// SPDX-License-Identifier: GPL-2.0-or-later /* * * Bluetooth support for Intel devices * * Copyright (C) 2015 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include "btintel.h" #define VERSION "0.1" #define BDADDR_INTEL (&(bdaddr_t){{0x00, 0x8b, 0x9e, 0x19, 0x03, 0x00}}) #define RSA_HEADER_LEN 644 #define CSS_HEADER_OFFSET 8 #define ECDSA_OFFSET 644 #define ECDSA_HEADER_LEN 320 #define BTINTEL_EFI_DSBR L"UefiCnvCommonDSBR" enum { DSM_SET_WDISABLE2_DELAY = 1, DSM_SET_RESET_METHOD = 3, }; #define CMD_WRITE_BOOT_PARAMS 0xfc0e struct cmd_write_boot_params { __le32 boot_addr; u8 fw_build_num; u8 fw_build_ww; u8 fw_build_yy; } __packed; static struct { const char *driver_name; u8 hw_variant; u32 fw_build_num; } coredump_info; static const guid_t btintel_guid_dsm = GUID_INIT(0xaa10f4e0, 0x81ac, 0x4233, 0xab, 0xf6, 0x3b, 0x2a, 0xc5, 0x0e, 0x28, 0xd9); int btintel_check_bdaddr(struct hci_dev *hdev) { struct hci_rp_read_bd_addr *bda; struct sk_buff *skb; skb = __hci_cmd_sync(hdev, HCI_OP_READ_BD_ADDR, 0, NULL, HCI_INIT_TIMEOUT); if (IS_ERR(skb)) { int err = PTR_ERR(skb); bt_dev_err(hdev, "Reading Intel device address failed (%d)", err); return err; } if (skb->len != sizeof(*bda)) { bt_dev_err(hdev, "Intel device address length mismatch"); kfree_skb(skb); return -EIO; } bda = (struct hci_rp_read_bd_addr *)skb->data; /* For some Intel based controllers, the default Bluetooth device * address 00:03:19:9E:8B:00 can be found. These controllers are * fully operational, but have the danger of duplicate addresses * and that in turn can cause problems with Bluetooth operation. */ if (!bacmp(&bda->bdaddr, BDADDR_INTEL)) { bt_dev_err(hdev, "Found Intel default device address (%pMR)", &bda->bdaddr); set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks); } kfree_skb(skb); return 0; } EXPORT_SYMBOL_GPL(btintel_check_bdaddr); int btintel_enter_mfg(struct hci_dev *hdev) { static const u8 param[] = { 0x01, 0x00 }; struct sk_buff *skb; skb = __hci_cmd_sync(hdev, 0xfc11, 2, param, HCI_CMD_TIMEOUT); if (IS_ERR(skb)) { bt_dev_err(hdev, "Entering manufacturer mode failed (%ld)", PTR_ERR(skb)); return PTR_ERR(skb); } kfree_skb(skb); return 0; } EXPORT_SYMBOL_GPL(btintel_enter_mfg); int btintel_exit_mfg(struct hci_dev *hdev, bool reset, bool patched) { u8 param[] = { 0x00, 0x00 }; struct sk_buff *skb; /* The 2nd command parameter specifies the manufacturing exit method: * 0x00: Just disable the manufacturing mode (0x00). * 0x01: Disable manufacturing mode and reset with patches deactivated. * 0x02: Disable manufacturing mode and reset with patches activated. */ if (reset) param[1] |= patched ? 0x02 : 0x01; skb = __hci_cmd_sync(hdev, 0xfc11, 2, param, HCI_CMD_TIMEOUT); if (IS_ERR(skb)) { bt_dev_err(hdev, "Exiting manufacturer mode failed (%ld)", PTR_ERR(skb)); return PTR_ERR(skb); } kfree_skb(skb); return 0; } EXPORT_SYMBOL_GPL(btintel_exit_mfg); int btintel_set_bdaddr(struct hci_dev *hdev, const bdaddr_t *bdaddr) { struct sk_buff *skb; int err; skb = __hci_cmd_sync(hdev, 0xfc31, 6, bdaddr, HCI_INIT_TIMEOUT); if (IS_ERR(skb)) { err = PTR_ERR(skb); bt_dev_err(hdev, "Changing Intel device address failed (%d)", err); return err; } kfree_skb(skb); return 0; } EXPORT_SYMBOL_GPL(btintel_set_bdaddr); static int btintel_set_event_mask(struct hci_dev *hdev, bool debug) { u8 mask[8] = { 0x87, 0x0c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; struct sk_buff *skb; int err; if (debug) mask[1] |= 0x62; skb = __hci_cmd_sync(hdev, 0xfc52, 8, mask, HCI_INIT_TIMEOUT); if (IS_ERR(skb)) { err = PTR_ERR(skb); bt_dev_err(hdev, "Setting Intel event mask failed (%d)", err); return err; } kfree_skb(skb); return 0; } int btintel_set_diag(struct hci_dev *hdev, bool enable) { struct sk_buff *skb; u8 param[3]; int err; if (enable) { param[0] = 0x03; param[1] = 0x03; param[2] = 0x03; } else { param[0] = 0x00; param[1] = 0x00; param[2] = 0x00; } skb = __hci_cmd_sync(hdev, 0xfc43, 3, param, HCI_INIT_TIMEOUT); if (IS_ERR(skb)) { err = PTR_ERR(skb); if (err == -ENODATA) goto done; bt_dev_err(hdev, "Changing Intel diagnostic mode failed (%d)", err); return err; } kfree_skb(skb); done: btintel_set_event_mask(hdev, enable); return 0; } EXPORT_SYMBOL_GPL(btintel_set_diag); static int btintel_set_diag_mfg(struct hci_dev *hdev, bool enable) { int err, ret; err = btintel_enter_mfg(hdev); if (err) return err; ret = btintel_set_diag(hdev, enable); err = btintel_exit_mfg(hdev, false, false); if (err) return err; return ret; } static int btintel_set_diag_combined(struct hci_dev *hdev, bool enable) { int ret; /* Legacy ROM device needs to be in the manufacturer mode to apply * diagnostic setting * * This flag is set after reading the Intel version. */ if (btintel_test_flag(hdev, INTEL_ROM_LEGACY)) ret = btintel_set_diag_mfg(hdev, enable); else ret = btintel_set_diag(hdev, enable); return ret; } void btintel_hw_error(struct hci_dev *hdev, u8 code) { struct sk_buff *skb; u8 type = 0x00; bt_dev_err(hdev, "Hardware error 0x%2.2x", code); skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT); if (IS_ERR(skb)) { bt_dev_err(hdev, "Reset after hardware error failed (%ld)", PTR_ERR(skb)); return; } kfree_skb(skb); skb = __hci_cmd_sync(hdev, 0xfc22, 1, &type, HCI_INIT_TIMEOUT); if (IS_ERR(skb)) { bt_dev_err(hdev, "Retrieving Intel exception info failed (%ld)", PTR_ERR(skb)); return; } if (skb->len != 13) { bt_dev_err(hdev, "Exception info size mismatch"); kfree_skb(skb); return; } bt_dev_err(hdev, "Exception info %s", (char *)(skb->data + 1)); kfree_skb(skb); } EXPORT_SYMBOL_GPL(btintel_hw_error); int btintel_version_info(struct hci_dev *hdev, struct intel_version *ver) { const char *variant; /* The hardware platform number has a fixed value of 0x37 and * for now only accept this single value. */ if (ver->hw_platform != 0x37) { bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)", ver->hw_platform); return -EINVAL; } /* Check for supported iBT hardware variants of this firmware * loading method. * * This check has been put in place to ensure correct forward * compatibility options when newer hardware variants come along. */ switch (ver->hw_variant) { case 0x07: /* WP - Legacy ROM */ case 0x08: /* StP - Legacy ROM */ case 0x0b: /* SfP */ case 0x0c: /* WsP */ case 0x11: /* JfP */ case 0x12: /* ThP */ case 0x13: /* HrP */ case 0x14: /* CcP */ break; default: bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)", ver->hw_variant); return -EINVAL; } switch (ver->fw_variant) { case 0x01: variant = "Legacy ROM 2.5"; break; case 0x06: variant = "Bootloader"; break; case 0x22: variant = "Legacy ROM 2.x"; break; case 0x23: variant = "Firmware"; break; default: bt_dev_err(hdev, "Unsupported firmware variant(%02x)", ver->fw_variant); return -EINVAL; } coredump_info.hw_variant = ver->hw_variant; coredump_info.fw_build_num = ver->fw_build_num; bt_dev_info(hdev, "%s revision %u.%u build %u week %u %u", variant, ver->fw_revision >> 4, ver->fw_revision & 0x0f, ver->fw_build_num, ver->fw_build_ww, 2000 + ver->fw_build_yy); return 0; } EXPORT_SYMBOL_GPL(btintel_version_info); static int btintel_secure_send(struct hci_dev *hdev, u8 fragment_type, u32 plen, const void *param) { while (plen > 0) { struct sk_buff *skb; u8 cmd_param[253], fragment_len = (plen > 252) ? 252 : plen; cmd_param[0] = fragment_type; memcpy(cmd_param + 1, param, fragment_len); skb = __hci_cmd_sync(hdev, 0xfc09, fragment_len + 1, cmd_param, HCI_INIT_TIMEOUT); if (IS_ERR(skb)) return PTR_ERR(skb); kfree_skb(skb); plen -= fragment_len; param += fragment_len; } return 0; } int btintel_load_ddc_config(struct hci_dev *hdev, const char *ddc_name) { const struct firmware *fw; struct sk_buff *skb; const u8 *fw_ptr; int err; err = request_firmware_direct(&fw, ddc_name, &hdev->dev); if (err < 0) { bt_dev_err(hdev, "Failed to load Intel DDC file %s (%d)", ddc_name, err); return err; } bt_dev_info(hdev, "Found Intel DDC parameters: %s", ddc_name); fw_ptr = fw->data; /* DDC file contains one or more DDC structure which has * Length (1 byte), DDC ID (2 bytes), and DDC value (Length - 2). */ while (fw->size > fw_ptr - fw->data) { u8 cmd_plen = fw_ptr[0] + sizeof(u8); skb = __hci_cmd_sync(hdev, 0xfc8b, cmd_plen, fw_ptr, HCI_INIT_TIMEOUT); if (IS_ERR(skb)) { bt_dev_err(hdev, "Failed to send Intel_Write_DDC (%ld)", PTR_ERR(skb)); release_firmware(fw); return PTR_ERR(skb); } fw_ptr += cmd_plen; kfree_skb(skb); } release_firmware(fw); bt_dev_info(hdev, "Applying Intel DDC parameters completed"); return 0; } EXPORT_SYMBOL_GPL(btintel_load_ddc_config); int btintel_set_event_mask_mfg(struct hci_dev *hdev, bool debug) { int err, ret; err = btintel_enter_mfg(hdev); if (err) return err; ret = btintel_set_event_mask(hdev, debug); err = btintel_exit_mfg(hdev, false, false); if (err) return err; return ret; } EXPORT_SYMBOL_GPL(btintel_set_event_mask_mfg); int btintel_read_version(struct hci_dev *hdev, struct intel_version *ver) { struct sk_buff *skb; skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT); if (IS_ERR(skb)) { bt_dev_err(hdev, "Reading Intel version information failed (%ld)", PTR_ERR(skb)); return PTR_ERR(skb); } if (!skb || skb->len != sizeof(*ver)) { bt_dev_err(hdev, "Intel version event size mismatch"); kfree_skb(skb); return -EILSEQ; } memcpy(ver, skb->data, sizeof(*ver)); kfree_skb(skb); return 0; } EXPORT_SYMBOL_GPL(btintel_read_version); int btintel_version_info_tlv(struct hci_dev *hdev, struct intel_version_tlv *version) { const char *variant; /* The hardware platform number has a fixed value of 0x37 and * for now only accept this single value. */ if (INTEL_HW_PLATFORM(version->cnvi_bt) != 0x37) { bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)", INTEL_HW_PLATFORM(version->cnvi_bt)); return -EINVAL; } /* Check for supported iBT hardware variants of this firmware * loading method. * * This check has been put in place to ensure correct forward * compatibility options when newer hardware variants come along. */ switch (INTEL_HW_VARIANT(version->cnvi_bt)) { case 0x17: /* TyP */ case 0x18: /* Slr */ case 0x19: /* Slr-F */ case 0x1b: /* Mgr */ case 0x1c: /* Gale Peak (GaP) */ case 0x1d: /* BlazarU (BzrU) */ case 0x1e: /* BlazarI (Bzr) */ break; default: bt_dev_err(hdev, "Unsupported Intel hardware variant (0x%x)", INTEL_HW_VARIANT(version->cnvi_bt)); return -EINVAL; } switch (version->img_type) { case BTINTEL_IMG_BOOTLOADER: variant = "Bootloader"; /* It is required that every single firmware fragment is acknowledged * with a command complete event. If the boot parameters indicate * that this bootloader does not send them, then abort the setup. */ if (version->limited_cce != 0x00) { bt_dev_err(hdev, "Unsupported Intel firmware loading method (0x%x)", version->limited_cce); return -EINVAL; } /* Secure boot engine type should be either 1 (ECDSA) or 0 (RSA) */ if (version->sbe_type > 0x01) { bt_dev_err(hdev, "Unsupported Intel secure boot engine type (0x%x)", version->sbe_type); return -EINVAL; } bt_dev_info(hdev, "Device revision is %u", version->dev_rev_id); bt_dev_info(hdev, "Secure boot is %s", version->secure_boot ? "enabled" : "disabled"); bt_dev_info(hdev, "OTP lock is %s", version->otp_lock ? "enabled" : "disabled"); bt_dev_info(hdev, "API lock is %s", version->api_lock ? "enabled" : "disabled"); bt_dev_info(hdev, "Debug lock is %s", version->debug_lock ? "enabled" : "disabled"); bt_dev_info(hdev, "Minimum firmware build %u week %u %u", version->min_fw_build_nn, version->min_fw_build_cw, 2000 + version->min_fw_build_yy); break; case BTINTEL_IMG_IML: variant = "Intermediate loader"; break; case BTINTEL_IMG_OP: variant = "Firmware"; break; default: bt_dev_err(hdev, "Unsupported image type(%02x)", version->img_type); return -EINVAL; } coredump_info.hw_variant = INTEL_HW_VARIANT(version->cnvi_bt); coredump_info.fw_build_num = version->build_num; bt_dev_info(hdev, "%s timestamp %u.%u buildtype %u build %u", variant, 2000 + (version->timestamp >> 8), version->timestamp & 0xff, version->build_type, version->build_num); if (version->img_type == BTINTEL_IMG_OP) bt_dev_info(hdev, "Firmware SHA1: 0x%8.8x", version->git_sha1); return 0; } EXPORT_SYMBOL_GPL(btintel_version_info_tlv); int btintel_parse_version_tlv(struct hci_dev *hdev, struct intel_version_tlv *version, struct sk_buff *skb) { /* Consume Command Complete Status field */ skb_pull(skb, 1); /* Event parameters contatin multiple TLVs. Read each of them * and only keep the required data. Also, it use existing legacy * version field like hw_platform, hw_variant, and fw_variant * to keep the existing setup flow */ while (skb->len) { struct intel_tlv *tlv; /* Make sure skb has a minimum length of the header */ if (skb->len < sizeof(*tlv)) return -EINVAL; tlv = (struct intel_tlv *)skb->data; /* Make sure skb has a enough data */ if (skb->len < tlv->len + sizeof(*tlv)) return -EINVAL; switch (tlv->type) { case INTEL_TLV_CNVI_TOP: version->cnvi_top = get_unaligned_le32(tlv->val); break; case INTEL_TLV_CNVR_TOP: version->cnvr_top = get_unaligned_le32(tlv->val); break; case INTEL_TLV_CNVI_BT: version->cnvi_bt = get_unaligned_le32(tlv->val); break; case INTEL_TLV_CNVR_BT: version->cnvr_bt = get_unaligned_le32(tlv->val); break; case INTEL_TLV_DEV_REV_ID: version->dev_rev_id = get_unaligned_le16(tlv->val); break; case INTEL_TLV_IMAGE_TYPE: version->img_type = tlv->val[0]; break; case INTEL_TLV_TIME_STAMP: /* If image type is Operational firmware (0x03), then * running FW Calendar Week and Year information can * be extracted from Timestamp information */ version->min_fw_build_cw = tlv->val[0]; version->min_fw_build_yy = tlv->val[1]; version->timestamp = get_unaligned_le16(tlv->val); break; case INTEL_TLV_BUILD_TYPE: version->build_type = tlv->val[0]; break; case INTEL_TLV_BUILD_NUM: /* If image type is Operational firmware (0x03), then * running FW build number can be extracted from the * Build information */ version->min_fw_build_nn = tlv->val[0]; version->build_num = get_unaligned_le32(tlv->val); break; case INTEL_TLV_SECURE_BOOT: version->secure_boot = tlv->val[0]; break; case INTEL_TLV_OTP_LOCK: version->otp_lock = tlv->val[0]; break; case INTEL_TLV_API_LOCK: version->api_lock = tlv->val[0]; break; case INTEL_TLV_DEBUG_LOCK: version->debug_lock = tlv->val[0]; break; case INTEL_TLV_MIN_FW: version->min_fw_build_nn = tlv->val[0]; version->min_fw_build_cw = tlv->val[1]; version->min_fw_build_yy = tlv->val[2]; break; case INTEL_TLV_LIMITED_CCE: version->limited_cce = tlv->val[0]; break; case INTEL_TLV_SBE_TYPE: version->sbe_type = tlv->val[0]; break; case INTEL_TLV_OTP_BDADDR: memcpy(&version->otp_bd_addr, tlv->val, sizeof(bdaddr_t)); break; case INTEL_TLV_GIT_SHA1: version->git_sha1 = get_unaligned_le32(tlv->val); break; case INTEL_TLV_FW_ID: snprintf(version->fw_id, sizeof(version->fw_id), "%s", tlv->val); break; default: /* Ignore rest of information */ break; } /* consume the current tlv and move to next*/ skb_pull(skb, tlv->len + sizeof(*tlv)); } return 0; } EXPORT_SYMBOL_GPL(btintel_parse_version_tlv); static int btintel_read_version_tlv(struct hci_dev *hdev, struct intel_version_tlv *version) { struct sk_buff *skb; const u8 param[1] = { 0xFF }; if (!version) return -EINVAL; skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT); if (IS_ERR(skb)) { bt_dev_err(hdev, "Reading Intel version information failed (%ld)", PTR_ERR(skb)); return PTR_ERR(skb); } if (skb->data[0]) { bt_dev_err(hdev, "Intel Read Version command failed (%02x)", skb->data[0]); kfree_skb(skb); return -EIO; } btintel_parse_version_tlv(hdev, version, skb); kfree_skb(skb); return 0; } /* ------- REGMAP IBT SUPPORT ------- */ #define IBT_REG_MODE_8BIT 0x00 #define IBT_REG_MODE_16BIT 0x01 #define IBT_REG_MODE_32BIT 0x02 struct regmap_ibt_context { struct hci_dev *hdev; __u16 op_write; __u16 op_read; }; struct ibt_cp_reg_access { __le32 addr; __u8 mode; __u8 len; __u8 data[]; } __packed; struct ibt_rp_reg_access { __u8 status; __le32 addr; __u8 data[]; } __packed; static int regmap_ibt_read(void *context, const void *addr, size_t reg_size, void *val, size_t val_size) { struct regmap_ibt_context *ctx = context; struct ibt_cp_reg_access cp; struct ibt_rp_reg_access *rp; struct sk_buff *skb; int err = 0; if (reg_size != sizeof(__le32)) return -EINVAL; switch (val_size) { case 1: cp.mode = IBT_REG_MODE_8BIT; break; case 2: cp.mode = IBT_REG_MODE_16BIT; break; case 4: cp.mode = IBT_REG_MODE_32BIT; break; default: return -EINVAL; } /* regmap provides a little-endian formatted addr */ cp.addr = *(__le32 *)addr; cp.len = val_size; bt_dev_dbg(ctx->hdev, "Register (0x%x) read", le32_to_cpu(cp.addr)); skb = hci_cmd_sync(ctx->hdev, ctx->op_read, sizeof(cp), &cp, HCI_CMD_TIMEOUT); if (IS_ERR(skb)) { err = PTR_ERR(skb); bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error (%d)", le32_to_cpu(cp.addr), err); return err; } if (skb->len != sizeof(*rp) + val_size) { bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error, bad len", le32_to_cpu(cp.addr)); err = -EINVAL; goto done; } rp = (struct ibt_rp_reg_access *)skb->data; if (rp->addr != cp.addr) { bt_dev_err(ctx->hdev, "regmap: Register (0x%x) read error, bad addr", le32_to_cpu(rp->addr)); err = -EINVAL; goto done; } memcpy(val, rp->data, val_size); done: kfree_skb(skb); return err; } static int regmap_ibt_gather_write(void *context, const void *addr, size_t reg_size, const void *val, size_t val_size) { struct regmap_ibt_context *ctx = context; struct ibt_cp_reg_access *cp; struct sk_buff *skb; int plen = sizeof(*cp) + val_size; u8 mode; int err = 0; if (reg_size != sizeof(__le32)) return -EINVAL; switch (val_size) { case 1: mode = IBT_REG_MODE_8BIT; break; case 2: mode = IBT_REG_MODE_16BIT; break; case 4: mode = IBT_REG_MODE_32BIT; break; default: return -EINVAL; } cp = kmalloc(plen, GFP_KERNEL); if (!cp) return -ENOMEM; /* regmap provides a little-endian formatted addr/value */ cp->addr = *(__le32 *)addr; cp->mode = mode; cp->len = val_size; memcpy(&cp->data, val, val_size); bt_dev_dbg(ctx->hdev, "Register (0x%x) write", le32_to_cpu(cp->addr)); skb = hci_cmd_sync(ctx->hdev, ctx->op_write, plen, cp, HCI_CMD_TIMEOUT); if (IS_ERR(skb)) { err = PTR_ERR(skb); bt_dev_err(ctx->hdev, "regmap: Register (0x%x) write error (%d)", le32_to_cpu(cp->addr), err); goto done; } kfree_skb(skb); done: kfree(cp); return err; } static int regmap_ibt_write(void *context, const void *data, size_t count) { /* data contains register+value, since we only support 32bit addr, * minimum data size is 4 bytes. */ if (WARN_ONCE(count < 4, "Invalid register access")) return -EINVAL; return regmap_ibt_gather_write(context, data, 4, data + 4, count - 4); } static void regmap_ibt_free_context(void *context) { kfree(context); } static const struct regmap_bus regmap_ibt = { .read = regmap_ibt_read, .write = regmap_ibt_write, .gather_write = regmap_ibt_gather_write, .free_context = regmap_ibt_free_context, .reg_format_endian_default = REGMAP_ENDIAN_LITTLE, .val_format_endian_default = REGMAP_ENDIAN_LITTLE, }; /* Config is the same for all register regions */ static const struct regmap_config regmap_ibt_cfg = { .name = "btintel_regmap", .reg_bits = 32, .val_bits = 32, }; struct regmap *btintel_regmap_init(struct hci_dev *hdev, u16 opcode_read, u16 opcode_write) { struct regmap_ibt_context *ctx; bt_dev_info(hdev, "regmap: Init R%x-W%x region", opcode_read, opcode_write); ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); if (!ctx) return ERR_PTR(-ENOMEM); ctx->op_read = opcode_read; ctx->op_write = opcode_write; ctx->hdev = hdev; return regmap_init(&hdev->dev, ®map_ibt, ctx, ®map_ibt_cfg); } EXPORT_SYMBOL_GPL(btintel_regmap_init); int btintel_send_intel_reset(struct hci_dev *hdev, u32 boot_param) { struct intel_reset params = { 0x00, 0x01, 0x00, 0x01, 0x00000000 }; struct sk_buff *skb; params.boot_param = cpu_to_le32(boot_param); skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(params), ¶ms, HCI_INIT_TIMEOUT); if (IS_ERR(skb)) { bt_dev_err(hdev, "Failed to send Intel Reset command"); return PTR_ERR(skb); } kfree_skb(skb); return 0; } EXPORT_SYMBOL_GPL(btintel_send_intel_reset); int btintel_read_boot_params(struct hci_dev *hdev, struct intel_boot_params *params) { struct sk_buff *skb; skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_INIT_TIMEOUT); if (IS_ERR(skb)) { bt_dev_err(hdev, "Reading Intel boot parameters failed (%ld)", PTR_ERR(skb)); return PTR_ERR(skb); } if (skb->len != sizeof(*params)) { bt_dev_err(hdev, "Intel boot parameters size mismatch"); kfree_skb(skb); return -EILSEQ; } memcpy(params, skb->data, sizeof(*params)); kfree_skb(skb); if (params->status) { bt_dev_err(hdev, "Intel boot parameters command failed (%02x)", params->status); return -bt_to_errno(params->status); } bt_dev_info(hdev, "Device revision is %u", le16_to_cpu(params->dev_revid)); bt_dev_info(hdev, "Secure boot is %s", params->secure_boot ? "enabled" : "disabled"); bt_dev_info(hdev, "OTP lock is %s", params->otp_lock ? "enabled" : "disabled"); bt_dev_info(hdev, "API lock is %s", params->api_lock ? "enabled" : "disabled"); bt_dev_info(hdev, "Debug lock is %s", params->debug_lock ? "enabled" : "disabled"); bt_dev_info(hdev, "Minimum firmware build %u week %u %u", params->min_fw_build_nn, params->min_fw_build_cw, 2000 + params->min_fw_build_yy); return 0; } EXPORT_SYMBOL_GPL(btintel_read_boot_params); static int btintel_sfi_rsa_header_secure_send(struct hci_dev *hdev, const struct firmware *fw) { int err; /* Start the firmware download transaction with the Init fragment * represented by the 128 bytes of CSS header. */ err = btintel_secure_send(hdev, 0x00, 128, fw->data); if (err < 0) { bt_dev_err(hdev, "Failed to send firmware header (%d)", err); goto done; } /* Send the 256 bytes of public key information from the firmware * as the PKey fragment. */ err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128); if (err < 0) { bt_dev_err(hdev, "Failed to send firmware pkey (%d)", err); goto done; } /* Send the 256 bytes of signature information from the firmware * as the Sign fragment. */ err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388); if (err < 0) { bt_dev_err(hdev, "Failed to send firmware signature (%d)", err); goto done; } done: return err; } static int btintel_sfi_ecdsa_header_secure_send(struct hci_dev *hdev, const struct firmware *fw) { int err; /* Start the firmware download transaction with the Init fragment * represented by the 128 bytes of CSS header. */ err = btintel_secure_send(hdev, 0x00, 128, fw->data + 644); if (err < 0) { bt_dev_err(hdev, "Failed to send firmware header (%d)", err); return err; } /* Send the 96 bytes of public key information from the firmware * as the PKey fragment. */ err = btintel_secure_send(hdev, 0x03, 96, fw->data + 644 + 128); if (err < 0) { bt_dev_err(hdev, "Failed to send firmware pkey (%d)", err); return err; } /* Send the 96 bytes of signature information from the firmware * as the Sign fragment */ err = btintel_secure_send(hdev, 0x02, 96, fw->data + 644 + 224); if (err < 0) { bt_dev_err(hdev, "Failed to send firmware signature (%d)", err); return err; } return 0; } static int btintel_download_firmware_payload(struct hci_dev *hdev, const struct firmware *fw, size_t offset) { int err; const u8 *fw_ptr; u32 frag_len; fw_ptr = fw->data + offset; frag_len = 0; err = -EINVAL; while (fw_ptr - fw->data < fw->size) { struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len); frag_len += sizeof(*cmd) + cmd->plen; /* The parameter length of the secure send command requires * a 4 byte alignment. It happens so that the firmware file * contains proper Intel_NOP commands to align the fragments * as needed. * * Send set of commands with 4 byte alignment from the * firmware data buffer as a single Data fragment. */ if (!(frag_len % 4)) { err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr); if (err < 0) { bt_dev_err(hdev, "Failed to send firmware data (%d)", err); goto done; } fw_ptr += frag_len; frag_len = 0; } } done: return err; } static bool btintel_firmware_version(struct hci_dev *hdev, u8 num, u8 ww, u8 yy, const struct firmware *fw, u32 *boot_addr) { const u8 *fw_ptr; fw_ptr = fw->data; while (fw_ptr - fw->data < fw->size) { struct hci_command_hdr *cmd = (void *)(fw_ptr); /* Each SKU has a different reset parameter to use in the * HCI_Intel_Reset command and it is embedded in the firmware * data. So, instead of using static value per SKU, check * the firmware data and save it for later use. */ if (le16_to_cpu(cmd->opcode) == CMD_WRITE_BOOT_PARAMS) { struct cmd_write_boot_params *params; params = (void *)(fw_ptr + sizeof(*cmd)); *boot_addr = le32_to_cpu(params->boot_addr); bt_dev_info(hdev, "Boot Address: 0x%x", *boot_addr); bt_dev_info(hdev, "Firmware Version: %u-%u.%u", params->fw_build_num, params->fw_build_ww, params->fw_build_yy); return (num == params->fw_build_num && ww == params->fw_build_ww && yy == params->fw_build_yy); } fw_ptr += sizeof(*cmd) + cmd->plen; } return false; } int btintel_download_firmware(struct hci_dev *hdev, struct intel_version *ver, const struct firmware *fw, u32 *boot_param) { int err; /* SfP and WsP don't seem to update the firmware version on file * so version checking is currently not possible. */ switch (ver->hw_variant) { case 0x0b: /* SfP */ case 0x0c: /* WsP */ /* Skip version checking */ break; default: /* Skip download if firmware has the same version */ if (btintel_firmware_version(hdev, ver->fw_build_num, ver->fw_build_ww, ver->fw_build_yy, fw, boot_param)) { bt_dev_info(hdev, "Firmware already loaded"); /* Return -EALREADY to indicate that the firmware has * already been loaded. */ return -EALREADY; } } /* The firmware variant determines if the device is in bootloader * mode or is running operational firmware. The value 0x06 identifies * the bootloader and the value 0x23 identifies the operational * firmware. * * If the firmware version has changed that means it needs to be reset * to bootloader when operational so the new firmware can be loaded. */ if (ver->fw_variant == 0x23) return -EINVAL; err = btintel_sfi_rsa_header_secure_send(hdev, fw); if (err) return err; return btintel_download_firmware_payload(hdev, fw, RSA_HEADER_LEN); } EXPORT_SYMBOL_GPL(btintel_download_firmware); static int btintel_download_fw_tlv(struct hci_dev *hdev, struct intel_version_tlv *ver, const struct firmware *fw, u32 *boot_param, u8 hw_variant, u8 sbe_type) { int err; u32 css_header_ver; /* Skip download if firmware has the same version */ if (btintel_firmware_version(hdev, ver->min_fw_build_nn, ver->min_fw_build_cw, ver->min_fw_build_yy, fw, boot_param)) { bt_dev_info(hdev, "Firmware already loaded"); /* Return -EALREADY to indicate that firmware has * already been loaded. */ return -EALREADY; } /* The firmware variant determines if the device is in bootloader * mode or is running operational firmware. The value 0x01 identifies * the bootloader and the value 0x03 identifies the operational * firmware. * * If the firmware version has changed that means it needs to be reset * to bootloader when operational so the new firmware can be loaded. */ if (ver->img_type == BTINTEL_IMG_OP) return -EINVAL; /* iBT hardware variants 0x0b, 0x0c, 0x11, 0x12, 0x13, 0x14 support * only RSA secure boot engine. Hence, the corresponding sfi file will * have RSA header of 644 bytes followed by Command Buffer. * * iBT hardware variants 0x17, 0x18 onwards support both RSA and ECDSA * secure boot engine. As a result, the corresponding sfi file will * have RSA header of 644, ECDSA header of 320 bytes followed by * Command Buffer. * * CSS Header byte positions 0x08 to 0x0B represent the CSS Header * version: RSA(0x00010000) , ECDSA (0x00020000) */ css_header_ver = get_unaligned_le32(fw->data + CSS_HEADER_OFFSET); if (css_header_ver != 0x00010000) { bt_dev_err(hdev, "Invalid CSS Header version"); return -EINVAL; } if (hw_variant <= 0x14) { if (sbe_type != 0x00) { bt_dev_err(hdev, "Invalid SBE type for hardware variant (%d)", hw_variant); return -EINVAL; } err = btintel_sfi_rsa_header_secure_send(hdev, fw); if (err) return err; err = btintel_download_firmware_payload(hdev, fw, RSA_HEADER_LEN); if (err) return err; } else if (hw_variant >= 0x17) { /* Check if CSS header for ECDSA follows the RSA header */ if (fw->data[ECDSA_OFFSET] != 0x06) return -EINVAL; /* Check if the CSS Header version is ECDSA(0x00020000) */ css_header_ver = get_unaligned_le32(fw->data + ECDSA_OFFSET + CSS_HEADER_OFFSET); if (css_header_ver != 0x00020000) { bt_dev_err(hdev, "Invalid CSS Header version"); return -EINVAL; } if (sbe_type == 0x00) { err = btintel_sfi_rsa_header_secure_send(hdev, fw); if (err) return err; err = btintel_download_firmware_payload(hdev, fw, RSA_HEADER_LEN + ECDSA_HEADER_LEN); if (err) return err; } else if (sbe_type == 0x01) { err = btintel_sfi_ecdsa_header_secure_send(hdev, fw); if (err) return err; err = btintel_download_firmware_payload(hdev, fw, RSA_HEADER_LEN + ECDSA_HEADER_LEN); if (err) return err; } } return 0; } static void btintel_reset_to_bootloader(struct hci_dev *hdev) { struct intel_reset params; struct sk_buff *skb; /* PCIe transport uses shared hardware reset mechanism for recovery * which gets triggered in pcie *setup* function on error. */ if (hdev->bus == HCI_PCI) return; /* Send Intel Reset command. This will result in * re-enumeration of BT controller. * * Intel Reset parameter description: * reset_type : 0x00 (Soft reset), * 0x01 (Hard reset) * patch_enable : 0x00 (Do not enable), * 0x01 (Enable) * ddc_reload : 0x00 (Do not reload), * 0x01 (Reload) * boot_option: 0x00 (Current image), * 0x01 (Specified boot address) * boot_param: Boot address * */ params.reset_type = 0x01; params.patch_enable = 0x01; params.ddc_reload = 0x01; params.boot_option = 0x00; params.boot_param = cpu_to_le32(0x00000000); skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(params), ¶ms, HCI_INIT_TIMEOUT); if (IS_ERR(skb)) { bt_dev_err(hdev, "FW download error recovery failed (%ld)", PTR_ERR(skb)); return; } bt_dev_info(hdev, "Intel reset sent to retry FW download"); kfree_skb(skb); /* Current Intel BT controllers(ThP/JfP) hold the USB reset * lines for 2ms when it receives Intel Reset in bootloader mode. * Whereas, the upcoming Intel BT controllers will hold USB reset * for 150ms. To keep the delay generic, 150ms is chosen here. */ msleep(150); } static int btintel_read_debug_features(struct hci_dev *hdev, struct intel_debug_features *features) { struct sk_buff *skb; u8 page_no = 1; /* Intel controller supports two pages, each page is of 128-bit * feature bit mask. And each bit defines specific feature support */ skb = __hci_cmd_sync(hdev, 0xfca6, sizeof(page_no), &page_no, HCI_INIT_TIMEOUT); if (IS_ERR(skb)) { bt_dev_err(hdev, "Reading supported features failed (%ld)", PTR_ERR(skb)); return PTR_ERR(skb); } if (skb->len != (sizeof(features->page1) + 3)) { bt_dev_err(hdev, "Supported features event size mismatch"); kfree_skb(skb); return -EILSEQ; } memcpy(features->page1, skb->data + 3, sizeof(features->page1)); /* Read the supported features page2 if required in future. */ kfree_skb(skb); return 0; } static int btintel_set_debug_features(struct hci_dev *hdev, const struct intel_debug_features *features) { u8 mask[11] = { 0x0a, 0x92, 0x02, 0x7f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; u8 period[5] = { 0x04, 0x91, 0x02, 0x05, 0x00 }; u8 trace_enable = 0x02; struct sk_buff *skb; if (!features) { bt_dev_warn(hdev, "Debug features not read"); return -EINVAL; } if (!(features->page1[0] & 0x3f)) { bt_dev_info(hdev, "Telemetry exception format not supported"); return 0; } skb = __hci_cmd_sync(hdev, 0xfc8b, 11, mask, HCI_INIT_TIMEOUT); if (IS_ERR(skb)) { bt_dev_err(hdev, "Setting Intel telemetry ddc write event mask failed (%ld)", PTR_ERR(skb)); return PTR_ERR(skb); } kfree_skb(skb); skb = __hci_cmd_sync(hdev, 0xfc8b, 5, period, HCI_INIT_TIMEOUT); if (IS_ERR(skb)) { bt_dev_err(hdev, "Setting periodicity for link statistics traces failed (%ld)", PTR_ERR(skb)); return PTR_ERR(skb); } kfree_skb(skb); skb = __hci_cmd_sync(hdev, 0xfca1, 1, &trace_enable, HCI_INIT_TIMEOUT); if (IS_ERR(skb)) { bt_dev_err(hdev, "Enable tracing of link statistics events failed (%ld)", PTR_ERR(skb)); return PTR_ERR(skb); } kfree_skb(skb); bt_dev_info(hdev, "set debug features: trace_enable 0x%02x mask 0x%02x", trace_enable, mask[3]); return 0; } static int btintel_reset_debug_features(struct hci_dev *hdev, const struct intel_debug_features *features) { u8 mask[11] = { 0x0a, 0x92, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; u8 trace_enable = 0x00; struct sk_buff *skb; if (!features) { bt_dev_warn(hdev, "Debug features not read"); return -EINVAL; } if (!(features->page1[0] & 0x3f)) { bt_dev_info(hdev, "Telemetry exception format not supported"); return 0; } /* Should stop the trace before writing ddc event mask. */ skb = __hci_cmd_sync(hdev, 0xfca1, 1, &trace_enable, HCI_INIT_TIMEOUT); if (IS_ERR(skb)) { bt_dev_err(hdev, "Stop tracing of link statistics events failed (%ld)", PTR_ERR(skb)); return PTR_ERR(skb); } kfree_skb(skb); skb = __hci_cmd_sync(hdev, 0xfc8b, 11, mask, HCI_INIT_TIMEOUT); if (IS_ERR(skb)) { bt_dev_err(hdev, "Setting Intel telemetry ddc write event mask failed (%ld)", PTR_ERR(skb)); return PTR_ERR(skb); } kfree_skb(skb); bt_dev_info(hdev, "reset debug features: trace_enable 0x%02x mask 0x%02x", trace_enable, mask[3]); return 0; } int btintel_set_quality_report(struct hci_dev *hdev, bool enable) { struct intel_debug_features features; int err; bt_dev_dbg(hdev, "enable %d", enable); /* Read the Intel supported features and if new exception formats * supported, need to load the additional DDC config to enable. */ err = btintel_read_debug_features(hdev, &features); if (err) return err; /* Set or reset the debug features. */ if (enable) err = btintel_set_debug_features(hdev, &features); else err = btintel_reset_debug_features(hdev, &features); return err; } EXPORT_SYMBOL_GPL(btintel_set_quality_report); static void btintel_coredump(struct hci_dev *hdev) { struct sk_buff *skb; skb = __hci_cmd_sync(hdev, 0xfc4e, 0, NULL, HCI_CMD_TIMEOUT); if (IS_ERR(skb)) { bt_dev_err(hdev, "Coredump failed (%ld)", PTR_ERR(skb)); return; } kfree_skb(skb); } static void btintel_dmp_hdr(struct hci_dev *hdev, struct sk_buff *skb) { char buf[80]; snprintf(buf, sizeof(buf), "Controller Name: 0x%X\n", coredump_info.hw_variant); skb_put_data(skb, buf, strlen(buf)); snprintf(buf, sizeof(buf), "Firmware Version: 0x%X\n", coredump_info.fw_build_num); skb_put_data(skb, buf, strlen(buf)); snprintf(buf, sizeof(buf), "Driver: %s\n", coredump_info.driver_name); skb_put_data(skb, buf, strlen(buf)); snprintf(buf, sizeof(buf), "Vendor: Intel\n"); skb_put_data(skb, buf, strlen(buf)); } static int btintel_register_devcoredump_support(struct hci_dev *hdev) { struct intel_debug_features features; int err; err = btintel_read_debug_features(hdev, &features); if (err) { bt_dev_info(hdev, "Error reading debug features"); return err; } if (!(features.page1[0] & 0x3f)) { bt_dev_dbg(hdev, "Telemetry exception format not supported"); return -EOPNOTSUPP; } hci_devcd_register(hdev, btintel_coredump, btintel_dmp_hdr, NULL); return err; } static const struct firmware *btintel_legacy_rom_get_fw(struct hci_dev *hdev, struct intel_version *ver) { const struct firmware *fw; char fwname[64]; int ret; snprintf(fwname, sizeof(fwname), "intel/ibt-hw-%x.%x.%x-fw-%x.%x.%x.%x.%x.bseq", ver->hw_platform, ver->hw_variant, ver->hw_revision, ver->fw_variant, ver->fw_revision, ver->fw_build_num, ver->fw_build_ww, ver->fw_build_yy); ret = request_firmware(&fw, fwname, &hdev->dev); if (ret < 0) { if (ret == -EINVAL) { bt_dev_err(hdev, "Intel firmware file request failed (%d)", ret); return NULL; } bt_dev_err(hdev, "failed to open Intel firmware file: %s (%d)", fwname, ret); /* If the correct firmware patch file is not found, use the * default firmware patch file instead */ snprintf(fwname, sizeof(fwname), "intel/ibt-hw-%x.%x.bseq", ver->hw_platform, ver->hw_variant); if (request_firmware(&fw, fwname, &hdev->dev) < 0) { bt_dev_err(hdev, "failed to open default fw file: %s", fwname); return NULL; } } bt_dev_info(hdev, "Intel Bluetooth firmware file: %s", fwname); return fw; } static int btintel_legacy_rom_patching(struct hci_dev *hdev, const struct firmware *fw, const u8 **fw_ptr, int *disable_patch) { struct sk_buff *skb; struct hci_command_hdr *cmd; const u8 *cmd_param; struct hci_event_hdr *evt = NULL; const u8 *evt_param = NULL; int remain = fw->size - (*fw_ptr - fw->data); /* The first byte indicates the types of the patch command or event. * 0x01 means HCI command and 0x02 is HCI event. If the first bytes * in the current firmware buffer doesn't start with 0x01 or * the size of remain buffer is smaller than HCI command header, * the firmware file is corrupted and it should stop the patching * process. */ if (remain > HCI_COMMAND_HDR_SIZE && *fw_ptr[0] != 0x01) { bt_dev_err(hdev, "Intel fw corrupted: invalid cmd read"); return -EINVAL; } (*fw_ptr)++; remain--; cmd = (struct hci_command_hdr *)(*fw_ptr); *fw_ptr += sizeof(*cmd); remain -= sizeof(*cmd); /* Ensure that the remain firmware data is long enough than the length * of command parameter. If not, the firmware file is corrupted. */ if (remain < cmd->plen) { bt_dev_err(hdev, "Intel fw corrupted: invalid cmd len"); return -EFAULT; } /* If there is a command that loads a patch in the firmware * file, then enable the patch upon success, otherwise just * disable the manufacturer mode, for example patch activation * is not required when the default firmware patch file is used * because there are no patch data to load. */ if (*disable_patch && le16_to_cpu(cmd->opcode) == 0xfc8e) *disable_patch = 0; cmd_param = *fw_ptr; *fw_ptr += cmd->plen; remain -= cmd->plen; /* This reads the expected events when the above command is sent to the * device. Some vendor commands expects more than one events, for * example command status event followed by vendor specific event. * For this case, it only keeps the last expected event. so the command * can be sent with __hci_cmd_sync_ev() which returns the sk_buff of * last expected event. */ while (remain > HCI_EVENT_HDR_SIZE && *fw_ptr[0] == 0x02) { (*fw_ptr)++; remain--; evt = (struct hci_event_hdr *)(*fw_ptr); *fw_ptr += sizeof(*evt); remain -= sizeof(*evt); if (remain < evt->plen) { bt_dev_err(hdev, "Intel fw corrupted: invalid evt len"); return -EFAULT; } evt_param = *fw_ptr; *fw_ptr += evt->plen; remain -= evt->plen; } /* Every HCI commands in the firmware file has its correspond event. * If event is not found or remain is smaller than zero, the firmware * file is corrupted. */ if (!evt || !evt_param || remain < 0) { bt_dev_err(hdev, "Intel fw corrupted: invalid evt read"); return -EFAULT; } skb = __hci_cmd_sync_ev(hdev, le16_to_cpu(cmd->opcode), cmd->plen, cmd_param, evt->evt, HCI_INIT_TIMEOUT); if (IS_ERR(skb)) { bt_dev_err(hdev, "sending Intel patch command (0x%4.4x) failed (%ld)", cmd->opcode, PTR_ERR(skb)); return PTR_ERR(skb); } /* It ensures that the returned event matches the event data read from * the firmware file. At fist, it checks the length and then * the contents of the event. */ if (skb->len != evt->plen) { bt_dev_err(hdev, "mismatch event length (opcode 0x%4.4x)", le16_to_cpu(cmd->opcode)); kfree_skb(skb); return -EFAULT; } if (memcmp(skb->data, evt_param, evt->plen)) { bt_dev_err(hdev, "mismatch event parameter (opcode 0x%4.4x)", le16_to_cpu(cmd->opcode)); kfree_skb(skb); return -EFAULT; } kfree_skb(skb); return 0; } static int btintel_legacy_rom_setup(struct hci_dev *hdev, struct intel_version *ver) { const struct firmware *fw; const u8 *fw_ptr; int disable_patch, err; struct intel_version new_ver; BT_DBG("%s", hdev->name); /* fw_patch_num indicates the version of patch the device currently * have. If there is no patch data in the device, it is always 0x00. * So, if it is other than 0x00, no need to patch the device again. */ if (ver->fw_patch_num) { bt_dev_info(hdev, "Intel device is already patched. patch num: %02x", ver->fw_patch_num); goto complete; } /* Opens the firmware patch file based on the firmware version read * from the controller. If it fails to open the matching firmware * patch file, it tries to open the default firmware patch file. * If no patch file is found, allow the device to operate without * a patch. */ fw = btintel_legacy_rom_get_fw(hdev, ver); if (!fw) goto complete; fw_ptr = fw->data; /* Enable the manufacturer mode of the controller. * Only while this mode is enabled, the driver can download the * firmware patch data and configuration parameters. */ err = btintel_enter_mfg(hdev); if (err) { release_firmware(fw); return err; } disable_patch = 1; /* The firmware data file consists of list of Intel specific HCI * commands and its expected events. The first byte indicates the * type of the message, either HCI command or HCI event. * * It reads the command and its expected event from the firmware file, * and send to the controller. Once __hci_cmd_sync_ev() returns, * the returned event is compared with the event read from the firmware * file and it will continue until all the messages are downloaded to * the controller. * * Once the firmware patching is completed successfully, * the manufacturer mode is disabled with reset and activating the * downloaded patch. * * If the firmware patching fails, the manufacturer mode is * disabled with reset and deactivating the patch. * * If the default patch file is used, no reset is done when disabling * the manufacturer. */ while (fw->size > fw_ptr - fw->data) { int ret; ret = btintel_legacy_rom_patching(hdev, fw, &fw_ptr, &disable_patch); if (ret < 0) goto exit_mfg_deactivate; } release_firmware(fw); if (disable_patch) goto exit_mfg_disable; /* Patching completed successfully and disable the manufacturer mode * with reset and activate the downloaded firmware patches. */ err = btintel_exit_mfg(hdev, true, true); if (err) return err; /* Need build number for downloaded fw patches in * every power-on boot */ err = btintel_read_version(hdev, &new_ver); if (err) return err; bt_dev_info(hdev, "Intel BT fw patch 0x%02x completed & activated", new_ver.fw_patch_num); goto complete; exit_mfg_disable: /* Disable the manufacturer mode without reset */ err = btintel_exit_mfg(hdev, false, false); if (err) return err; bt_dev_info(hdev, "Intel firmware patch completed"); goto complete; exit_mfg_deactivate: release_firmware(fw); /* Patching failed. Disable the manufacturer mode with reset and * deactivate the downloaded firmware patches. */ err = btintel_exit_mfg(hdev, true, false); if (err) return err; bt_dev_info(hdev, "Intel firmware patch completed and deactivated"); complete: /* Set the event mask for Intel specific vendor events. This enables * a few extra events that are useful during general operation. */ btintel_set_event_mask_mfg(hdev, false); btintel_check_bdaddr(hdev); return 0; } static int btintel_download_wait(struct hci_dev *hdev, ktime_t calltime, int msec) { ktime_t delta, rettime; unsigned long long duration; int err; btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED); bt_dev_info(hdev, "Waiting for firmware download to complete"); err = btintel_wait_on_flag_timeout(hdev, INTEL_DOWNLOADING, TASK_INTERRUPTIBLE, msecs_to_jiffies(msec)); if (err == -EINTR) { bt_dev_err(hdev, "Firmware loading interrupted"); return err; } if (err) { bt_dev_err(hdev, "Firmware loading timeout"); return -ETIMEDOUT; } if (btintel_test_flag(hdev, INTEL_FIRMWARE_FAILED)) { bt_dev_err(hdev, "Firmware loading failed"); return -ENOEXEC; } rettime = ktime_get(); delta = ktime_sub(rettime, calltime); duration = (unsigned long long)ktime_to_ns(delta) >> 10; bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration); return 0; } static int btintel_boot_wait(struct hci_dev *hdev, ktime_t calltime, int msec) { ktime_t delta, rettime; unsigned long long duration; int err; bt_dev_info(hdev, "Waiting for device to boot"); err = btintel_wait_on_flag_timeout(hdev, INTEL_BOOTING, TASK_INTERRUPTIBLE, msecs_to_jiffies(msec)); if (err == -EINTR) { bt_dev_err(hdev, "Device boot interrupted"); return -EINTR; } if (err) { bt_dev_err(hdev, "Device boot timeout"); return -ETIMEDOUT; } rettime = ktime_get(); delta = ktime_sub(rettime, calltime); duration = (unsigned long long) ktime_to_ns(delta) >> 10; bt_dev_info(hdev, "Device booted in %llu usecs", duration); return 0; } static int btintel_boot_wait_d0(struct hci_dev *hdev, ktime_t calltime, int msec) { ktime_t delta, rettime; unsigned long long duration; int err; bt_dev_info(hdev, "Waiting for device transition to d0"); err = btintel_wait_on_flag_timeout(hdev, INTEL_WAIT_FOR_D0, TASK_INTERRUPTIBLE, msecs_to_jiffies(msec)); if (err == -EINTR) { bt_dev_err(hdev, "Device d0 move interrupted"); return -EINTR; } if (err) { bt_dev_err(hdev, "Device d0 move timeout"); return -ETIMEDOUT; } rettime = ktime_get(); delta = ktime_sub(rettime, calltime); duration = (unsigned long long)ktime_to_ns(delta) >> 10; bt_dev_info(hdev, "Device moved to D0 in %llu usecs", duration); return 0; } static int btintel_boot(struct hci_dev *hdev, u32 boot_addr) { ktime_t calltime; int err; calltime = ktime_get(); btintel_set_flag(hdev, INTEL_BOOTING); btintel_set_flag(hdev, INTEL_WAIT_FOR_D0); err = btintel_send_intel_reset(hdev, boot_addr); if (err) { bt_dev_err(hdev, "Intel Soft Reset failed (%d)", err); btintel_reset_to_bootloader(hdev); return err; } /* The bootloader will not indicate when the device is ready. This * is done by the operational firmware sending bootup notification. * * Booting into operational firmware should not take longer than * 5 second. However if that happens, then just fail the setup * since something went wrong. */ err = btintel_boot_wait(hdev, calltime, 5000); if (err == -ETIMEDOUT) { btintel_reset_to_bootloader(hdev); goto exit_error; } if (hdev->bus == HCI_PCI) { /* In case of PCIe, after receiving bootup event, driver performs * D0 entry by writing 0 to sleep control register (check * btintel_pcie_recv_event()) * Firmware acks with alive interrupt indicating host is full ready to * perform BT operation. Lets wait here till INTEL_WAIT_FOR_D0 * bit is cleared. */ calltime = ktime_get(); err = btintel_boot_wait_d0(hdev, calltime, 2000); } exit_error: return err; } static int btintel_get_fw_name(struct intel_version *ver, struct intel_boot_params *params, char *fw_name, size_t len, const char *suffix) { switch (ver->hw_variant) { case 0x0b: /* SfP */ case 0x0c: /* WsP */ snprintf(fw_name, len, "intel/ibt-%u-%u.%s", ver->hw_variant, le16_to_cpu(params->dev_revid), suffix); break; case 0x11: /* JfP */ case 0x12: /* ThP */ case 0x13: /* HrP */ case 0x14: /* CcP */ snprintf(fw_name, len, "intel/ibt-%u-%u-%u.%s", ver->hw_variant, ver->hw_revision, ver->fw_revision, suffix); break; default: return -EINVAL; } return 0; } static int btintel_download_fw(struct hci_dev *hdev, struct intel_version *ver, struct intel_boot_params *params, u32 *boot_param) { const struct firmware *fw; char fwname[64]; int err; ktime_t calltime; if (!ver || !params) return -EINVAL; /* The firmware variant determines if the device is in bootloader * mode or is running operational firmware. The value 0x06 identifies * the bootloader and the value 0x23 identifies the operational * firmware. * * When the operational firmware is already present, then only * the check for valid Bluetooth device address is needed. This * determines if the device will be added as configured or * unconfigured controller. * * It is not possible to use the Secure Boot Parameters in this * case since that command is only available in bootloader mode. */ if (ver->fw_variant == 0x23) { btintel_clear_flag(hdev, INTEL_BOOTLOADER); btintel_check_bdaddr(hdev); /* SfP and WsP don't seem to update the firmware version on file * so version checking is currently possible. */ switch (ver->hw_variant) { case 0x0b: /* SfP */ case 0x0c: /* WsP */ return 0; } /* Proceed to download to check if the version matches */ goto download; } /* Read the secure boot parameters to identify the operating * details of the bootloader. */ err = btintel_read_boot_params(hdev, params); if (err) return err; /* It is required that every single firmware fragment is acknowledged * with a command complete event. If the boot parameters indicate * that this bootloader does not send them, then abort the setup. */ if (params->limited_cce != 0x00) { bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)", params->limited_cce); return -EINVAL; } /* If the OTP has no valid Bluetooth device address, then there will * also be no valid address for the operational firmware. */ if (!bacmp(¶ms->otp_bdaddr, BDADDR_ANY)) { bt_dev_info(hdev, "No device address configured"); set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks); } download: /* With this Intel bootloader only the hardware variant and device * revision information are used to select the right firmware for SfP * and WsP. * * The firmware filename is ibt--.sfi. * * Currently the supported hardware variants are: * 11 (0x0b) for iBT3.0 (LnP/SfP) * 12 (0x0c) for iBT3.5 (WsP) * * For ThP/JfP and for future SKU's, the FW name varies based on HW * variant, HW revision and FW revision, as these are dependent on CNVi * and RF Combination. * * 17 (0x11) for iBT3.5 (JfP) * 18 (0x12) for iBT3.5 (ThP) * * The firmware file name for these will be * ibt---.sfi. * */ err = btintel_get_fw_name(ver, params, fwname, sizeof(fwname), "sfi"); if (err < 0) { if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) { /* Firmware has already been loaded */ btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED); return 0; } bt_dev_err(hdev, "Unsupported Intel firmware naming"); return -EINVAL; } err = firmware_request_nowarn(&fw, fwname, &hdev->dev); if (err < 0) { if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) { /* Firmware has already been loaded */ btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED); return 0; } bt_dev_err(hdev, "Failed to load Intel firmware file %s (%d)", fwname, err); return err; } bt_dev_info(hdev, "Found device firmware: %s", fwname); if (fw->size < 644) { bt_dev_err(hdev, "Invalid size of firmware file (%zu)", fw->size); err = -EBADF; goto done; } calltime = ktime_get(); btintel_set_flag(hdev, INTEL_DOWNLOADING); /* Start firmware downloading and get boot parameter */ err = btintel_download_firmware(hdev, ver, fw, boot_param); if (err < 0) { if (err == -EALREADY) { /* Firmware has already been loaded */ btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED); err = 0; goto done; } /* When FW download fails, send Intel Reset to retry * FW download. */ btintel_reset_to_bootloader(hdev); goto done; } /* Before switching the device into operational mode and with that * booting the loaded firmware, wait for the bootloader notification * that all fragments have been successfully received. * * When the event processing receives the notification, then the * INTEL_DOWNLOADING flag will be cleared. * * The firmware loading should not take longer than 5 seconds * and thus just timeout if that happens and fail the setup * of this device. */ err = btintel_download_wait(hdev, calltime, 5000); if (err == -ETIMEDOUT) btintel_reset_to_bootloader(hdev); done: release_firmware(fw); return err; } static int btintel_bootloader_setup(struct hci_dev *hdev, struct intel_version *ver) { struct intel_version new_ver; struct intel_boot_params params; u32 boot_param; char ddcname[64]; int err; BT_DBG("%s", hdev->name); /* Set the default boot parameter to 0x0 and it is updated to * SKU specific boot parameter after reading Intel_Write_Boot_Params * command while downloading the firmware. */ boot_param = 0x00000000; btintel_set_flag(hdev, INTEL_BOOTLOADER); err = btintel_download_fw(hdev, ver, ¶ms, &boot_param); if (err) return err; /* controller is already having an operational firmware */ if (ver->fw_variant == 0x23) goto finish; err = btintel_boot(hdev, boot_param); if (err) return err; btintel_clear_flag(hdev, INTEL_BOOTLOADER); err = btintel_get_fw_name(ver, ¶ms, ddcname, sizeof(ddcname), "ddc"); if (err < 0) { bt_dev_err(hdev, "Unsupported Intel firmware naming"); } else { /* Once the device is running in operational mode, it needs to * apply the device configuration (DDC) parameters. * * The device can work without DDC parameters, so even if it * fails to load the file, no need to fail the setup. */ btintel_load_ddc_config(hdev, ddcname); } hci_dev_clear_flag(hdev, HCI_QUALITY_REPORT); /* Read the Intel version information after loading the FW */ err = btintel_read_version(hdev, &new_ver); if (err) return err; btintel_version_info(hdev, &new_ver); finish: /* Set the event mask for Intel specific vendor events. This enables * a few extra events that are useful during general operation. It * does not enable any debugging related events. * * The device will function correctly without these events enabled * and thus no need to fail the setup. */ btintel_set_event_mask(hdev, false); return 0; } static void btintel_get_fw_name_tlv(const struct intel_version_tlv *ver, char *fw_name, size_t len, const char *suffix) { const char *format; u32 cnvi, cnvr; cnvi = INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvi_top), INTEL_CNVX_TOP_STEP(ver->cnvi_top)); cnvr = INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvr_top), INTEL_CNVX_TOP_STEP(ver->cnvr_top)); /* Only Blazar product supports downloading of intermediate loader * image */ if (INTEL_HW_VARIANT(ver->cnvi_bt) >= 0x1e) { u8 zero[BTINTEL_FWID_MAXLEN]; if (ver->img_type == BTINTEL_IMG_BOOTLOADER) { format = "intel/ibt-%04x-%04x-iml.%s"; snprintf(fw_name, len, format, cnvi, cnvr, suffix); return; } memset(zero, 0, sizeof(zero)); /* ibt-- */ if (memcmp(ver->fw_id, zero, sizeof(zero))) { format = "intel/ibt-%04x-%04x-%s.%s"; snprintf(fw_name, len, format, cnvi, cnvr, ver->fw_id, suffix); return; } /* If firmware id is not present, fallback to legacy naming * convention */ } /* Fallback to legacy naming convention for other controllers * ibt-- */ format = "intel/ibt-%04x-%04x.%s"; snprintf(fw_name, len, format, cnvi, cnvr, suffix); } static void btintel_get_iml_tlv(const struct intel_version_tlv *ver, char *fw_name, size_t len, const char *suffix) { const char *format; u32 cnvi, cnvr; cnvi = INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvi_top), INTEL_CNVX_TOP_STEP(ver->cnvi_top)); cnvr = INTEL_CNVX_TOP_PACK_SWAB(INTEL_CNVX_TOP_TYPE(ver->cnvr_top), INTEL_CNVX_TOP_STEP(ver->cnvr_top)); format = "intel/ibt-%04x-%04x-iml.%s"; snprintf(fw_name, len, format, cnvi, cnvr, suffix); } static int btintel_prepare_fw_download_tlv(struct hci_dev *hdev, struct intel_version_tlv *ver, u32 *boot_param) { const struct firmware *fw; char fwname[128]; int err; ktime_t calltime; if (!ver || !boot_param) return -EINVAL; /* The firmware variant determines if the device is in bootloader * mode or is running operational firmware. The value 0x03 identifies * the bootloader and the value 0x23 identifies the operational * firmware. * * When the operational firmware is already present, then only * the check for valid Bluetooth device address is needed. This * determines if the device will be added as configured or * unconfigured controller. * * It is not possible to use the Secure Boot Parameters in this * case since that command is only available in bootloader mode. */ if (ver->img_type == BTINTEL_IMG_OP) { btintel_clear_flag(hdev, INTEL_BOOTLOADER); btintel_check_bdaddr(hdev); } else { /* * Check for valid bd address in boot loader mode. Device * will be marked as unconfigured if empty bd address is * found. */ if (!bacmp(&ver->otp_bd_addr, BDADDR_ANY)) { bt_dev_info(hdev, "No device address configured"); set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks); } } if (ver->img_type == BTINTEL_IMG_OP) { /* Controller running OP image. In case of FW downgrade, * FWID TLV may not be present and driver may attempt to load * firmware image which doesn't exist. Lets compare the version * of IML image */ if (INTEL_HW_VARIANT(ver->cnvi_bt) >= 0x1e) btintel_get_iml_tlv(ver, fwname, sizeof(fwname), "sfi"); else btintel_get_fw_name_tlv(ver, fwname, sizeof(fwname), "sfi"); } else { btintel_get_fw_name_tlv(ver, fwname, sizeof(fwname), "sfi"); } err = firmware_request_nowarn(&fw, fwname, &hdev->dev); if (err < 0) { if (!btintel_test_flag(hdev, INTEL_BOOTLOADER)) { /* Firmware has already been loaded */ btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED); return 0; } bt_dev_err(hdev, "Failed to load Intel firmware file %s (%d)", fwname, err); return err; } bt_dev_info(hdev, "Found device firmware: %s", fwname); if (fw->size < 644) { bt_dev_err(hdev, "Invalid size of firmware file (%zu)", fw->size); err = -EBADF; goto done; } calltime = ktime_get(); btintel_set_flag(hdev, INTEL_DOWNLOADING); /* Start firmware downloading and get boot parameter */ err = btintel_download_fw_tlv(hdev, ver, fw, boot_param, INTEL_HW_VARIANT(ver->cnvi_bt), ver->sbe_type); if (err < 0) { if (err == -EALREADY) { /* Firmware has already been loaded */ btintel_set_flag(hdev, INTEL_FIRMWARE_LOADED); err = 0; goto done; } /* When FW download fails, send Intel Reset to retry * FW download. */ btintel_reset_to_bootloader(hdev); goto done; } /* Before switching the device into operational mode and with that * booting the loaded firmware, wait for the bootloader notification * that all fragments have been successfully received. * * When the event processing receives the notification, then the * BTUSB_DOWNLOADING flag will be cleared. * * The firmware loading should not take longer than 5 seconds * and thus just timeout if that happens and fail the setup * of this device. */ err = btintel_download_wait(hdev, calltime, 5000); if (err == -ETIMEDOUT) btintel_reset_to_bootloader(hdev); done: release_firmware(fw); return err; } static int btintel_get_codec_config_data(struct hci_dev *hdev, __u8 link, struct bt_codec *codec, __u8 *ven_len, __u8 **ven_data) { int err = 0; if (!ven_data || !ven_len) return -EINVAL; *ven_len = 0; *ven_data = NULL; if (link != ESCO_LINK) { bt_dev_err(hdev, "Invalid link type(%u)", link); return -EINVAL; } *ven_data = kmalloc(sizeof(__u8), GFP_KERNEL); if (!*ven_data) { err = -ENOMEM; goto error; } /* supports only CVSD and mSBC offload codecs */ switch (codec->id) { case 0x02: **ven_data = 0x00; break; case 0x05: **ven_data = 0x01; break; default: err = -EINVAL; bt_dev_err(hdev, "Invalid codec id(%u)", codec->id); goto error; } /* codec and its capabilities are pre-defined to ids * preset id = 0x00 represents CVSD codec with sampling rate 8K * preset id = 0x01 represents mSBC codec with sampling rate 16K */ *ven_len = sizeof(__u8); return err; error: kfree(*ven_data); *ven_data = NULL; return err; } static int btintel_get_data_path_id(struct hci_dev *hdev, __u8 *data_path_id) { /* Intel uses 1 as data path id for all the usecases */ *data_path_id = 1; return 0; } static int btintel_configure_offload(struct hci_dev *hdev) { struct sk_buff *skb; int err = 0; struct intel_offload_use_cases *use_cases; skb = __hci_cmd_sync(hdev, 0xfc86, 0, NULL, HCI_INIT_TIMEOUT); if (IS_ERR(skb)) { bt_dev_err(hdev, "Reading offload use cases failed (%ld)", PTR_ERR(skb)); return PTR_ERR(skb); } if (skb->len < sizeof(*use_cases)) { err = -EIO; goto error; } use_cases = (void *)skb->data; if (use_cases->status) { err = -bt_to_errno(skb->data[0]); goto error; } if (use_cases->preset[0] & 0x03) { hdev->get_data_path_id = btintel_get_data_path_id; hdev->get_codec_config_data = btintel_get_codec_config_data; } error: kfree_skb(skb); return err; } static void btintel_set_ppag(struct hci_dev *hdev, struct intel_version_tlv *ver) { struct sk_buff *skb; struct hci_ppag_enable_cmd ppag_cmd; acpi_handle handle; struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL}; union acpi_object *p, *elements; u32 domain, mode; acpi_status status; /* PPAG is not supported if CRF is HrP2, Jfp2, JfP1 */ switch (ver->cnvr_top & 0xFFF) { case 0x504: /* Hrp2 */ case 0x202: /* Jfp2 */ case 0x201: /* Jfp1 */ bt_dev_dbg(hdev, "PPAG not supported for Intel CNVr (0x%3x)", ver->cnvr_top & 0xFFF); return; } handle = ACPI_HANDLE(GET_HCIDEV_DEV(hdev)); if (!handle) { bt_dev_info(hdev, "No support for BT device in ACPI firmware"); return; } status = acpi_evaluate_object(handle, "PPAG", NULL, &buffer); if (ACPI_FAILURE(status)) { if (status == AE_NOT_FOUND) { bt_dev_dbg(hdev, "PPAG-BT: ACPI entry not found"); return; } bt_dev_warn(hdev, "PPAG-BT: ACPI Failure: %s", acpi_format_exception(status)); return; } p = buffer.pointer; if (p->type != ACPI_TYPE_PACKAGE || p->package.count != 2) { bt_dev_warn(hdev, "PPAG-BT: Invalid object type: %d or package count: %d", p->type, p->package.count); kfree(buffer.pointer); return; } elements = p->package.elements; /* PPAG table is located at element[1] */ p = &elements[1]; domain = (u32)p->package.elements[0].integer.value; mode = (u32)p->package.elements[1].integer.value; kfree(buffer.pointer); if (domain != 0x12) { bt_dev_dbg(hdev, "PPAG-BT: Bluetooth domain is disabled in ACPI firmware"); return; } /* PPAG mode * BIT 0 : 0 Disabled in EU * 1 Enabled in EU * BIT 1 : 0 Disabled in China * 1 Enabled in China */ mode &= 0x03; if (!mode) { bt_dev_dbg(hdev, "PPAG-BT: EU, China mode are disabled in BIOS"); return; } ppag_cmd.ppag_enable_flags = cpu_to_le32(mode); skb = __hci_cmd_sync(hdev, INTEL_OP_PPAG_CMD, sizeof(ppag_cmd), &ppag_cmd, HCI_CMD_TIMEOUT); if (IS_ERR(skb)) { bt_dev_warn(hdev, "Failed to send PPAG Enable (%ld)", PTR_ERR(skb)); return; } bt_dev_info(hdev, "PPAG-BT: Enabled (Mode %d)", mode); kfree_skb(skb); } static int btintel_acpi_reset_method(struct hci_dev *hdev) { int ret = 0; acpi_status status; union acpi_object *p, *ref; struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; status = acpi_evaluate_object(ACPI_HANDLE(GET_HCIDEV_DEV(hdev)), "_PRR", NULL, &buffer); if (ACPI_FAILURE(status)) { bt_dev_err(hdev, "Failed to run _PRR method"); ret = -ENODEV; return ret; } p = buffer.pointer; if (p->package.count != 1 || p->type != ACPI_TYPE_PACKAGE) { bt_dev_err(hdev, "Invalid arguments"); ret = -EINVAL; goto exit_on_error; } ref = &p->package.elements[0]; if (ref->type != ACPI_TYPE_LOCAL_REFERENCE) { bt_dev_err(hdev, "Invalid object type: 0x%x", ref->type); ret = -EINVAL; goto exit_on_error; } status = acpi_evaluate_object(ref->reference.handle, "_RST", NULL, NULL); if (ACPI_FAILURE(status)) { bt_dev_err(hdev, "Failed to run_RST method"); ret = -ENODEV; goto exit_on_error; } exit_on_error: kfree(buffer.pointer); return ret; } static void btintel_set_dsm_reset_method(struct hci_dev *hdev, struct intel_version_tlv *ver_tlv) { struct btintel_data *data = hci_get_priv(hdev); acpi_handle handle = ACPI_HANDLE(GET_HCIDEV_DEV(hdev)); u8 reset_payload[4] = {0x01, 0x00, 0x01, 0x00}; union acpi_object *obj, argv4; enum { RESET_TYPE_WDISABLE2, RESET_TYPE_VSEC }; handle = ACPI_HANDLE(GET_HCIDEV_DEV(hdev)); if (!handle) { bt_dev_dbg(hdev, "No support for bluetooth device in ACPI firmware"); return; } if (!acpi_has_method(handle, "_PRR")) { bt_dev_err(hdev, "No support for _PRR ACPI method"); return; } switch (ver_tlv->cnvi_top & 0xfff) { case 0x910: /* GalePeak2 */ reset_payload[2] = RESET_TYPE_VSEC; break; default: /* WDISABLE2 is the default reset method */ reset_payload[2] = RESET_TYPE_WDISABLE2; if (!acpi_check_dsm(handle, &btintel_guid_dsm, 0, BIT(DSM_SET_WDISABLE2_DELAY))) { bt_dev_err(hdev, "No dsm support to set reset delay"); return; } argv4.integer.type = ACPI_TYPE_INTEGER; /* delay required to toggle BT power */ argv4.integer.value = 160; obj = acpi_evaluate_dsm(handle, &btintel_guid_dsm, 0, DSM_SET_WDISABLE2_DELAY, &argv4); if (!obj) { bt_dev_err(hdev, "Failed to call dsm to set reset delay"); return; } ACPI_FREE(obj); } bt_dev_info(hdev, "DSM reset method type: 0x%02x", reset_payload[2]); if (!acpi_check_dsm(handle, &btintel_guid_dsm, 0, DSM_SET_RESET_METHOD)) { bt_dev_warn(hdev, "No support for dsm to set reset method"); return; } argv4.buffer.type = ACPI_TYPE_BUFFER; argv4.buffer.length = sizeof(reset_payload); argv4.buffer.pointer = reset_payload; obj = acpi_evaluate_dsm(handle, &btintel_guid_dsm, 0, DSM_SET_RESET_METHOD, &argv4); if (!obj) { bt_dev_err(hdev, "Failed to call dsm to set reset method"); return; } ACPI_FREE(obj); data->acpi_reset_method = btintel_acpi_reset_method; } #define BTINTEL_ISODATA_HANDLE_BASE 0x900 static u8 btintel_classify_pkt_type(struct hci_dev *hdev, struct sk_buff *skb) { /* * Distinguish ISO data packets form ACL data packets * based on their connection handle value range. */ if (hci_skb_pkt_type(skb) == HCI_ACLDATA_PKT) { __u16 handle = __le16_to_cpu(hci_acl_hdr(skb)->handle); if (hci_handle(handle) >= BTINTEL_ISODATA_HANDLE_BASE) return HCI_ISODATA_PKT; } return hci_skb_pkt_type(skb); } /* * UefiCnvCommonDSBR UEFI variable provides information from the OEM platforms * if they have replaced the BRI (Bluetooth Radio Interface) resistor to * overcome the potential STEP errors on their designs. Based on the * configauration, bluetooth firmware shall adjust the BRI response line drive * strength. The below structure represents DSBR data. * struct { * u8 header; * u32 dsbr; * } __packed; * * header - defines revision number of the structure * dsbr - defines drive strength BRI response * bit0 * 0 - instructs bluetooth firmware to use default values * 1 - instructs bluetooth firmware to override default values * bit3:1 * Reserved * bit7:4 * DSBR override values (only if bit0 is set. Default value is 0xF * bit31:7 * Reserved * Expected values for dsbr field: * 1. 0xF1 - indicates that the resistor on board is 33 Ohm * 2. 0x00 or 0xB1 - indicates that the resistor on board is 10 Ohm * 3. Non existing UEFI variable or invalid (none of the above) - indicates * that the resistor on board is 10 Ohm * Even if uefi variable is not present, driver shall send 0xfc0a command to * firmware to use default values. * */ static int btintel_uefi_get_dsbr(u32 *dsbr_var) { struct btintel_dsbr { u8 header; u32 dsbr; } __packed data; efi_status_t status; unsigned long data_size = 0; efi_guid_t guid = EFI_GUID(0xe65d8884, 0xd4af, 0x4b20, 0x8d, 0x03, 0x77, 0x2e, 0xcc, 0x3d, 0xa5, 0x31); if (!IS_ENABLED(CONFIG_EFI)) return -EOPNOTSUPP; if (!efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE)) return -EOPNOTSUPP; status = efi.get_variable(BTINTEL_EFI_DSBR, &guid, NULL, &data_size, NULL); if (status != EFI_BUFFER_TOO_SMALL || !data_size) return -EIO; status = efi.get_variable(BTINTEL_EFI_DSBR, &guid, NULL, &data_size, &data); if (status != EFI_SUCCESS) return -ENXIO; *dsbr_var = data.dsbr; return 0; } static int btintel_set_dsbr(struct hci_dev *hdev, struct intel_version_tlv *ver) { struct btintel_dsbr_cmd { u8 enable; u8 dsbr; } __packed; struct btintel_dsbr_cmd cmd; struct sk_buff *skb; u32 dsbr, cnvi; u8 status; int err; cnvi = ver->cnvi_top & 0xfff; /* DSBR command needs to be sent for, * 1. BlazarI or BlazarIW + B0 step product in IML image. * 2. Gale Peak2 or BlazarU in OP image. */ switch (cnvi) { case BTINTEL_CNVI_BLAZARI: case BTINTEL_CNVI_BLAZARIW: if (ver->img_type == BTINTEL_IMG_IML && INTEL_CNVX_TOP_STEP(ver->cnvi_top) == 0x01) break; return 0; case BTINTEL_CNVI_GAP: case BTINTEL_CNVI_BLAZARU: if (ver->img_type == BTINTEL_IMG_OP && hdev->bus == HCI_USB) break; return 0; default: return 0; } dsbr = 0; err = btintel_uefi_get_dsbr(&dsbr); if (err < 0) bt_dev_dbg(hdev, "Error reading efi: %ls (%d)", BTINTEL_EFI_DSBR, err); cmd.enable = dsbr & BIT(0); cmd.dsbr = dsbr >> 4 & 0xF; bt_dev_info(hdev, "dsbr: enable: 0x%2.2x value: 0x%2.2x", cmd.enable, cmd.dsbr); skb = __hci_cmd_sync(hdev, 0xfc0a, sizeof(cmd), &cmd, HCI_CMD_TIMEOUT); if (IS_ERR(skb)) return -bt_to_errno(PTR_ERR(skb)); status = skb->data[0]; kfree_skb(skb); if (status) return -bt_to_errno(status); return 0; } int btintel_bootloader_setup_tlv(struct hci_dev *hdev, struct intel_version_tlv *ver) { u32 boot_param; char ddcname[64]; int err; struct intel_version_tlv new_ver; bt_dev_dbg(hdev, ""); /* Set the default boot parameter to 0x0 and it is updated to * SKU specific boot parameter after reading Intel_Write_Boot_Params * command while downloading the firmware. */ boot_param = 0x00000000; /* In case of PCIe, this function might get called multiple times with * same hdev instance if there is any error on firmware download. * Need to clear stale bits of previous firmware download attempt. */ for (int i = 0; i < __INTEL_NUM_FLAGS; i++) btintel_clear_flag(hdev, i); btintel_set_flag(hdev, INTEL_BOOTLOADER); err = btintel_prepare_fw_download_tlv(hdev, ver, &boot_param); if (err) return err; /* check if controller is already having an operational firmware */ if (ver->img_type == BTINTEL_IMG_OP) goto finish; err = btintel_boot(hdev, boot_param); if (err) return err; err = btintel_read_version_tlv(hdev, ver); if (err) return err; /* set drive strength of BRI response */ err = btintel_set_dsbr(hdev, ver); if (err) { bt_dev_err(hdev, "Failed to send dsbr command (%d)", err); return err; } /* If image type returned is BTINTEL_IMG_IML, then controller supports * intermediate loader image */ if (ver->img_type == BTINTEL_IMG_IML) { err = btintel_prepare_fw_download_tlv(hdev, ver, &boot_param); if (err) return err; err = btintel_boot(hdev, boot_param); if (err) return err; } btintel_clear_flag(hdev, INTEL_BOOTLOADER); btintel_get_fw_name_tlv(ver, ddcname, sizeof(ddcname), "ddc"); /* Once the device is running in operational mode, it needs to * apply the device configuration (DDC) parameters. * * The device can work without DDC parameters, so even if it * fails to load the file, no need to fail the setup. */ btintel_load_ddc_config(hdev, ddcname); /* Read supported use cases and set callbacks to fetch datapath id */ btintel_configure_offload(hdev); hci_dev_clear_flag(hdev, HCI_QUALITY_REPORT); /* Set PPAG feature */ btintel_set_ppag(hdev, ver); /* Read the Intel version information after loading the FW */ err = btintel_read_version_tlv(hdev, &new_ver); if (err) return err; btintel_version_info_tlv(hdev, &new_ver); finish: /* Set the event mask for Intel specific vendor events. This enables * a few extra events that are useful during general operation. It * does not enable any debugging related events. * * The device will function correctly without these events enabled * and thus no need to fail the setup. */ btintel_set_event_mask(hdev, false); return 0; } EXPORT_SYMBOL_GPL(btintel_bootloader_setup_tlv); void btintel_set_msft_opcode(struct hci_dev *hdev, u8 hw_variant) { switch (hw_variant) { /* Legacy bootloader devices that supports MSFT Extension */ case 0x11: /* JfP */ case 0x12: /* ThP */ case 0x13: /* HrP */ case 0x14: /* CcP */ /* All Intel new generation controllers support the Microsoft vendor * extension are using 0xFC1E for VsMsftOpCode. */ case 0x17: case 0x18: case 0x19: case 0x1b: case 0x1c: case 0x1d: case 0x1e: hci_set_msft_opcode(hdev, 0xFC1E); break; default: /* Not supported */ break; } } EXPORT_SYMBOL_GPL(btintel_set_msft_opcode); void btintel_print_fseq_info(struct hci_dev *hdev) { struct sk_buff *skb; u8 *p; u32 val; const char *str; skb = __hci_cmd_sync(hdev, 0xfcb3, 0, NULL, HCI_CMD_TIMEOUT); if (IS_ERR(skb)) { bt_dev_dbg(hdev, "Reading fseq status command failed (%ld)", PTR_ERR(skb)); return; } if (skb->len < (sizeof(u32) * 16 + 2)) { bt_dev_dbg(hdev, "Malformed packet of length %u received", skb->len); kfree_skb(skb); return; } p = skb_pull_data(skb, 1); if (*p) { bt_dev_dbg(hdev, "Failed to get fseq status (0x%2.2x)", *p); kfree_skb(skb); return; } p = skb_pull_data(skb, 1); switch (*p) { case 0: str = "Success"; break; case 1: str = "Fatal error"; break; case 2: str = "Semaphore acquire error"; break; default: str = "Unknown error"; break; } if (*p) { bt_dev_err(hdev, "Fseq status: %s (0x%2.2x)", str, *p); kfree_skb(skb); return; } bt_dev_info(hdev, "Fseq status: %s (0x%2.2x)", str, *p); val = get_unaligned_le32(skb_pull_data(skb, 4)); bt_dev_dbg(hdev, "Reason: 0x%8.8x", val); val = get_unaligned_le32(skb_pull_data(skb, 4)); bt_dev_dbg(hdev, "Global version: 0x%8.8x", val); val = get_unaligned_le32(skb_pull_data(skb, 4)); bt_dev_dbg(hdev, "Installed version: 0x%8.8x", val); p = skb->data; skb_pull_data(skb, 4); bt_dev_info(hdev, "Fseq executed: %2.2u.%2.2u.%2.2u.%2.2u", p[0], p[1], p[2], p[3]); p = skb->data; skb_pull_data(skb, 4); bt_dev_info(hdev, "Fseq BT Top: %2.2u.%2.2u.%2.2u.%2.2u", p[0], p[1], p[2], p[3]); val = get_unaligned_le32(skb_pull_data(skb, 4)); bt_dev_dbg(hdev, "Fseq Top init version: 0x%8.8x", val); val = get_unaligned_le32(skb_pull_data(skb, 4)); bt_dev_dbg(hdev, "Fseq Cnvio init version: 0x%8.8x", val); val = get_unaligned_le32(skb_pull_data(skb, 4)); bt_dev_dbg(hdev, "Fseq MBX Wifi file version: 0x%8.8x", val); val = get_unaligned_le32(skb_pull_data(skb, 4)); bt_dev_dbg(hdev, "Fseq BT version: 0x%8.8x", val); val = get_unaligned_le32(skb_pull_data(skb, 4)); bt_dev_dbg(hdev, "Fseq Top reset address: 0x%8.8x", val); val = get_unaligned_le32(skb_pull_data(skb, 4)); bt_dev_dbg(hdev, "Fseq MBX timeout: 0x%8.8x", val); val = get_unaligned_le32(skb_pull_data(skb, 4)); bt_dev_dbg(hdev, "Fseq MBX ack: 0x%8.8x", val); val = get_unaligned_le32(skb_pull_data(skb, 4)); bt_dev_dbg(hdev, "Fseq CNVi id: 0x%8.8x", val); val = get_unaligned_le32(skb_pull_data(skb, 4)); bt_dev_dbg(hdev, "Fseq CNVr id: 0x%8.8x", val); val = get_unaligned_le32(skb_pull_data(skb, 4)); bt_dev_dbg(hdev, "Fseq Error handle: 0x%8.8x", val); val = get_unaligned_le32(skb_pull_data(skb, 4)); bt_dev_dbg(hdev, "Fseq Magic noalive indication: 0x%8.8x", val); val = get_unaligned_le32(skb_pull_data(skb, 4)); bt_dev_dbg(hdev, "Fseq OTP version: 0x%8.8x", val); val = get_unaligned_le32(skb_pull_data(skb, 4)); bt_dev_dbg(hdev, "Fseq MBX otp version: 0x%8.8x", val); kfree_skb(skb); } EXPORT_SYMBOL_GPL(btintel_print_fseq_info); static int btintel_setup_combined(struct hci_dev *hdev) { const u8 param[1] = { 0xFF }; struct intel_version ver; struct intel_version_tlv ver_tlv; struct sk_buff *skb; int err; BT_DBG("%s", hdev->name); /* The some controllers have a bug with the first HCI command sent to it * returning number of completed commands as zero. This would stall the * command processing in the Bluetooth core. * * As a workaround, send HCI Reset command first which will reset the * number of completed commands and allow normal command processing * from now on. * * Regarding the INTEL_BROKEN_SHUTDOWN_LED flag, these devices maybe * in the SW_RFKILL ON state as a workaround of fixing LED issue during * the shutdown() procedure, and once the device is in SW_RFKILL ON * state, the only way to exit out of it is sending the HCI_Reset * command. */ if (btintel_test_flag(hdev, INTEL_BROKEN_INITIAL_NCMD) || btintel_test_flag(hdev, INTEL_BROKEN_SHUTDOWN_LED)) { skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT); if (IS_ERR(skb)) { bt_dev_err(hdev, "sending initial HCI reset failed (%ld)", PTR_ERR(skb)); return PTR_ERR(skb); } kfree_skb(skb); } /* Starting from TyP device, the command parameter and response are * changed even though the OCF for HCI_Intel_Read_Version command * remains same. The legacy devices can handle even if the * command has a parameter and returns a correct version information. * So, it uses new format to support both legacy and new format. */ skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT); if (IS_ERR(skb)) { bt_dev_err(hdev, "Reading Intel version command failed (%ld)", PTR_ERR(skb)); return PTR_ERR(skb); } /* Check the status */ if (skb->data[0]) { bt_dev_err(hdev, "Intel Read Version command failed (%02x)", skb->data[0]); err = -EIO; goto exit_error; } /* Apply the common HCI quirks for Intel device */ set_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks); set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks); set_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks); /* Set up the quality report callback for Intel devices */ hdev->set_quality_report = btintel_set_quality_report; /* For Legacy device, check the HW platform value and size */ if (skb->len == sizeof(ver) && skb->data[1] == 0x37) { bt_dev_dbg(hdev, "Read the legacy Intel version information"); memcpy(&ver, skb->data, sizeof(ver)); /* Display version information */ btintel_version_info(hdev, &ver); /* Check for supported iBT hardware variants of this firmware * loading method. * * This check has been put in place to ensure correct forward * compatibility options when newer hardware variants come * along. */ switch (ver.hw_variant) { case 0x07: /* WP */ case 0x08: /* StP */ /* Legacy ROM product */ btintel_set_flag(hdev, INTEL_ROM_LEGACY); /* Apply the device specific HCI quirks * * WBS for SdP - For the Legacy ROM products, only SdP * supports the WBS. But the version information is not * enough to use here because the StP2 and SdP have same * hw_variant and fw_variant. So, this flag is set by * the transport driver (btusb) based on the HW info * (idProduct) */ if (!btintel_test_flag(hdev, INTEL_ROM_LEGACY_NO_WBS_SUPPORT)) set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks); err = btintel_legacy_rom_setup(hdev, &ver); break; case 0x0b: /* SfP */ case 0x11: /* JfP */ case 0x12: /* ThP */ case 0x13: /* HrP */ case 0x14: /* CcP */ fallthrough; case 0x0c: /* WsP */ /* Apply the device specific HCI quirks * * All Legacy bootloader devices support WBS */ set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks); /* These variants don't seem to support LE Coded PHY */ set_bit(HCI_QUIRK_BROKEN_LE_CODED, &hdev->quirks); /* Setup MSFT Extension support */ btintel_set_msft_opcode(hdev, ver.hw_variant); err = btintel_bootloader_setup(hdev, &ver); btintel_register_devcoredump_support(hdev); break; default: bt_dev_err(hdev, "Unsupported Intel hw variant (%u)", ver.hw_variant); err = -EINVAL; } hci_set_hw_info(hdev, "INTEL platform=%u variant=%u revision=%u", ver.hw_platform, ver.hw_variant, ver.hw_revision); goto exit_error; } /* memset ver_tlv to start with clean state as few fields are exclusive * to bootloader mode and are not populated in operational mode */ memset(&ver_tlv, 0, sizeof(ver_tlv)); /* For TLV type device, parse the tlv data */ err = btintel_parse_version_tlv(hdev, &ver_tlv, skb); if (err) { bt_dev_err(hdev, "Failed to parse TLV version information"); goto exit_error; } if (INTEL_HW_PLATFORM(ver_tlv.cnvi_bt) != 0x37) { bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)", INTEL_HW_PLATFORM(ver_tlv.cnvi_bt)); err = -EINVAL; goto exit_error; } /* Check for supported iBT hardware variants of this firmware * loading method. * * This check has been put in place to ensure correct forward * compatibility options when newer hardware variants come * along. */ switch (INTEL_HW_VARIANT(ver_tlv.cnvi_bt)) { case 0x11: /* JfP */ case 0x12: /* ThP */ case 0x13: /* HrP */ case 0x14: /* CcP */ /* Some legacy bootloader devices starting from JfP, * the operational firmware supports both old and TLV based * HCI_Intel_Read_Version command based on the command * parameter. * * For upgrading firmware case, the TLV based version cannot * be used because the firmware filename for legacy bootloader * is based on the old format. * * Also, it is not easy to convert TLV based version from the * legacy version format. * * So, as a workaround for those devices, use the legacy * HCI_Intel_Read_Version to get the version information and * run the legacy bootloader setup. */ err = btintel_read_version(hdev, &ver); if (err) break; /* Apply the device specific HCI quirks * * All Legacy bootloader devices support WBS */ set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks); /* These variants don't seem to support LE Coded PHY */ set_bit(HCI_QUIRK_BROKEN_LE_CODED, &hdev->quirks); /* Setup MSFT Extension support */ btintel_set_msft_opcode(hdev, ver.hw_variant); err = btintel_bootloader_setup(hdev, &ver); btintel_register_devcoredump_support(hdev); break; case 0x18: /* GfP2 */ case 0x1c: /* GaP */ /* Re-classify packet type for controllers with LE audio */ hdev->classify_pkt_type = btintel_classify_pkt_type; fallthrough; case 0x17: case 0x19: case 0x1b: case 0x1d: case 0x1e: /* Display version information of TLV type */ btintel_version_info_tlv(hdev, &ver_tlv); /* Apply the device specific HCI quirks for TLV based devices * * All TLV based devices support WBS */ set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks); /* Setup MSFT Extension support */ btintel_set_msft_opcode(hdev, INTEL_HW_VARIANT(ver_tlv.cnvi_bt)); btintel_set_dsm_reset_method(hdev, &ver_tlv); err = btintel_bootloader_setup_tlv(hdev, &ver_tlv); if (err) goto exit_error; btintel_register_devcoredump_support(hdev); btintel_print_fseq_info(hdev); break; default: bt_dev_err(hdev, "Unsupported Intel hw variant (%u)", INTEL_HW_VARIANT(ver_tlv.cnvi_bt)); err = -EINVAL; break; } hci_set_hw_info(hdev, "INTEL platform=%u variant=%u", INTEL_HW_PLATFORM(ver_tlv.cnvi_bt), INTEL_HW_VARIANT(ver_tlv.cnvi_bt)); exit_error: kfree_skb(skb); return err; } int btintel_shutdown_combined(struct hci_dev *hdev) { struct sk_buff *skb; int ret; /* Send HCI Reset to the controller to stop any BT activity which * were triggered. This will help to save power and maintain the * sync b/w Host and controller */ skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_INIT_TIMEOUT); if (IS_ERR(skb)) { bt_dev_err(hdev, "HCI reset during shutdown failed"); return PTR_ERR(skb); } kfree_skb(skb); /* Some platforms have an issue with BT LED when the interface is * down or BT radio is turned off, which takes 5 seconds to BT LED * goes off. As a workaround, sends HCI_Intel_SW_RFKILL to put the * device in the RFKILL ON state which turns off the BT LED immediately. */ if (btintel_test_flag(hdev, INTEL_BROKEN_SHUTDOWN_LED)) { skb = __hci_cmd_sync(hdev, 0xfc3f, 0, NULL, HCI_INIT_TIMEOUT); if (IS_ERR(skb)) { ret = PTR_ERR(skb); bt_dev_err(hdev, "turning off Intel device LED failed"); return ret; } kfree_skb(skb); } return 0; } EXPORT_SYMBOL_GPL(btintel_shutdown_combined); int btintel_configure_setup(struct hci_dev *hdev, const char *driver_name) { hdev->manufacturer = 2; hdev->setup = btintel_setup_combined; hdev->shutdown = btintel_shutdown_combined; hdev->hw_error = btintel_hw_error; hdev->set_diag = btintel_set_diag_combined; hdev->set_bdaddr = btintel_set_bdaddr; coredump_info.driver_name = driver_name; return 0; } EXPORT_SYMBOL_GPL(btintel_configure_setup); int btintel_diagnostics(struct hci_dev *hdev, struct sk_buff *skb) { struct intel_tlv *tlv = (void *)&skb->data[5]; /* The first event is always an event type TLV */ if (tlv->type != INTEL_TLV_TYPE_ID) goto recv_frame; switch (tlv->val[0]) { case INTEL_TLV_SYSTEM_EXCEPTION: case INTEL_TLV_FATAL_EXCEPTION: case INTEL_TLV_DEBUG_EXCEPTION: case INTEL_TLV_TEST_EXCEPTION: /* Generate devcoredump from exception */ if (!hci_devcd_init(hdev, skb->len)) { hci_devcd_append(hdev, skb_clone(skb, GFP_ATOMIC)); hci_devcd_complete(hdev); } else { bt_dev_err(hdev, "Failed to generate devcoredump"); } break; default: bt_dev_err(hdev, "Invalid exception type %02X", tlv->val[0]); } recv_frame: return hci_recv_frame(hdev, skb); } EXPORT_SYMBOL_GPL(btintel_diagnostics); int btintel_recv_event(struct hci_dev *hdev, struct sk_buff *skb) { struct hci_event_hdr *hdr = (void *)skb->data; const char diagnostics_hdr[] = { 0x87, 0x80, 0x03 }; if (skb->len > HCI_EVENT_HDR_SIZE && hdr->evt == 0xff && hdr->plen > 0) { const void *ptr = skb->data + HCI_EVENT_HDR_SIZE + 1; unsigned int len = skb->len - HCI_EVENT_HDR_SIZE - 1; if (btintel_test_flag(hdev, INTEL_BOOTLOADER)) { switch (skb->data[2]) { case 0x02: /* When switching to the operational firmware * the device sends a vendor specific event * indicating that the bootup completed. */ btintel_bootup(hdev, ptr, len); kfree_skb(skb); return 0; case 0x06: /* When the firmware loading completes the * device sends out a vendor specific event * indicating the result of the firmware * loading. */ btintel_secure_send_result(hdev, ptr, len); kfree_skb(skb); return 0; } } /* Handle all diagnostics events separately. May still call * hci_recv_frame. */ if (len >= sizeof(diagnostics_hdr) && memcmp(&skb->data[2], diagnostics_hdr, sizeof(diagnostics_hdr)) == 0) { return btintel_diagnostics(hdev, skb); } } return hci_recv_frame(hdev, skb); } EXPORT_SYMBOL_GPL(btintel_recv_event); void btintel_bootup(struct hci_dev *hdev, const void *ptr, unsigned int len) { const struct intel_bootup *evt = ptr; if (len != sizeof(*evt)) return; if (btintel_test_and_clear_flag(hdev, INTEL_BOOTING)) btintel_wake_up_flag(hdev, INTEL_BOOTING); } EXPORT_SYMBOL_GPL(btintel_bootup); void btintel_secure_send_result(struct hci_dev *hdev, const void *ptr, unsigned int len) { const struct intel_secure_send_result *evt = ptr; if (len != sizeof(*evt)) return; if (evt->result) btintel_set_flag(hdev, INTEL_FIRMWARE_FAILED); if (btintel_test_and_clear_flag(hdev, INTEL_DOWNLOADING) && btintel_test_flag(hdev, INTEL_FIRMWARE_LOADED)) btintel_wake_up_flag(hdev, INTEL_DOWNLOADING); } EXPORT_SYMBOL_GPL(btintel_secure_send_result); MODULE_AUTHOR("Marcel Holtmann "); MODULE_DESCRIPTION("Bluetooth support for Intel devices ver " VERSION); MODULE_VERSION(VERSION); MODULE_LICENSE("GPL"); MODULE_FIRMWARE("intel/ibt-11-5.sfi"); MODULE_FIRMWARE("intel/ibt-11-5.ddc"); MODULE_FIRMWARE("intel/ibt-12-16.sfi"); MODULE_FIRMWARE("intel/ibt-12-16.ddc");