// SPDX-License-Identifier: GPL-2.0 /* * This file implements KASLR memory randomization for x86_64. It randomizes * the virtual address space of kernel memory regions (physical memory * mapping, vmalloc & vmemmap) for x86_64. This security feature mitigates * exploits relying on predictable kernel addresses. * * Entropy is generated using the KASLR early boot functions now shared in * the lib directory (originally written by Kees Cook). Randomization is * done on PGD & P4D/PUD page table levels to increase possible addresses. * The physical memory mapping code was adapted to support P4D/PUD level * virtual addresses. This implementation on the best configuration provides * 30,000 possible virtual addresses in average for each memory region. * An additional low memory page is used to ensure each CPU can start with * a PGD aligned virtual address (for realmode). * * The order of each memory region is not changed. The feature looks at * the available space for the regions based on different configuration * options and randomizes the base and space between each. The size of the * physical memory mapping is the available physical memory. */ #include #include #include #include #include #include #include #include "mm_internal.h" #define TB_SHIFT 40 /* * The end address could depend on more configuration options to make the * highest amount of space for randomization available, but that's too hard * to keep straight and caused issues already. */ static const unsigned long vaddr_end = CPU_ENTRY_AREA_BASE; /* * Memory regions randomized by KASLR (except modules that use a separate logic * earlier during boot). The list is ordered based on virtual addresses. This * order is kept after randomization. */ static __initdata struct kaslr_memory_region { unsigned long *base; unsigned long *end; unsigned long size_tb; } kaslr_regions[] = { { .base = &page_offset_base, .end = &direct_map_physmem_end, }, { .base = &vmalloc_base, }, { .base = &vmemmap_base, }, }; /* * The end of the physical address space that can be mapped directly by the * kernel. This starts out at (1<size_tb << TB_SHIFT); } /* Initialize base and padding for each memory region randomized with KASLR */ void __init kernel_randomize_memory(void) { size_t i; unsigned long vaddr_start, vaddr; unsigned long rand, memory_tb; struct rnd_state rand_state; unsigned long remain_entropy; unsigned long vmemmap_size; vaddr_start = pgtable_l5_enabled() ? __PAGE_OFFSET_BASE_L5 : __PAGE_OFFSET_BASE_L4; vaddr = vaddr_start; /* * These BUILD_BUG_ON checks ensure the memory layout is consistent * with the vaddr_start/vaddr_end variables. These checks are very * limited.... */ BUILD_BUG_ON(vaddr_start >= vaddr_end); BUILD_BUG_ON(vaddr_end != CPU_ENTRY_AREA_BASE); BUILD_BUG_ON(vaddr_end > __START_KERNEL_map); /* Preset the end of the possible address space for physical memory */ direct_map_physmem_end = ((1ULL << MAX_PHYSMEM_BITS) - 1); if (!kaslr_memory_enabled()) return; kaslr_regions[0].size_tb = 1 << (MAX_PHYSMEM_BITS - TB_SHIFT); kaslr_regions[1].size_tb = VMALLOC_SIZE_TB; /* * Update Physical memory mapping to available and * add padding if needed (especially for memory hotplug support). */ BUG_ON(kaslr_regions[0].base != &page_offset_base); memory_tb = DIV_ROUND_UP(max_pfn << PAGE_SHIFT, 1UL << TB_SHIFT) + CONFIG_RANDOMIZE_MEMORY_PHYSICAL_PADDING; /* Adapt physical memory region size based on available memory */ if (memory_tb < kaslr_regions[0].size_tb) kaslr_regions[0].size_tb = memory_tb; /* * Calculate the vmemmap region size in TBs, aligned to a TB * boundary. */ vmemmap_size = (kaslr_regions[0].size_tb << (TB_SHIFT - PAGE_SHIFT)) * sizeof(struct page); kaslr_regions[2].size_tb = DIV_ROUND_UP(vmemmap_size, 1UL << TB_SHIFT); /* Calculate entropy available between regions */ remain_entropy = vaddr_end - vaddr_start; for (i = 0; i < ARRAY_SIZE(kaslr_regions); i++) remain_entropy -= get_padding(&kaslr_regions[i]); prandom_seed_state(&rand_state, kaslr_get_random_long("Memory")); for (i = 0; i < ARRAY_SIZE(kaslr_regions); i++) { unsigned long entropy; /* * Select a random virtual address using the extra entropy * available. */ entropy = remain_entropy / (ARRAY_SIZE(kaslr_regions) - i); prandom_bytes_state(&rand_state, &rand, sizeof(rand)); entropy = (rand % (entropy + 1)) & PUD_MASK; vaddr += entropy; *kaslr_regions[i].base = vaddr; /* Calculate the end of the region */ vaddr += get_padding(&kaslr_regions[i]); /* * KASLR trims the maximum possible size of the * direct-map. Update the direct_map_physmem_end boundary. * No rounding required as the region starts * PUD aligned and size is in units of TB. */ if (kaslr_regions[i].end) *kaslr_regions[i].end = __pa_nodebug(vaddr - 1); /* Add a minimum padding based on randomization alignment. */ vaddr = round_up(vaddr + 1, PUD_SIZE); remain_entropy -= entropy; } } void __meminit init_trampoline_kaslr(void) { pud_t *pud_page_tramp, *pud, *pud_tramp; p4d_t *p4d_page_tramp, *p4d, *p4d_tramp; unsigned long paddr, vaddr; pgd_t *pgd; pud_page_tramp = alloc_low_page(); /* * There are two mappings for the low 1MB area, the direct mapping * and the 1:1 mapping for the real mode trampoline: * * Direct mapping: virt_addr = phys_addr + PAGE_OFFSET * 1:1 mapping: virt_addr = phys_addr */ paddr = 0; vaddr = (unsigned long)__va(paddr); pgd = pgd_offset_k(vaddr); p4d = p4d_offset(pgd, vaddr); pud = pud_offset(p4d, vaddr); pud_tramp = pud_page_tramp + pud_index(paddr); *pud_tramp = *pud; if (pgtable_l5_enabled()) { p4d_page_tramp = alloc_low_page(); p4d_tramp = p4d_page_tramp + p4d_index(paddr); set_p4d(p4d_tramp, __p4d(_KERNPG_TABLE | __pa(pud_page_tramp))); trampoline_pgd_entry = __pgd(_KERNPG_TABLE | __pa(p4d_page_tramp)); } else { trampoline_pgd_entry = __pgd(_KERNPG_TABLE | __pa(pud_page_tramp)); } }