// SPDX-License-Identifier: GPL-2.0 /* * J-Core SoC PIT/clocksource driver * * Copyright (C) 2015-2016 Smart Energy Instruments, Inc. */ #include #include #include #include #include #include #include #include #include #include #define PIT_IRQ_SHIFT 12 #define PIT_PRIO_SHIFT 20 #define PIT_ENABLE_SHIFT 26 #define PIT_PRIO_MASK 0xf #define REG_PITEN 0x00 #define REG_THROT 0x10 #define REG_COUNT 0x14 #define REG_BUSPD 0x18 #define REG_SECHI 0x20 #define REG_SECLO 0x24 #define REG_NSEC 0x28 struct jcore_pit { struct clock_event_device ced; void __iomem *base; unsigned long periodic_delta; u32 enable_val; }; static void __iomem *jcore_pit_base; static struct jcore_pit __percpu *jcore_pit_percpu; static notrace u64 jcore_sched_clock_read(void) { u32 seclo, nsec, seclo0; __iomem void *base = jcore_pit_base; seclo = readl(base + REG_SECLO); do { seclo0 = seclo; nsec = readl(base + REG_NSEC); seclo = readl(base + REG_SECLO); } while (seclo0 != seclo); return seclo * NSEC_PER_SEC + nsec; } static u64 jcore_clocksource_read(struct clocksource *cs) { return jcore_sched_clock_read(); } static int jcore_pit_disable(struct jcore_pit *pit) { writel(0, pit->base + REG_PITEN); return 0; } static int jcore_pit_set(unsigned long delta, struct jcore_pit *pit) { jcore_pit_disable(pit); writel(delta, pit->base + REG_THROT); writel(pit->enable_val, pit->base + REG_PITEN); return 0; } static int jcore_pit_set_state_shutdown(struct clock_event_device *ced) { struct jcore_pit *pit = container_of(ced, struct jcore_pit, ced); return jcore_pit_disable(pit); } static int jcore_pit_set_state_oneshot(struct clock_event_device *ced) { struct jcore_pit *pit = container_of(ced, struct jcore_pit, ced); return jcore_pit_disable(pit); } static int jcore_pit_set_state_periodic(struct clock_event_device *ced) { struct jcore_pit *pit = container_of(ced, struct jcore_pit, ced); return jcore_pit_set(pit->periodic_delta, pit); } static int jcore_pit_set_next_event(unsigned long delta, struct clock_event_device *ced) { struct jcore_pit *pit = container_of(ced, struct jcore_pit, ced); return jcore_pit_set(delta, pit); } static int jcore_pit_local_init(unsigned cpu) { struct jcore_pit *pit = this_cpu_ptr(jcore_pit_percpu); unsigned buspd, freq; pr_info("Local J-Core PIT init on cpu %u\n", cpu); buspd = readl(pit->base + REG_BUSPD); freq = DIV_ROUND_CLOSEST(NSEC_PER_SEC, buspd); pit->periodic_delta = DIV_ROUND_CLOSEST(NSEC_PER_SEC, HZ * buspd); clockevents_config_and_register(&pit->ced, freq, 1, ULONG_MAX); return 0; } static irqreturn_t jcore_timer_interrupt(int irq, void *dev_id) { struct jcore_pit *pit = dev_id; if (clockevent_state_oneshot(&pit->ced)) jcore_pit_disable(pit); pit->ced.event_handler(&pit->ced); return IRQ_HANDLED; } static int __init jcore_pit_init(struct device_node *node) { int err; unsigned pit_irq, cpu; unsigned long hwirq; u32 irqprio, enable_val; jcore_pit_base = of_iomap(node, 0); if (!jcore_pit_base) { pr_err("Error: Cannot map base address for J-Core PIT\n"); return -ENXIO; } pit_irq = irq_of_parse_and_map(node, 0); if (!pit_irq) { pr_err("Error: J-Core PIT has no IRQ\n"); return -ENXIO; } pr_info("Initializing J-Core PIT at %p IRQ %d\n", jcore_pit_base, pit_irq); err = clocksource_mmio_init(jcore_pit_base, "jcore_pit_cs", NSEC_PER_SEC, 400, 32, jcore_clocksource_read); if (err) { pr_err("Error registering clocksource device: %d\n", err); return err; } sched_clock_register(jcore_sched_clock_read, 32, NSEC_PER_SEC); jcore_pit_percpu = alloc_percpu(struct jcore_pit); if (!jcore_pit_percpu) { pr_err("Failed to allocate memory for clock event device\n"); return -ENOMEM; } err = request_percpu_irq(pit_irq, jcore_timer_interrupt, "jcore_pit", jcore_pit_percpu); if (err) { pr_err("pit irq request failed: %d\n", err); free_percpu(jcore_pit_percpu); return err; } /* * The J-Core PIT is not hard-wired to a particular IRQ, but * integrated with the interrupt controller such that the IRQ it * generates is programmable, as follows: * * The bit layout of the PIT enable register is: * * .....e..ppppiiiiiiii............ * * where the .'s indicate unrelated/unused bits, e is enable, * p is priority, and i is hard irq number. * * For the PIT included in AIC1 (obsolete but still in use), * any hard irq (trap number) can be programmed via the 8 * iiiiiiii bits, and a priority (0-15) is programmable * separately in the pppp bits. * * For the PIT included in AIC2 (current), the programming * interface is equivalent modulo interrupt mapping. This is * why a different compatible tag was not used. However only * traps 64-127 (the ones actually intended to be used for * interrupts, rather than syscalls/exceptions/etc.) can be * programmed (the high 2 bits of i are ignored) and the * priority pppp is <<2'd and or'd onto the irq number. This * choice seems to have been made on the hardware engineering * side under an assumption that preserving old AIC1 priority * mappings was important. Future models will likely ignore * the pppp field. */ hwirq = irq_get_irq_data(pit_irq)->hwirq; irqprio = (hwirq >> 2) & PIT_PRIO_MASK; enable_val = (1U << PIT_ENABLE_SHIFT) | (hwirq << PIT_IRQ_SHIFT) | (irqprio << PIT_PRIO_SHIFT); for_each_present_cpu(cpu) { struct jcore_pit *pit = per_cpu_ptr(jcore_pit_percpu, cpu); pit->base = of_iomap(node, cpu); if (!pit->base) { pr_err("Unable to map PIT for cpu %u\n", cpu); continue; } pit->ced.name = "jcore_pit"; pit->ced.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERCPU; pit->ced.cpumask = cpumask_of(cpu); pit->ced.rating = 400; pit->ced.irq = pit_irq; pit->ced.set_state_shutdown = jcore_pit_set_state_shutdown; pit->ced.set_state_periodic = jcore_pit_set_state_periodic; pit->ced.set_state_oneshot = jcore_pit_set_state_oneshot; pit->ced.set_next_event = jcore_pit_set_next_event; pit->enable_val = enable_val; } cpuhp_setup_state(CPUHP_AP_JCORE_TIMER_STARTING, "clockevents/jcore:starting", jcore_pit_local_init, NULL); return 0; } TIMER_OF_DECLARE(jcore_pit, "jcore,pit", jcore_pit_init);