/* SPDX-License-Identifier: GPL-2.0 */ /* * Asm versions of Xen pv-ops, suitable for direct use. * * We only bother with direct forms (ie, vcpu in percpu data) of the * operations here; the indirect forms are better handled in C. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include <../entry/calling.h> .pushsection .noinstr.text, "ax" /* * PV hypercall interface to the hypervisor. * * Called via inline asm(), so better preserve %rcx and %r11. * * Input: * %eax: hypercall number * %rdi, %rsi, %rdx, %r10, %r8: args 1..5 for the hypercall * Output: %rax */ SYM_FUNC_START(xen_hypercall_pv) ANNOTATE_NOENDBR push %rcx push %r11 UNWIND_HINT_SAVE syscall UNWIND_HINT_RESTORE pop %r11 pop %rcx RET SYM_FUNC_END(xen_hypercall_pv) /* * Disabling events is simply a matter of making the event mask * non-zero. */ SYM_FUNC_START(xen_irq_disable_direct) movb $1, PER_CPU_VAR(xen_vcpu_info + XEN_vcpu_info_mask) RET SYM_FUNC_END(xen_irq_disable_direct) /* * Force an event check by making a hypercall, but preserve regs * before making the call. */ SYM_FUNC_START(check_events) FRAME_BEGIN push %rax push %rcx push %rdx push %rsi push %rdi push %r8 push %r9 push %r10 push %r11 call xen_force_evtchn_callback pop %r11 pop %r10 pop %r9 pop %r8 pop %rdi pop %rsi pop %rdx pop %rcx pop %rax FRAME_END RET SYM_FUNC_END(check_events) /* * Enable events. This clears the event mask and tests the pending * event status with one and operation. If there are pending events, * then enter the hypervisor to get them handled. */ SYM_FUNC_START(xen_irq_enable_direct) FRAME_BEGIN /* Unmask events */ movb $0, PER_CPU_VAR(xen_vcpu_info + XEN_vcpu_info_mask) /* * Preempt here doesn't matter because that will deal with any * pending interrupts. The pending check may end up being run * on the wrong CPU, but that doesn't hurt. */ /* Test for pending */ testb $0xff, PER_CPU_VAR(xen_vcpu_info + XEN_vcpu_info_pending) jz 1f call check_events 1: FRAME_END RET SYM_FUNC_END(xen_irq_enable_direct) /* * (xen_)save_fl is used to get the current interrupt enable status. * Callers expect the status to be in X86_EFLAGS_IF, and other bits * may be set in the return value. We take advantage of this by * making sure that X86_EFLAGS_IF has the right value (and other bits * in that byte are 0), but other bits in the return value are * undefined. We need to toggle the state of the bit, because Xen and * x86 use opposite senses (mask vs enable). */ SYM_FUNC_START(xen_save_fl_direct) testb $0xff, PER_CPU_VAR(xen_vcpu_info + XEN_vcpu_info_mask) setz %ah addb %ah, %ah RET SYM_FUNC_END(xen_save_fl_direct) SYM_FUNC_START(xen_read_cr2) FRAME_BEGIN _ASM_MOV PER_CPU_VAR(xen_vcpu), %_ASM_AX _ASM_MOV XEN_vcpu_info_arch_cr2(%_ASM_AX), %_ASM_AX FRAME_END RET SYM_FUNC_END(xen_read_cr2); SYM_FUNC_START(xen_read_cr2_direct) FRAME_BEGIN _ASM_MOV PER_CPU_VAR(xen_vcpu_info + XEN_vcpu_info_arch_cr2), %_ASM_AX FRAME_END RET SYM_FUNC_END(xen_read_cr2_direct); .popsection .macro xen_pv_trap name SYM_CODE_START(xen_\name) UNWIND_HINT_ENTRY ENDBR pop %rcx pop %r11 jmp \name SYM_CODE_END(xen_\name) _ASM_NOKPROBE(xen_\name) .endm xen_pv_trap asm_exc_divide_error xen_pv_trap asm_xenpv_exc_debug xen_pv_trap asm_exc_int3 xen_pv_trap asm_xenpv_exc_nmi xen_pv_trap asm_exc_overflow xen_pv_trap asm_exc_bounds xen_pv_trap asm_exc_invalid_op xen_pv_trap asm_exc_device_not_available xen_pv_trap asm_xenpv_exc_double_fault xen_pv_trap asm_exc_coproc_segment_overrun xen_pv_trap asm_exc_invalid_tss xen_pv_trap asm_exc_segment_not_present xen_pv_trap asm_exc_stack_segment xen_pv_trap asm_exc_general_protection xen_pv_trap asm_exc_page_fault xen_pv_trap asm_exc_spurious_interrupt_bug xen_pv_trap asm_exc_coprocessor_error xen_pv_trap asm_exc_alignment_check #ifdef CONFIG_X86_CET xen_pv_trap asm_exc_control_protection #endif #ifdef CONFIG_X86_MCE xen_pv_trap asm_xenpv_exc_machine_check #endif /* CONFIG_X86_MCE */ xen_pv_trap asm_exc_simd_coprocessor_error #ifdef CONFIG_IA32_EMULATION xen_pv_trap asm_int80_emulation #endif xen_pv_trap asm_exc_xen_unknown_trap xen_pv_trap asm_exc_xen_hypervisor_callback __INIT SYM_CODE_START(xen_early_idt_handler_array) i = 0 .rept NUM_EXCEPTION_VECTORS UNWIND_HINT_UNDEFINED ENDBR pop %rcx pop %r11 jmp early_idt_handler_array + i*EARLY_IDT_HANDLER_SIZE i = i + 1 .fill xen_early_idt_handler_array + i*XEN_EARLY_IDT_HANDLER_SIZE - ., 1, 0xcc .endr SYM_CODE_END(xen_early_idt_handler_array) __FINIT /* * Xen64 iret frame: * * ss * rsp * rflags * cs * rip <-- standard iret frame * * flags <-- xen_iret must push from here on * * rcx * r11 * rsp->rax */ .macro xen_hypercall_iret pushq $0 /* Flags */ push %rcx push %r11 push %rax mov $__HYPERVISOR_iret, %eax syscall /* Do the IRET. */ #ifdef CONFIG_MITIGATION_SLS int3 #endif .endm SYM_CODE_START(xen_iret) UNWIND_HINT_UNDEFINED ANNOTATE_NOENDBR xen_hypercall_iret SYM_CODE_END(xen_iret) /* * XEN pv doesn't use trampoline stack, PER_CPU_VAR(cpu_tss_rw + TSS_sp0) is * also the kernel stack. Reusing swapgs_restore_regs_and_return_to_usermode() * in XEN pv would cause %rsp to move up to the top of the kernel stack and * leave the IRET frame below %rsp, which is dangerous to be corrupted if #NMI * interrupts. And swapgs_restore_regs_and_return_to_usermode() pushing the IRET * frame at the same address is useless. */ SYM_CODE_START(xenpv_restore_regs_and_return_to_usermode) UNWIND_HINT_REGS POP_REGS /* stackleak_erase() can work safely on the kernel stack. */ STACKLEAK_ERASE_NOCLOBBER addq $8, %rsp /* skip regs->orig_ax */ jmp xen_iret SYM_CODE_END(xenpv_restore_regs_and_return_to_usermode) /* * Xen handles syscall callbacks much like ordinary exceptions, which * means we have: * - kernel gs * - kernel rsp * - an iret-like stack frame on the stack (including rcx and r11): * ss * rsp * rflags * cs * rip * r11 * rsp->rcx */ /* Normal 64-bit system call target */ SYM_CODE_START(xen_entry_SYSCALL_64) UNWIND_HINT_ENTRY ENDBR popq %rcx popq %r11 /* * Neither Xen nor the kernel really knows what the old SS and * CS were. The kernel expects __USER_DS and __USER_CS, so * report those values even though Xen will guess its own values. */ movq $__USER_DS, 4*8(%rsp) movq $__USER_CS, 1*8(%rsp) jmp entry_SYSCALL_64_after_hwframe SYM_CODE_END(xen_entry_SYSCALL_64) #ifdef CONFIG_IA32_EMULATION /* 32-bit compat syscall target */ SYM_CODE_START(xen_entry_SYSCALL_compat) UNWIND_HINT_ENTRY ENDBR popq %rcx popq %r11 /* * Neither Xen nor the kernel really knows what the old SS and * CS were. The kernel expects __USER_DS and __USER32_CS, so * report those values even though Xen will guess its own values. */ movq $__USER_DS, 4*8(%rsp) movq $__USER32_CS, 1*8(%rsp) jmp entry_SYSCALL_compat_after_hwframe SYM_CODE_END(xen_entry_SYSCALL_compat) /* 32-bit compat sysenter target */ SYM_CODE_START(xen_entry_SYSENTER_compat) UNWIND_HINT_ENTRY ENDBR /* * NB: Xen is polite and clears TF from EFLAGS for us. This means * that we don't need to guard against single step exceptions here. */ popq %rcx popq %r11 /* * Neither Xen nor the kernel really knows what the old SS and * CS were. The kernel expects __USER_DS and __USER32_CS, so * report those values even though Xen will guess its own values. */ movq $__USER_DS, 4*8(%rsp) movq $__USER32_CS, 1*8(%rsp) jmp entry_SYSENTER_compat_after_hwframe SYM_CODE_END(xen_entry_SYSENTER_compat) #else /* !CONFIG_IA32_EMULATION */ SYM_CODE_START(xen_entry_SYSCALL_compat) SYM_CODE_START(xen_entry_SYSENTER_compat) UNWIND_HINT_ENTRY ENDBR lea 16(%rsp), %rsp /* strip %rcx, %r11 */ mov $-ENOSYS, %rax xen_hypercall_iret SYM_CODE_END(xen_entry_SYSENTER_compat) SYM_CODE_END(xen_entry_SYSCALL_compat) #endif /* CONFIG_IA32_EMULATION */