// SPDX-License-Identifier: GPL-2.0-only /* * AMD Memory Encryption Support * * Copyright (C) 2016-2024 Advanced Micro Devices, Inc. * * Author: Tom Lendacky */ #define DISABLE_BRANCH_PROFILING #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mm_internal.h" /* * Since SME related variables are set early in the boot process they must * reside in the .data section so as not to be zeroed out when the .bss * section is later cleared. */ u64 sme_me_mask __section(".data") = 0; u64 sev_status __section(".data") = 0; u64 sev_check_data __section(".data") = 0; EXPORT_SYMBOL(sme_me_mask); /* Buffer used for early in-place encryption by BSP, no locking needed */ static char sme_early_buffer[PAGE_SIZE] __initdata __aligned(PAGE_SIZE); /* * SNP-specific routine which needs to additionally change the page state from * private to shared before copying the data from the source to destination and * restore after the copy. */ static inline void __init snp_memcpy(void *dst, void *src, size_t sz, unsigned long paddr, bool decrypt) { unsigned long npages = PAGE_ALIGN(sz) >> PAGE_SHIFT; if (decrypt) { /* * @paddr needs to be accessed decrypted, mark the page shared in * the RMP table before copying it. */ early_snp_set_memory_shared((unsigned long)__va(paddr), paddr, npages); memcpy(dst, src, sz); /* Restore the page state after the memcpy. */ early_snp_set_memory_private((unsigned long)__va(paddr), paddr, npages); } else { /* * @paddr need to be accessed encrypted, no need for the page state * change. */ memcpy(dst, src, sz); } } /* * This routine does not change the underlying encryption setting of the * page(s) that map this memory. It assumes that eventually the memory is * meant to be accessed as either encrypted or decrypted but the contents * are currently not in the desired state. * * This routine follows the steps outlined in the AMD64 Architecture * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place. */ static void __init __sme_early_enc_dec(resource_size_t paddr, unsigned long size, bool enc) { void *src, *dst; size_t len; if (!sme_me_mask) return; wbinvd(); /* * There are limited number of early mapping slots, so map (at most) * one page at time. */ while (size) { len = min_t(size_t, sizeof(sme_early_buffer), size); /* * Create mappings for the current and desired format of * the memory. Use a write-protected mapping for the source. */ src = enc ? early_memremap_decrypted_wp(paddr, len) : early_memremap_encrypted_wp(paddr, len); dst = enc ? early_memremap_encrypted(paddr, len) : early_memremap_decrypted(paddr, len); /* * If a mapping can't be obtained to perform the operation, * then eventual access of that area in the desired mode * will cause a crash. */ BUG_ON(!src || !dst); /* * Use a temporary buffer, of cache-line multiple size, to * avoid data corruption as documented in the APM. */ if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) { snp_memcpy(sme_early_buffer, src, len, paddr, enc); snp_memcpy(dst, sme_early_buffer, len, paddr, !enc); } else { memcpy(sme_early_buffer, src, len); memcpy(dst, sme_early_buffer, len); } early_memunmap(dst, len); early_memunmap(src, len); paddr += len; size -= len; } } void __init sme_early_encrypt(resource_size_t paddr, unsigned long size) { __sme_early_enc_dec(paddr, size, true); } void __init sme_early_decrypt(resource_size_t paddr, unsigned long size) { __sme_early_enc_dec(paddr, size, false); } static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size, bool map) { unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET; pmdval_t pmd_flags, pmd; /* Use early_pmd_flags but remove the encryption mask */ pmd_flags = __sme_clr(early_pmd_flags); do { pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0; __early_make_pgtable((unsigned long)vaddr, pmd); vaddr += PMD_SIZE; paddr += PMD_SIZE; size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE; } while (size); flush_tlb_local(); } void __init sme_unmap_bootdata(char *real_mode_data) { struct boot_params *boot_data; unsigned long cmdline_paddr; if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) return; /* Get the command line address before unmapping the real_mode_data */ boot_data = (struct boot_params *)real_mode_data; cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32); __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false); if (!cmdline_paddr) return; __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false); } void __init sme_map_bootdata(char *real_mode_data) { struct boot_params *boot_data; unsigned long cmdline_paddr; if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) return; __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true); /* Get the command line address after mapping the real_mode_data */ boot_data = (struct boot_params *)real_mode_data; cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32); if (!cmdline_paddr) return; __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true); } static unsigned long pg_level_to_pfn(int level, pte_t *kpte, pgprot_t *ret_prot) { unsigned long pfn = 0; pgprot_t prot; switch (level) { case PG_LEVEL_4K: pfn = pte_pfn(*kpte); prot = pte_pgprot(*kpte); break; case PG_LEVEL_2M: pfn = pmd_pfn(*(pmd_t *)kpte); prot = pmd_pgprot(*(pmd_t *)kpte); break; case PG_LEVEL_1G: pfn = pud_pfn(*(pud_t *)kpte); prot = pud_pgprot(*(pud_t *)kpte); break; default: WARN_ONCE(1, "Invalid level for kpte\n"); return 0; } if (ret_prot) *ret_prot = prot; return pfn; } static bool amd_enc_tlb_flush_required(bool enc) { return true; } static bool amd_enc_cache_flush_required(void) { return !cpu_feature_enabled(X86_FEATURE_SME_COHERENT); } static void enc_dec_hypercall(unsigned long vaddr, unsigned long size, bool enc) { #ifdef CONFIG_PARAVIRT unsigned long vaddr_end = vaddr + size; while (vaddr < vaddr_end) { int psize, pmask, level; unsigned long pfn; pte_t *kpte; kpte = lookup_address(vaddr, &level); if (!kpte || pte_none(*kpte)) { WARN_ONCE(1, "kpte lookup for vaddr\n"); return; } pfn = pg_level_to_pfn(level, kpte, NULL); if (!pfn) continue; psize = page_level_size(level); pmask = page_level_mask(level); notify_page_enc_status_changed(pfn, psize >> PAGE_SHIFT, enc); vaddr = (vaddr & pmask) + psize; } #endif } static int amd_enc_status_change_prepare(unsigned long vaddr, int npages, bool enc) { /* * To maintain the security guarantees of SEV-SNP guests, make sure * to invalidate the memory before encryption attribute is cleared. */ if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP) && !enc) snp_set_memory_shared(vaddr, npages); return 0; } /* Return true unconditionally: return value doesn't matter for the SEV side */ static int amd_enc_status_change_finish(unsigned long vaddr, int npages, bool enc) { /* * After memory is mapped encrypted in the page table, validate it * so that it is consistent with the page table updates. */ if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP) && enc) snp_set_memory_private(vaddr, npages); if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) enc_dec_hypercall(vaddr, npages << PAGE_SHIFT, enc); return 0; } int prepare_pte_enc(struct pte_enc_desc *d) { pgprot_t old_prot; d->pfn = pg_level_to_pfn(d->pte_level, d->kpte, &old_prot); if (!d->pfn) return 1; d->new_pgprot = old_prot; if (d->encrypt) pgprot_val(d->new_pgprot) |= _PAGE_ENC; else pgprot_val(d->new_pgprot) &= ~_PAGE_ENC; /* If prot is same then do nothing. */ if (pgprot_val(old_prot) == pgprot_val(d->new_pgprot)) return 1; d->pa = d->pfn << PAGE_SHIFT; d->size = page_level_size(d->pte_level); /* * In-place en-/decryption and physical page attribute change * from C=1 to C=0 or vice versa will be performed. Flush the * caches to ensure that data gets accessed with the correct * C-bit. */ if (d->va) clflush_cache_range(d->va, d->size); else clflush_cache_range(__va(d->pa), d->size); return 0; } void set_pte_enc_mask(pte_t *kpte, unsigned long pfn, pgprot_t new_prot) { pte_t new_pte; /* Change the page encryption mask. */ new_pte = pfn_pte(pfn, new_prot); set_pte_atomic(kpte, new_pte); } static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc) { struct pte_enc_desc d = { .kpte = kpte, .pte_level = level, .encrypt = enc }; if (prepare_pte_enc(&d)) return; /* Encrypt/decrypt the contents in-place */ if (enc) { sme_early_encrypt(d.pa, d.size); } else { sme_early_decrypt(d.pa, d.size); /* * ON SNP, the page state in the RMP table must happen * before the page table updates. */ early_snp_set_memory_shared((unsigned long)__va(d.pa), d.pa, 1); } set_pte_enc_mask(kpte, d.pfn, d.new_pgprot); /* * If page is set encrypted in the page table, then update the RMP table to * add this page as private. */ if (enc) early_snp_set_memory_private((unsigned long)__va(d.pa), d.pa, 1); } static int __init early_set_memory_enc_dec(unsigned long vaddr, unsigned long size, bool enc) { unsigned long vaddr_end, vaddr_next, start; unsigned long psize, pmask; int split_page_size_mask; int level, ret; pte_t *kpte; start = vaddr; vaddr_next = vaddr; vaddr_end = vaddr + size; for (; vaddr < vaddr_end; vaddr = vaddr_next) { kpte = lookup_address(vaddr, &level); if (!kpte || pte_none(*kpte)) { ret = 1; goto out; } if (level == PG_LEVEL_4K) { __set_clr_pte_enc(kpte, level, enc); vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE; continue; } psize = page_level_size(level); pmask = page_level_mask(level); /* * Check whether we can change the large page in one go. * We request a split when the address is not aligned and * the number of pages to set/clear encryption bit is smaller * than the number of pages in the large page. */ if (vaddr == (vaddr & pmask) && ((vaddr_end - vaddr) >= psize)) { __set_clr_pte_enc(kpte, level, enc); vaddr_next = (vaddr & pmask) + psize; continue; } /* * The virtual address is part of a larger page, create the next * level page table mapping (4K or 2M). If it is part of a 2M * page then we request a split of the large page into 4K * chunks. A 1GB large page is split into 2M pages, resp. */ if (level == PG_LEVEL_2M) split_page_size_mask = 0; else split_page_size_mask = 1 << PG_LEVEL_2M; /* * kernel_physical_mapping_change() does not flush the TLBs, so * a TLB flush is required after we exit from the for loop. */ kernel_physical_mapping_change(__pa(vaddr & pmask), __pa((vaddr_end & pmask) + psize), split_page_size_mask); } ret = 0; early_set_mem_enc_dec_hypercall(start, size, enc); out: __flush_tlb_all(); return ret; } int __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size) { return early_set_memory_enc_dec(vaddr, size, false); } int __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size) { return early_set_memory_enc_dec(vaddr, size, true); } void __init early_set_mem_enc_dec_hypercall(unsigned long vaddr, unsigned long size, bool enc) { enc_dec_hypercall(vaddr, size, enc); } void __init sme_early_init(void) { if (!sme_me_mask) return; early_pmd_flags = __sme_set(early_pmd_flags); __supported_pte_mask = __sme_set(__supported_pte_mask); /* Update the protection map with memory encryption mask */ add_encrypt_protection_map(); x86_platform.guest.enc_status_change_prepare = amd_enc_status_change_prepare; x86_platform.guest.enc_status_change_finish = amd_enc_status_change_finish; x86_platform.guest.enc_tlb_flush_required = amd_enc_tlb_flush_required; x86_platform.guest.enc_cache_flush_required = amd_enc_cache_flush_required; x86_platform.guest.enc_kexec_begin = snp_kexec_begin; x86_platform.guest.enc_kexec_finish = snp_kexec_finish; /* * AMD-SEV-ES intercepts the RDMSR to read the X2APIC ID in the * parallel bringup low level code. That raises #VC which cannot be * handled there. * It does not provide a RDMSR GHCB protocol so the early startup * code cannot directly communicate with the secure firmware. The * alternative solution to retrieve the APIC ID via CPUID(0xb), * which is covered by the GHCB protocol, is not viable either * because there is no enforcement of the CPUID(0xb) provided * "initial" APIC ID to be the same as the real APIC ID. * Disable parallel bootup. */ if (sev_status & MSR_AMD64_SEV_ES_ENABLED) x86_cpuinit.parallel_bringup = false; /* * The VMM is capable of injecting interrupt 0x80 and triggering the * compatibility syscall path. * * By default, the 32-bit emulation is disabled in order to ensure * the safety of the VM. */ if (sev_status & MSR_AMD64_SEV_ENABLED) ia32_disable(); /* * Override init functions that scan the ROM region in SEV-SNP guests, * as this memory is not pre-validated and would thus cause a crash. */ if (sev_status & MSR_AMD64_SEV_SNP_ENABLED) { x86_init.mpparse.find_mptable = x86_init_noop; x86_init.pci.init_irq = x86_init_noop; x86_init.resources.probe_roms = x86_init_noop; /* * DMI setup behavior for SEV-SNP guests depends on * efi_enabled(EFI_CONFIG_TABLES), which hasn't been * parsed yet. snp_dmi_setup() will run after that * parsing has happened. */ x86_init.resources.dmi_setup = snp_dmi_setup; } /* * Switch the SVSM CA mapping (if active) from identity mapped to * kernel mapped. */ snp_update_svsm_ca(); } void __init mem_encrypt_free_decrypted_mem(void) { unsigned long vaddr, vaddr_end, npages; int r; vaddr = (unsigned long)__start_bss_decrypted_unused; vaddr_end = (unsigned long)__end_bss_decrypted; npages = (vaddr_end - vaddr) >> PAGE_SHIFT; /* * If the unused memory range was mapped decrypted, change the encryption * attribute from decrypted to encrypted before freeing it. Base the * re-encryption on the same condition used for the decryption in * sme_postprocess_startup(). Higher level abstractions, such as * CC_ATTR_MEM_ENCRYPT, aren't necessarily equivalent in a Hyper-V VM * using vTOM, where sme_me_mask is always zero. */ if (sme_me_mask) { r = set_memory_encrypted(vaddr, npages); if (r) { pr_warn("failed to free unused decrypted pages\n"); return; } } free_init_pages("unused decrypted", vaddr, vaddr_end); }