_MAX_FULL_LEVELS 2 #endif #elif PTTYPE == 32 #define pt_element_t u32 #define guest_walker guest_walker32 #define FNAME(name) paging##32_##name #define PT_LEVEL_BITS 10 #define PT_MAX_FULL_LEVELS 2 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT #define PT_HAVE_ACCESSED_DIRTY(mmu) true #define PT32_DIR_PSE36_SIZE 4 #define PT32_DIR_PSE36_SHIFT 13 #define PT32_DIR_PSE36_MASK \ (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT) #elif PTTYPE == PTTYPE_EPT #define pt_element_t u64 #define guest_walker guest_walkerEPT #define FNAME(name) ept_##name #define PT_LEVEL_BITS 9 #define PT_GUEST_DIRTY_SHIFT 9 #define PT_GUEST_ACCESSED_SHIFT 8 #define PT_HAVE_ACCESSED_DIRTY(mmu) (!(mmu)->cpu_role.base.ad_disabled) #define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL #else #error Invalid PTTYPE value #endif /* Common logic, but per-type values. These also need to be undefined. */ #define PT_BASE_ADDR_MASK ((pt_element_t)__PT_BASE_ADDR_MASK) #define PT_LVL_ADDR_MASK(lvl) __PT_LVL_ADDR_MASK(PT_BASE_ADDR_MASK, lvl, PT_LEVEL_BITS) #define PT_LVL_OFFSET_MASK(lvl) __PT_LVL_OFFSET_MASK(PT_BASE_ADDR_MASK, lvl, PT_LEVEL_BITS) #define PT_INDEX(addr, lvl) __PT_INDEX(addr, lvl, PT_LEVEL_BITS) #define PT_GUEST_DIRTY_MASK (1 << PT_GUEST_DIRTY_SHIFT) #define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT) #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl) #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PG_LEVEL_4K) /* * The guest_walker structure emulates the behavior of the hardware page * table walker. */ struct guest_walker { int level; unsigned max_level; gfn_t table_gfn[PT_MAX_FULL_LEVELS]; pt_element_t ptes[PT_MAX_FULL_LEVELS]; pt_element_t prefetch_ptes[PTE_PREFETCH_NUM]; gpa_t pte_gpa[PT_MAX_FULL_LEVELS]; pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS]; bool pte_writable[PT_MAX_FULL_LEVELS]; unsigned int pt_access[PT_MAX_FULL_LEVELS]; unsigned int pte_access; gfn_t gfn; struct x86_exception fault; }; #if PTTYPE == 32 static inline gfn_t pse36_gfn_delta(u32 gpte) { int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT; return (gpte & PT32_DIR_PSE36_MASK) << shift; } #endif static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl) { return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT; } static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access, unsigned gpte) { unsigned mask; /* dirty bit is not supported, so no need to track it */ if (!PT_HAVE_ACCESSED_DIRTY(mmu)) return; BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK); mask = (unsigned)~ACC_WRITE_MASK; /* Allow write access to dirty gptes */ mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & PT_WRITABLE_MASK; *access &= mask; } static inline int FNAME(is_present_gpte)(unsigned long pte) { #if PTTYPE != PTTYPE_EPT return pte & PT_PRESENT_MASK; #else return pte & 7; #endif } static bool FNAME(is_bad_mt_xwr)(struct rsvd_bits_validate *rsvd_check, u64 gpte) { #if PTTYPE != PTTYPE_EPT return false; #else return __is_bad_mt_xwr(rsvd_check, gpte); #endif } static bool FNAME(is_rsvd_bits_set)(struct kvm_mmu *mmu, u64 gpte, int level) { return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level) || FNAME(is_bad_mt_xwr)(&mmu->guest_rsvd_check, gpte); } static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, u64 *spte, u64 gpte) { if (!FNAME(is_present_gpte)(gpte)) goto no_present; /* Prefetch only accessed entries (unless A/D bits are disabled). */ if (PT_HAVE_ACCESSED_DIRTY(vcpu->arch.mmu) && !(gpte & PT_GUEST_ACCESSED_MASK)) goto no_present; if (FNAME(is_rsvd_bits_set)(vcpu->arch.mmu, gpte, PG_LEVEL_4K)) goto no_present; return false; no_present: drop_spte(vcpu->kvm, spte); return true; } /* * For PTTYPE_EPT, a page table can be executable but not readable * on supported processors. Therefore, set_spte does not automatically * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK * to signify readability since it isn't used in the EPT case */ static inline unsigned FNAME(gpte_access)(u64 gpte) { unsigned access; #if PTTYPE == PTTYPE_EPT access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) | ((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) | ((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0); #else BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK); BUILD_BUG_ON(ACC_EXEC_MASK != 1); access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK); /* Combine NX with P (which is set here) to get ACC_EXEC_MASK. */ access ^= (gpte >> PT64_NX_SHIFT); #endif return access; } static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, struct guest_walker *walker, gpa_t addr, int write_fault) { unsigned level, index; pt_element_t pte, orig_pte; pt_element_t __user *ptep_user; gfn_t table_gfn; int ret; /* dirty/accessed bits are not supported, so no need to update them */ if (!PT_HAVE_ACCESSED_DIRTY(mmu)) return 0; for (level = walker->max_level; level >= walker->level; --level) { pte = orig_pte = walker->ptes[level - 1]; table_gfn = walker->table_gfn[level - 1]; ptep_user = walker->ptep_user[level - 1]; index = offset_in_page(ptep_user) / sizeof(pt_element_t); if (!(pte & PT_GUEST_ACCESSED_MASK)) { trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte)); pte |= PT_GUEST_ACCESSED_MASK; } if (level == walker->level && write_fault && !(pte & PT_GUEST_DIRTY_MASK)) { trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte)); #if PTTYPE == PTTYPE_EPT if (kvm_x86_ops.nested_ops->write_log_dirty(vcpu, addr)) return -EINVAL; #endif pte |= PT_GUEST_DIRTY_MASK; } if (pte == orig_pte) continue; /* * If the slot is read-only, simply do not process the accessed * and dirty bits. This is the correct thing to do if the slot * is ROM, and page tables in read-as-ROM/write-as-MMIO slots * are only supported if the accessed and dirty bits are already * set in the ROM (so that MMIO writes are never needed). * * Note that NPT does not allow this at all and faults, since * it always wants nested page table entries for the guest * page tables to be writable. And EPT works but will simply * overwrite the read-only memory to set the accessed and dirty * bits. */ if (unlikely(!walker->pte_writable[level - 1])) continue; ret = __try_cmpxchg_user(ptep_user, &orig_pte, pte, fault); if (ret) return ret; kvm_vcpu_mark_page_dirty(vcpu, table_gfn); walker->ptes[level - 1] = pte; } return 0; } static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte) { unsigned pkeys = 0; #if PTTYPE == 64 pte_t pte = {.pte = gpte}; pkeys = pte_flags_pkey(pte_flags(pte)); #endif return pkeys; } static inline bool FNAME(is_last_gpte)(struct kvm_mmu *mmu, unsigned int level, unsigned int gpte) { /* * For EPT and PAE paging (both variants), bit 7 is either reserved at * all level or indicates a huge page (ignoring CR3/EPTP). In either * case, bit 7 being set terminates the walk. */ #if PTTYPE == 32 /* * 32-bit paging requires special handling because bit 7 is ignored if * CR4.PSE=0, not reserved. Clear bit 7 in the gpte if the level is * greater than the last level for which bit 7 is the PAGE_SIZE bit. * * The RHS has bit 7 set iff level < (2 + PSE). If it is clear, bit 7 * is not reserved and does not indicate a large page at this level, * so clear PT_PAGE_SIZE_MASK in gpte if that is the case. */ gpte &= level - (PT32_ROOT_LEVEL + mmu->cpu_role.ext.cr4_pse); #endif /* * PG_LEVEL_4K always terminates. The RHS has bit 7 set * iff level <= PG_LEVEL_4K, which for our purpose means * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then. */ gpte |= level - PG_LEVEL_4K - 1; return gpte & PT_PAGE_SIZE_MASK; } /* * Fetch a guest pte for a guest virtual address, or for an L2's GPA. */ static int FNAME(walk_addr_generic)(struct guest_walker *walker, struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, gpa_t addr, u64 access) { int ret; pt_element_t pte; pt_element_t __user *ptep_user; gfn_t table_gfn; u64 pt_access, pte_access; unsigned index, accessed_dirty, pte_pkey; u64 nested_access; gpa_t pte_gpa; bool have_ad; int offset; u64 walk_nx_mask = 0; const int write_fault = access & PFERR_WRITE_MASK; const int user_fault = access & PFERR_USER_MASK; const int fetch_fault = access & PFERR_FETCH_MASK; u16 errcode = 0; gpa_t real_gpa; gfn_t gfn; trace_kvm_mmu_pagetable_walk(addr, access); retry_walk: walker->level = mmu->cpu_role.base.level; pte = kvm_mmu_get_guest_pgd(vcpu, mmu); have_ad = PT_HAVE_ACCESSED_DIRTY(mmu); #if PTTYPE == 64 walk_nx_mask = 1ULL << PT64_NX_SHIFT; if (walker->level == PT32E_ROOT_LEVEL) { pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3); trace_kvm_mmu_paging_element(pte, walker->level); if (!FNAME(is_present_gpte)(pte)) goto error; --walker->level; } #endif walker->max_level = walker->level; /* * FIXME: on Intel processors, loads of the PDPTE registers for PAE paging * by the MOV to CR instruction are treated as reads and do not cause the * processor to set the dirty flag in any EPT paging-structure entry. */ nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK; pte_access = ~0; /* * Queue a page fault for injection if this assertion fails, as callers * assume that walker.fault contains sane info on a walk failure. I.e. * avoid making the situation worse by inducing even worse badness * between when the assertion fails and when KVM kicks the vCPU out to * userspace (because the VM is bugged). */ if (KVM_BUG_ON(is_long_mode(vcpu) && !is_pae(vcpu), vcpu->kvm)) goto error; ++walker->level; do { struct kvm_memory_slot *slot; unsigned long host_addr; pt_access = pte_access; --walker->level; index = PT_INDEX(addr, walker->level); table_gfn = gpte_to_gfn(pte); offset = index * sizeof(pt_element_t); pte_gpa = gfn_to_gpa(table_gfn) + offset; BUG_ON(walker->level < 1); walker->table_gfn[walker->level - 1] = table_gfn; walker->pte_gpa[walker->level - 1] = pte_gpa; real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(table_gfn), nested_access, &walker->fault); /* * FIXME: This can happen if emulation (for of an INS/OUTS * instruction) triggers a nested page fault. The exit * qualification / exit info field will incorrectly have * "guest page access" as the nested page fault's cause, * instead of "guest page structure access". To fix this, * the x86_exception struct should be augmented with enough * information to fix the exit_qualification or exit_info_1 * fields. */ if (unlikely(real_gpa == INVALID_GPA)) return 0; slot = kvm_vcpu_gfn_to_memslot(vcpu, gpa_to_gfn(real_gpa)); if (!kvm_is_visible_memslot(slot)) goto error; host_addr = gfn_to_hva_memslot_prot(slot, gpa_to_gfn(real_gpa), &walker->pte_writable[walker->level - 1]); if (unlikely(kvm_is_error_hva(host_addr))) goto error; ptep_user = (pt_element_t __user *)((void *)host_addr + offset); if (unlikely(__get_user(pte, ptep_user))) goto error; walker->ptep_user[walker->level - 1] = ptep_user; trace_kvm_mmu_paging_element(pte, walker->level); /* * Inverting the NX it lets us AND it like other * permission bits. */ pte_access = pt_access & (pte ^ walk_nx_mask); if (unlikely(!FNAME(is_present_gpte)(pte))) goto error; if (unlikely(FNAME(is_rsvd_bits_set)(mmu, pte, walker->level))) { errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK; goto error; } walker->ptes[walker->level - 1] = pte; /* Convert to ACC_*_MASK flags for struct guest_walker. */ walker->pt_access[walker->level - 1] = FNAME(gpte_access)(pt_access ^ walk_nx_mask); } while (!FNAME(is_last_gpte)(mmu, walker->level, pte)); pte_pkey = FNAME(gpte_pkeys)(vcpu, pte); accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0; /* Convert to ACC_*_MASK flags for struct guest_walker. */ walker->pte_access = FNAME(gpte_access)(pte_access ^ walk_nx_mask); errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access); if (unlikely(errcode)) goto error; gfn = gpte_to_gfn_lvl(pte, walker->level); gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT; #if PTTYPE == 32 if (walker->level > PG_LEVEL_4K && is_cpuid_PSE36()) gfn += pse36_gfn_delta(pte); #endif real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(gfn), access, &walker->fault); if (real_gpa == INVALID_GPA) return 0; walker->gfn = real_gpa >> PAGE_SHIFT; if (!write_fault) FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte); else /* * On a write fault, fold the dirty bit into accessed_dirty. * For modes without A/D bits support accessed_dirty will be * always clear. */ accessed_dirty &= pte >> (PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT); if (unlikely(!accessed_dirty)) { ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, addr, write_fault); if (unlikely(ret < 0)) goto error; else if (ret) goto retry_walk; } return 1; error: errcode |= write_fault | user_fault; if (fetch_fault && (is_efer_nx(mmu) || is_cr4_smep(mmu))) errcode |= PFERR_FETCH_MASK; walker->fault.vector = PF_VECTOR; walker->fault.error_code_valid = true; walker->fault.error_code = errcode; #if PTTYPE == PTTYPE_EPT /* * Use PFERR_RSVD_MASK in error_code to tell if EPT * misconfiguration requires to be injected. The detection is * done by is_rsvd_bits_set() above. * * We set up the value of exit_qualification to inject: * [2:0] - Derive from the access bits. The exit_qualification might be * out of date if it is serving an EPT misconfiguration. * [5:3] - Calculated by the page walk of the guest EPT page tables * [7:8] - Derived from [7:8] of real exit_qualification * * The other bits are set to 0. */ if (!(errcode & PFERR_RSVD_MASK)) { walker->fault.exit_qualification = 0; if (write_fault) walker->fault.exit_qualification |= EPT_VIOLATION_ACC_WRITE; if (user_fault) walker->fault.exit_qualification |= EPT_VIOLATION_ACC_READ; if (fetch_fault) walker->fault.exit_qualification |= EPT_VIOLATION_ACC_INSTR; /* * Note, pte_access holds the raw RWX bits from the EPTE, not * ACC_*_MASK flags! */ walker->fault.exit_qualification |= (pte_access & VMX_EPT_RWX_MASK) << EPT_VIOLATION_RWX_SHIFT; } #endif walker->fault.address = addr; walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu; walker->fault.async_page_fault = false; trace_kvm_mmu_walker_error(walker->fault.error_code); return 0; } static int FNAME(walk_addr)(struct guest_walker *walker, struct kvm_vcpu *vcpu, gpa_t addr, u64 access) { return FNAME(walk_addr_generic)(walker, vcpu, vcpu->arch.mmu, addr, access); } static bool FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, u64 *spte, pt_element_t gpte) { unsigned pte_access; gfn_t gfn; if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte)) return false; gfn = gpte_to_gfn(gpte); pte_access = sp->role.access & FNAME(gpte_access)(gpte); FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte); return kvm_mmu_prefetch_sptes(vcpu, gfn, spte, 1, pte_access); } static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu, struct guest_walker *gw, int level) { pt_element_t curr_pte; gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1]; u64 mask; int r, index; if (level == PG_LEVEL_4K) { mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1; base_gpa = pte_gpa & ~mask; index = (pte_gpa - base_gpa) / sizeof(pt_element_t); r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa, gw->prefetch_ptes, sizeof(gw->prefetch_ptes)); curr_pte = gw->prefetch_ptes[index]; } else r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &curr_pte, sizeof(curr_pte)); return r || curr_pte != gw->ptes[level - 1]; } static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw, u64 *sptep) { struct kvm_mmu_page *sp; pt_element_t *gptep = gw->prefetch_ptes; u64 *spte; int i; sp = sptep_to_sp(sptep); if (sp->role.level > PG_LEVEL_4K) return; /* * If addresses are being invalidated, skip prefetching to avoid * accidentally prefetching those addresses. */ if (unlikely(vcpu->kvm->mmu_invalidate_in_progress)) return; if (sp->role.direct) return __direct_pte_prefetch(vcpu, sp, sptep); i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1); spte = sp->spt + i; for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { if (spte == sptep) continue; if (is_shadow_present_pte(*spte)) continue; if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i])) break; } } /* * Fetch a shadow pte for a specific level in the paging hierarchy. * If the guest tries to write a write-protected page, we need to * emulate this operation, return 1 to indicate this case. */ static int FNAME(fetch)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, struct guest_walker *gw) { struct kvm_mmu_page *sp = NULL; struct kvm_shadow_walk_iterator it; unsigned int direct_access, access; int top_level, ret; gfn_t base_gfn = fault->gfn; WARN_ON_ONCE(gw->gfn != base_gfn); direct_access = gw->pte_access; top_level = vcpu->arch.mmu->cpu_role.base.level; if (top_level == PT32E_ROOT_LEVEL) top_level = PT32_ROOT_LEVEL; /* * Verify that the top-level gpte is still there. Since the page * is a root page, it is either write protected (and cannot be * changed from now on) or it is invalid (in which case, we don't * really care if it changes underneath us after this point). */ if (FNAME(gpte_changed)(vcpu, gw, top_level)) return RET_PF_RETRY; if (WARN_ON_ONCE(!VALID_PAGE(vcpu->arch.mmu->root.hpa))) return RET_PF_RETRY; /* * Load a new root and retry the faulting instruction in the extremely * unlikely scenario that the guest root gfn became visible between * loading a dummy root and handling the resulting page fault, e.g. if * userspace create a memslot in the interim. */ if (unlikely(kvm_mmu_is_dummy_root(vcpu->arch.mmu->root.hpa))) { kvm_make_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu); return RET_PF_RETRY; } for_each_shadow_entry(vcpu, fault->addr, it) { gfn_t table_gfn; clear_sp_write_flooding_count(it.sptep); if (it.level == gw->level) break; table_gfn = gw->table_gfn[it.level - 2]; access = gw->pt_access[it.level - 2]; sp = kvm_mmu_get_child_sp(vcpu, it.sptep, table_gfn, false, access); /* * Synchronize the new page before linking it, as the CPU (KVM) * is architecturally disallowed from inserting non-present * entries into the TLB, i.e. the guest isn't required to flush * the TLB when changing the gPTE from non-present to present. * * For PG_LEVEL_4K, kvm_mmu_find_shadow_page() has already * synchronized the page via kvm_sync_page(). * * For higher level pages, which cannot be unsync themselves * but can have unsync children, synchronize via the slower * mmu_sync_children(). If KVM needs to drop mmu_lock due to * contention or to reschedule, instruct the caller to retry * the #PF (mmu_sync_children() ensures forward progress will * be made). */ if (sp != ERR_PTR(-EEXIST) && sp->unsync_children && mmu_sync_children(vcpu, sp, false)) return RET_PF_RETRY; /* * Verify that the gpte in the page, which is now either * write-protected or unsync, wasn't modified between the fault * and acquiring mmu_lock. This needs to be done even when * reusing an existing shadow page to ensure the information * gathered by the walker matches the information stored in the * shadow page (which could have been modified by a different * vCPU even if the page was already linked). Holding mmu_lock * prevents the shadow page from changing after this point. */ if (FNAME(gpte_changed)(vcpu, gw, it.level - 1)) return RET_PF_RETRY; if (sp != ERR_PTR(-EEXIST)) link_shadow_page(vcpu, it.sptep, sp); if (fault->write && table_gfn == fault->gfn) fault->write_fault_to_shadow_pgtable = true; } /* * Adjust the hugepage size _after_ resolving indirect shadow pages. * KVM doesn't support mapping hugepages into the guest for gfns that * are being shadowed by KVM, i.e. allocating a new shadow page may * affect the allowed hugepage size. */ kvm_mmu_hugepage_adjust(vcpu, fault); trace_kvm_mmu_spte_requested(fault); for (; shadow_walk_okay(&it); shadow_walk_next(&it)) { /* * We cannot overwrite existing page tables with an NX * large page, as the leaf could be executable. */ if (fault->nx_huge_page_workaround_enabled) disallowed_hugepage_adjust(fault, *it.sptep, it.level); base_gfn = gfn_round_for_level(fault->gfn, it.level); if (it.level == fault->goal_level) break; validate_direct_spte(vcpu, it.sptep, direct_access); sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, true, direct_access); if (sp == ERR_PTR(-EEXIST)) continue; link_shadow_page(vcpu, it.sptep, sp); if (fault->huge_page_disallowed) account_nx_huge_page(vcpu->kvm, sp, fault->req_level >= it.level); } if (WARN_ON_ONCE(it.level != fault->goal_level)) return -EFAULT; ret = mmu_set_spte(vcpu, fault->slot, it.sptep, gw->pte_access, base_gfn, fault->pfn, fault); if (ret == RET_PF_SPURIOUS) return ret; FNAME(pte_prefetch)(vcpu, gw, it.sptep); return ret; } /* * Page fault handler. There are several causes for a page fault: * - there is no shadow pte for the guest pte * - write access through a shadow pte marked read only so that we can set * the dirty bit * - write access to a shadow pte marked read only so we can update the page * dirty bitmap, when userspace requests it * - mmio access; in this case we will never install a present shadow pte * - normal guest page fault due to the guest pte marked not present, not * writable, or not executable * * Returns: 1 if we need to emulate the instruction, 0 otherwise, or * a negative value on error. */ static int FNAME(page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) { struct guest_walker walker; int r; WARN_ON_ONCE(fault->is_tdp); /* * Look up the guest pte for the faulting address. * If PFEC.RSVD is set, this is a shadow page fault. * The bit needs to be cleared before walking guest page tables. */ r = FNAME(walk_addr)(&walker, vcpu, fault->addr, fault->error_code & ~PFERR_RSVD_MASK); /* * The page is not mapped by the guest. Let the guest handle it. */ if (!r) { if (!fault->prefetch) kvm_inject_emulated_page_fault(vcpu, &walker.fault); return RET_PF_RETRY; } fault->gfn = walker.gfn; fault->max_level = walker.level; fault->slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn); if (page_fault_handle_page_track(vcpu, fault)) { shadow_page_table_clear_flood(vcpu, fault->addr); return RET_PF_WRITE_PROTECTED; } r = mmu_topup_memory_caches(vcpu, true); if (r) return r; r = kvm_mmu_faultin_pfn(vcpu, fault, walker.pte_access); if (r != RET_PF_CONTINUE) return r; /* * Do not change pte_access if the pfn is a mmio page, otherwise * we will cache the incorrect access into mmio spte. */ if (fault->write && !(walker.pte_access & ACC_WRITE_MASK) && !is_cr0_wp(vcpu->arch.mmu) && !fault->user && fault->slot) { walker.pte_access |= ACC_WRITE_MASK; walker.pte_access &= ~ACC_USER_MASK; /* * If we converted a user page to a kernel page, * so that the kernel can write to it when cr0.wp=0, * then we should prevent the kernel from executing it * if SMEP is enabled. */ if (is_cr4_smep(vcpu->arch.mmu)) walker.pte_access &= ~ACC_EXEC_MASK; } r = RET_PF_RETRY; write_lock(&vcpu->kvm->mmu_lock); if (is_page_fault_stale(vcpu, fault)) goto out_unlock; r = make_mmu_pages_available(vcpu); if (r) goto out_unlock; r = FNAME(fetch)(vcpu, fault, &walker); out_unlock: kvm_mmu_finish_page_fault(vcpu, fault, r); write_unlock(&vcpu->kvm->mmu_lock); return r; } static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp) { int offset = 0; WARN_ON_ONCE(sp->role.level != PG_LEVEL_4K); if (PTTYPE == 32) offset = sp->role.quadrant << SPTE_LEVEL_BITS; return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t); } /* Note, @addr is a GPA when gva_to_gpa() translates an L2 GPA to an L1 GPA. */ static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, gpa_t addr, u64 access, struct x86_exception *exception) { struct guest_walker walker; gpa_t gpa = INVALID_GPA; int r; #ifndef CONFIG_X86_64 /* A 64-bit GVA should be impossible on 32-bit KVM. */ WARN_ON_ONCE((addr >> 32) && mmu == vcpu->arch.walk_mmu); #endif r = FNAME(walk_addr_generic)(&walker, vcpu, mmu, addr, access); if (r) { gpa = gfn_to_gpa(walker.gfn); gpa |= addr & ~PAGE_MASK; } else if (exception) *exception = walker.fault; return gpa; } /* * Using the information in sp->shadowed_translation (kvm_mmu_page_get_gfn()) is * safe because SPTEs are protected by mmu_notifiers and memslot generations, so * the pfn for a given gfn can't change unless all SPTEs pointing to the gfn are * nuked first. * * Returns * < 0: failed to sync spte * 0: the spte is synced and no tlb flushing is required * > 0: the spte is synced and tlb flushing is required */ static int FNAME(sync_spte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, int i) { bool host_writable; gpa_t first_pte_gpa; u64 *sptep, spte; struct kvm_memory_slot *slot; unsigned pte_access; pt_element_t gpte; gpa_t pte_gpa; gfn_t gfn; if (WARN_ON_ONCE(sp->spt[i] == SHADOW_NONPRESENT_VALUE || !sp->shadowed_translation)) return 0; first_pte_gpa = FNAME(get_level1_sp_gpa)(sp); pte_gpa = first_pte_gpa + i * sizeof(pt_element_t); if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte, sizeof(pt_element_t))) return -1; if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) return 1; gfn = gpte_to_gfn(gpte); pte_access = sp->role.access; pte_access &= FNAME(gpte_access)(gpte); FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte); if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access)) return 0; /* * Drop the SPTE if the new protections result in no effective * "present" bit or if the gfn is changing. The former case * only affects EPT with execute-only support with pte_access==0; * all other paging modes will create a read-only SPTE if * pte_access is zero. */ if ((pte_access | shadow_present_mask) == SHADOW_NONPRESENT_VALUE || gfn != kvm_mmu_page_get_gfn(sp, i)) { drop_spte(vcpu->kvm, &sp->spt[i]); return 1; } /* * Do nothing if the permissions are unchanged. The existing SPTE is * still, and prefetch_invalid_gpte() has verified that the A/D bits * are set in the "new" gPTE, i.e. there is no danger of missing an A/D * update due to A/D bits being set in the SPTE but not the gPTE. */ if (kvm_mmu_page_get_access(sp, i) == pte_access) return 0; /* Update the shadowed access bits in case they changed. */ kvm_mmu_page_set_access(sp, i, pte_access); sptep = &sp->spt[i]; spte = *sptep; host_writable = spte & shadow_host_writable_mask; slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); make_spte(vcpu, sp, slot, pte_access, gfn, spte_to_pfn(spte), spte, true, true, host_writable, &spte); /* * There is no need to mark the pfn dirty, as the new protections must * be a subset of the old protections, i.e. synchronizing a SPTE cannot * change the SPTE from read-only to writable. */ return mmu_spte_update(sptep, spte); } #undef pt_element_t #undef guest_walker #undef FNAME #undef PT_BASE_ADDR_MASK #undef PT_INDEX #undef PT_LVL_ADDR_MASK #undef PT_LVL_OFFSET_MASK #undef PT_LEVEL_BITS #undef PT_MAX_FULL_LEVELS #undef gpte_to_gfn #undef gpte_to_gfn_lvl #undef PT_GUEST_ACCESSED_MASK #undef PT_GUEST_DIRTY_MASK #undef PT_GUEST_DIRTY_SHIFT #undef PT_GUEST_ACCESSED_SHIFT #undef PT_HAVE_ACCESSED_DIRTY