/* SPDX-License-Identifier: GPL-2.0 */ #ifndef ARCH_X86_KVM_X86_H #define ARCH_X86_KVM_X86_H #include #include #include #include #include "kvm_cache_regs.h" #include "kvm_emulate.h" #include "cpuid.h" struct kvm_caps { /* control of guest tsc rate supported? */ bool has_tsc_control; /* maximum supported tsc_khz for guests */ u32 max_guest_tsc_khz; /* number of bits of the fractional part of the TSC scaling ratio */ u8 tsc_scaling_ratio_frac_bits; /* maximum allowed value of TSC scaling ratio */ u64 max_tsc_scaling_ratio; /* 1ull << kvm_caps.tsc_scaling_ratio_frac_bits */ u64 default_tsc_scaling_ratio; /* bus lock detection supported? */ bool has_bus_lock_exit; /* notify VM exit supported? */ bool has_notify_vmexit; /* bit mask of VM types */ u32 supported_vm_types; u64 supported_mce_cap; u64 supported_xcr0; u64 supported_xss; u64 supported_perf_cap; }; struct kvm_host_values { /* * The host's raw MAXPHYADDR, i.e. the number of non-reserved physical * address bits irrespective of features that repurpose legal bits, * e.g. MKTME. */ u8 maxphyaddr; u64 efer; u64 xcr0; u64 xss; u64 arch_capabilities; }; void kvm_spurious_fault(void); #define KVM_NESTED_VMENTER_CONSISTENCY_CHECK(consistency_check) \ ({ \ bool failed = (consistency_check); \ if (failed) \ trace_kvm_nested_vmenter_failed(#consistency_check, 0); \ failed; \ }) /* * The first...last VMX feature MSRs that are emulated by KVM. This may or may * not cover all known VMX MSRs, as KVM doesn't emulate an MSR until there's an * associated feature that KVM supports for nested virtualization. */ #define KVM_FIRST_EMULATED_VMX_MSR MSR_IA32_VMX_BASIC #define KVM_LAST_EMULATED_VMX_MSR MSR_IA32_VMX_VMFUNC #define KVM_DEFAULT_PLE_GAP 128 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096 #define KVM_DEFAULT_PLE_WINDOW_GROW 2 #define KVM_DEFAULT_PLE_WINDOW_SHRINK 0 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX UINT_MAX #define KVM_SVM_DEFAULT_PLE_WINDOW_MAX USHRT_MAX #define KVM_SVM_DEFAULT_PLE_WINDOW 3000 static inline unsigned int __grow_ple_window(unsigned int val, unsigned int base, unsigned int modifier, unsigned int max) { u64 ret = val; if (modifier < 1) return base; if (modifier < base) ret *= modifier; else ret += modifier; return min(ret, (u64)max); } static inline unsigned int __shrink_ple_window(unsigned int val, unsigned int base, unsigned int modifier, unsigned int min) { if (modifier < 1) return base; if (modifier < base) val /= modifier; else val -= modifier; return max(val, min); } #define MSR_IA32_CR_PAT_DEFAULT \ PAT_VALUE(WB, WT, UC_MINUS, UC, WB, WT, UC_MINUS, UC) void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu); int kvm_check_nested_events(struct kvm_vcpu *vcpu); /* Forcibly leave the nested mode in cases like a vCPU reset */ static inline void kvm_leave_nested(struct kvm_vcpu *vcpu) { kvm_x86_ops.nested_ops->leave_nested(vcpu); } static inline bool kvm_vcpu_has_run(struct kvm_vcpu *vcpu) { return vcpu->arch.last_vmentry_cpu != -1; } static inline bool kvm_is_exception_pending(struct kvm_vcpu *vcpu) { return vcpu->arch.exception.pending || vcpu->arch.exception_vmexit.pending || kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu); } static inline void kvm_clear_exception_queue(struct kvm_vcpu *vcpu) { vcpu->arch.exception.pending = false; vcpu->arch.exception.injected = false; vcpu->arch.exception_vmexit.pending = false; } static inline void kvm_queue_interrupt(struct kvm_vcpu *vcpu, u8 vector, bool soft) { vcpu->arch.interrupt.injected = true; vcpu->arch.interrupt.soft = soft; vcpu->arch.interrupt.nr = vector; } static inline void kvm_clear_interrupt_queue(struct kvm_vcpu *vcpu) { vcpu->arch.interrupt.injected = false; } static inline bool kvm_event_needs_reinjection(struct kvm_vcpu *vcpu) { return vcpu->arch.exception.injected || vcpu->arch.interrupt.injected || vcpu->arch.nmi_injected; } static inline bool kvm_exception_is_soft(unsigned int nr) { return (nr == BP_VECTOR) || (nr == OF_VECTOR); } static inline bool is_protmode(struct kvm_vcpu *vcpu) { return kvm_is_cr0_bit_set(vcpu, X86_CR0_PE); } static inline bool is_long_mode(struct kvm_vcpu *vcpu) { #ifdef CONFIG_X86_64 return !!(vcpu->arch.efer & EFER_LMA); #else return false; #endif } static inline bool is_64_bit_mode(struct kvm_vcpu *vcpu) { int cs_db, cs_l; WARN_ON_ONCE(vcpu->arch.guest_state_protected); if (!is_long_mode(vcpu)) return false; kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); return cs_l; } static inline bool is_64_bit_hypercall(struct kvm_vcpu *vcpu) { /* * If running with protected guest state, the CS register is not * accessible. The hypercall register values will have had to been * provided in 64-bit mode, so assume the guest is in 64-bit. */ return vcpu->arch.guest_state_protected || is_64_bit_mode(vcpu); } static inline bool x86_exception_has_error_code(unsigned int vector) { static u32 exception_has_error_code = BIT(DF_VECTOR) | BIT(TS_VECTOR) | BIT(NP_VECTOR) | BIT(SS_VECTOR) | BIT(GP_VECTOR) | BIT(PF_VECTOR) | BIT(AC_VECTOR); return (1U << vector) & exception_has_error_code; } static inline bool mmu_is_nested(struct kvm_vcpu *vcpu) { return vcpu->arch.walk_mmu == &vcpu->arch.nested_mmu; } static inline bool is_pae(struct kvm_vcpu *vcpu) { return kvm_is_cr4_bit_set(vcpu, X86_CR4_PAE); } static inline bool is_pse(struct kvm_vcpu *vcpu) { return kvm_is_cr4_bit_set(vcpu, X86_CR4_PSE); } static inline bool is_paging(struct kvm_vcpu *vcpu) { return likely(kvm_is_cr0_bit_set(vcpu, X86_CR0_PG)); } static inline bool is_pae_paging(struct kvm_vcpu *vcpu) { return !is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu); } static inline u8 vcpu_virt_addr_bits(struct kvm_vcpu *vcpu) { return kvm_is_cr4_bit_set(vcpu, X86_CR4_LA57) ? 57 : 48; } static inline u8 max_host_virt_addr_bits(void) { return kvm_cpu_cap_has(X86_FEATURE_LA57) ? 57 : 48; } /* * x86 MSRs which contain linear addresses, x86 hidden segment bases, and * IDT/GDT bases have static canonicality checks, the size of which depends * only on the CPU's support for 5-level paging, rather than on the state of * CR4.LA57. This applies to both WRMSR and to other instructions that set * their values, e.g. SGDT. * * KVM passes through most of these MSRS and also doesn't intercept the * instructions that set the hidden segment bases. * * Because of this, to be consistent with hardware, even if the guest doesn't * have LA57 enabled in its CPUID, perform canonicality checks based on *host* * support for 5 level paging. * * Finally, instructions which are related to MMU invalidation of a given * linear address, also have a similar static canonical check on address. * This allows for example to invalidate 5-level addresses of a guest from a * host which uses 4-level paging. */ static inline bool is_noncanonical_address(u64 la, struct kvm_vcpu *vcpu, unsigned int flags) { if (flags & (X86EMUL_F_INVLPG | X86EMUL_F_MSR | X86EMUL_F_DT_LOAD)) return !__is_canonical_address(la, max_host_virt_addr_bits()); else return !__is_canonical_address(la, vcpu_virt_addr_bits(vcpu)); } static inline bool is_noncanonical_msr_address(u64 la, struct kvm_vcpu *vcpu) { return is_noncanonical_address(la, vcpu, X86EMUL_F_MSR); } static inline bool is_noncanonical_base_address(u64 la, struct kvm_vcpu *vcpu) { return is_noncanonical_address(la, vcpu, X86EMUL_F_DT_LOAD); } static inline bool is_noncanonical_invlpg_address(u64 la, struct kvm_vcpu *vcpu) { return is_noncanonical_address(la, vcpu, X86EMUL_F_INVLPG); } static inline void vcpu_cache_mmio_info(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn, unsigned access) { u64 gen = kvm_memslots(vcpu->kvm)->generation; if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS)) return; /* * If this is a shadow nested page table, the "GVA" is * actually a nGPA. */ vcpu->arch.mmio_gva = mmu_is_nested(vcpu) ? 0 : gva & PAGE_MASK; vcpu->arch.mmio_access = access; vcpu->arch.mmio_gfn = gfn; vcpu->arch.mmio_gen = gen; } static inline bool vcpu_match_mmio_gen(struct kvm_vcpu *vcpu) { return vcpu->arch.mmio_gen == kvm_memslots(vcpu->kvm)->generation; } /* * Clear the mmio cache info for the given gva. If gva is MMIO_GVA_ANY, we * clear all mmio cache info. */ #define MMIO_GVA_ANY (~(gva_t)0) static inline void vcpu_clear_mmio_info(struct kvm_vcpu *vcpu, gva_t gva) { if (gva != MMIO_GVA_ANY && vcpu->arch.mmio_gva != (gva & PAGE_MASK)) return; vcpu->arch.mmio_gva = 0; } static inline bool vcpu_match_mmio_gva(struct kvm_vcpu *vcpu, unsigned long gva) { if (vcpu_match_mmio_gen(vcpu) && vcpu->arch.mmio_gva && vcpu->arch.mmio_gva == (gva & PAGE_MASK)) return true; return false; } static inline bool vcpu_match_mmio_gpa(struct kvm_vcpu *vcpu, gpa_t gpa) { if (vcpu_match_mmio_gen(vcpu) && vcpu->arch.mmio_gfn && vcpu->arch.mmio_gfn == gpa >> PAGE_SHIFT) return true; return false; } static inline unsigned long kvm_register_read(struct kvm_vcpu *vcpu, int reg) { unsigned long val = kvm_register_read_raw(vcpu, reg); return is_64_bit_mode(vcpu) ? val : (u32)val; } static inline void kvm_register_write(struct kvm_vcpu *vcpu, int reg, unsigned long val) { if (!is_64_bit_mode(vcpu)) val = (u32)val; return kvm_register_write_raw(vcpu, reg, val); } static inline bool kvm_check_has_quirk(struct kvm *kvm, u64 quirk) { return !(kvm->arch.disabled_quirks & quirk); } void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip); u64 get_kvmclock_ns(struct kvm *kvm); uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm); bool kvm_get_monotonic_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp); int kvm_read_guest_virt(struct kvm_vcpu *vcpu, gva_t addr, void *val, unsigned int bytes, struct x86_exception *exception); int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, unsigned int bytes, struct x86_exception *exception); int handle_ud(struct kvm_vcpu *vcpu); void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu, struct kvm_queued_exception *ex); int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data); int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata); bool kvm_vector_hashing_enabled(void); void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code); int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, void *insn, int insn_len); int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, int emulation_type, void *insn, int insn_len); fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu); fastpath_t handle_fastpath_hlt(struct kvm_vcpu *vcpu); extern struct kvm_caps kvm_caps; extern struct kvm_host_values kvm_host; extern bool enable_pmu; /* * Get a filtered version of KVM's supported XCR0 that strips out dynamic * features for which the current process doesn't (yet) have permission to use. * This is intended to be used only when enumerating support to userspace, * e.g. in KVM_GET_SUPPORTED_CPUID and KVM_CAP_XSAVE2, it does NOT need to be * used to check/restrict guest behavior as KVM rejects KVM_SET_CPUID{2} if * userspace attempts to enable unpermitted features. */ static inline u64 kvm_get_filtered_xcr0(void) { u64 permitted_xcr0 = kvm_caps.supported_xcr0; BUILD_BUG_ON(XFEATURE_MASK_USER_DYNAMIC != XFEATURE_MASK_XTILE_DATA); if (permitted_xcr0 & XFEATURE_MASK_USER_DYNAMIC) { permitted_xcr0 &= xstate_get_guest_group_perm(); /* * Treat XTILE_CFG as unsupported if the current process isn't * allowed to use XTILE_DATA, as attempting to set XTILE_CFG in * XCR0 without setting XTILE_DATA is architecturally illegal. */ if (!(permitted_xcr0 & XFEATURE_MASK_XTILE_DATA)) permitted_xcr0 &= ~XFEATURE_MASK_XTILE_CFG; } return permitted_xcr0; } static inline bool kvm_mpx_supported(void) { return (kvm_caps.supported_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR)) == (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR); } extern unsigned int min_timer_period_us; extern bool enable_vmware_backdoor; extern int pi_inject_timer; extern bool report_ignored_msrs; extern bool eager_page_split; static inline void kvm_pr_unimpl_wrmsr(struct kvm_vcpu *vcpu, u32 msr, u64 data) { if (report_ignored_msrs) vcpu_unimpl(vcpu, "Unhandled WRMSR(0x%x) = 0x%llx\n", msr, data); } static inline void kvm_pr_unimpl_rdmsr(struct kvm_vcpu *vcpu, u32 msr) { if (report_ignored_msrs) vcpu_unimpl(vcpu, "Unhandled RDMSR(0x%x)\n", msr); } static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec) { return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult, vcpu->arch.virtual_tsc_shift); } /* Same "calling convention" as do_div: * - divide (n << 32) by base * - put result in n * - return remainder */ #define do_shl32_div32(n, base) \ ({ \ u32 __quot, __rem; \ asm("divl %2" : "=a" (__quot), "=d" (__rem) \ : "rm" (base), "0" (0), "1" ((u32) n)); \ n = __quot; \ __rem; \ }) static inline bool kvm_mwait_in_guest(struct kvm *kvm) { return kvm->arch.mwait_in_guest; } static inline bool kvm_hlt_in_guest(struct kvm *kvm) { return kvm->arch.hlt_in_guest; } static inline bool kvm_pause_in_guest(struct kvm *kvm) { return kvm->arch.pause_in_guest; } static inline bool kvm_cstate_in_guest(struct kvm *kvm) { return kvm->arch.cstate_in_guest; } static inline bool kvm_notify_vmexit_enabled(struct kvm *kvm) { return kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_ENABLED; } static __always_inline void kvm_before_interrupt(struct kvm_vcpu *vcpu, enum kvm_intr_type intr) { WRITE_ONCE(vcpu->arch.handling_intr_from_guest, (u8)intr); } static __always_inline void kvm_after_interrupt(struct kvm_vcpu *vcpu) { WRITE_ONCE(vcpu->arch.handling_intr_from_guest, 0); } static inline bool kvm_handling_nmi_from_guest(struct kvm_vcpu *vcpu) { return vcpu->arch.handling_intr_from_guest == KVM_HANDLING_NMI; } static inline bool kvm_pat_valid(u64 data) { if (data & 0xF8F8F8F8F8F8F8F8ull) return false; /* 0, 1, 4, 5, 6, 7 are valid values. */ return (data | ((data & 0x0202020202020202ull) << 1)) == data; } static inline bool kvm_dr7_valid(u64 data) { /* Bits [63:32] are reserved */ return !(data >> 32); } static inline bool kvm_dr6_valid(u64 data) { /* Bits [63:32] are reserved */ return !(data >> 32); } /* * Trigger machine check on the host. We assume all the MSRs are already set up * by the CPU and that we still run on the same CPU as the MCE occurred on. * We pass a fake environment to the machine check handler because we want * the guest to be always treated like user space, no matter what context * it used internally. */ static inline void kvm_machine_check(void) { #if defined(CONFIG_X86_MCE) struct pt_regs regs = { .cs = 3, /* Fake ring 3 no matter what the guest ran on */ .flags = X86_EFLAGS_IF, }; do_machine_check(®s); #endif } void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu); void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu); int kvm_spec_ctrl_test_value(u64 value); bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, struct x86_exception *e); int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva); bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type); enum kvm_msr_access { MSR_TYPE_R = BIT(0), MSR_TYPE_W = BIT(1), MSR_TYPE_RW = MSR_TYPE_R | MSR_TYPE_W, }; /* * Internal error codes that are used to indicate that MSR emulation encountered * an error that should result in #GP in the guest, unless userspace handles it. * Note, '1', '0', and negative numbers are off limits, as they are used by KVM * as part of KVM's lightly documented internal KVM_RUN return codes. * * UNSUPPORTED - The MSR isn't supported, either because it is completely * unknown to KVM, or because the MSR should not exist according * to the vCPU model. * * FILTERED - Access to the MSR is denied by a userspace MSR filter. */ #define KVM_MSR_RET_UNSUPPORTED 2 #define KVM_MSR_RET_FILTERED 3 #define __cr4_reserved_bits(__cpu_has, __c) \ ({ \ u64 __reserved_bits = CR4_RESERVED_BITS; \ \ if (!__cpu_has(__c, X86_FEATURE_XSAVE)) \ __reserved_bits |= X86_CR4_OSXSAVE; \ if (!__cpu_has(__c, X86_FEATURE_SMEP)) \ __reserved_bits |= X86_CR4_SMEP; \ if (!__cpu_has(__c, X86_FEATURE_SMAP)) \ __reserved_bits |= X86_CR4_SMAP; \ if (!__cpu_has(__c, X86_FEATURE_FSGSBASE)) \ __reserved_bits |= X86_CR4_FSGSBASE; \ if (!__cpu_has(__c, X86_FEATURE_PKU)) \ __reserved_bits |= X86_CR4_PKE; \ if (!__cpu_has(__c, X86_FEATURE_LA57)) \ __reserved_bits |= X86_CR4_LA57; \ if (!__cpu_has(__c, X86_FEATURE_UMIP)) \ __reserved_bits |= X86_CR4_UMIP; \ if (!__cpu_has(__c, X86_FEATURE_VMX)) \ __reserved_bits |= X86_CR4_VMXE; \ if (!__cpu_has(__c, X86_FEATURE_PCID)) \ __reserved_bits |= X86_CR4_PCIDE; \ if (!__cpu_has(__c, X86_FEATURE_LAM)) \ __reserved_bits |= X86_CR4_LAM_SUP; \ __reserved_bits; \ }) int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t src, unsigned int bytes, void *dst); int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t src, unsigned int bytes, void *dst); int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, unsigned int port, void *data, unsigned int count, int in); #endif