// SPDX-License-Identifier: GPL-2.0+ /* * This is i.MX low power i2c controller driver. * * Copyright 2016 Freescale Semiconductor, Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DRIVER_NAME "imx-lpi2c" #define LPI2C_PARAM 0x04 /* i2c RX/TX FIFO size */ #define LPI2C_MCR 0x10 /* i2c contrl register */ #define LPI2C_MSR 0x14 /* i2c status register */ #define LPI2C_MIER 0x18 /* i2c interrupt enable */ #define LPI2C_MDER 0x1C /* i2c DMA enable */ #define LPI2C_MCFGR0 0x20 /* i2c master configuration */ #define LPI2C_MCFGR1 0x24 /* i2c master configuration */ #define LPI2C_MCFGR2 0x28 /* i2c master configuration */ #define LPI2C_MCFGR3 0x2C /* i2c master configuration */ #define LPI2C_MCCR0 0x48 /* i2c master clk configuration */ #define LPI2C_MCCR1 0x50 /* i2c master clk configuration */ #define LPI2C_MFCR 0x58 /* i2c master FIFO control */ #define LPI2C_MFSR 0x5C /* i2c master FIFO status */ #define LPI2C_MTDR 0x60 /* i2c master TX data register */ #define LPI2C_MRDR 0x70 /* i2c master RX data register */ #define LPI2C_SCR 0x110 /* i2c target control register */ #define LPI2C_SSR 0x114 /* i2c target status register */ #define LPI2C_SIER 0x118 /* i2c target interrupt enable */ #define LPI2C_SDER 0x11C /* i2c target DMA enable */ #define LPI2C_SCFGR0 0x120 /* i2c target configuration */ #define LPI2C_SCFGR1 0x124 /* i2c target configuration */ #define LPI2C_SCFGR2 0x128 /* i2c target configuration */ #define LPI2C_SAMR 0x140 /* i2c target address match */ #define LPI2C_SASR 0x150 /* i2c target address status */ #define LPI2C_STAR 0x154 /* i2c target transmit ACK */ #define LPI2C_STDR 0x160 /* i2c target transmit data */ #define LPI2C_SRDR 0x170 /* i2c target receive data */ #define LPI2C_SRDROR 0x178 /* i2c target receive data read only */ /* i2c command */ #define TRAN_DATA 0X00 #define RECV_DATA 0X01 #define GEN_STOP 0X02 #define RECV_DISCARD 0X03 #define GEN_START 0X04 #define START_NACK 0X05 #define START_HIGH 0X06 #define START_HIGH_NACK 0X07 #define MCR_MEN BIT(0) #define MCR_RST BIT(1) #define MCR_DOZEN BIT(2) #define MCR_DBGEN BIT(3) #define MCR_RTF BIT(8) #define MCR_RRF BIT(9) #define MSR_TDF BIT(0) #define MSR_RDF BIT(1) #define MSR_SDF BIT(9) #define MSR_NDF BIT(10) #define MSR_ALF BIT(11) #define MSR_MBF BIT(24) #define MSR_BBF BIT(25) #define MIER_TDIE BIT(0) #define MIER_RDIE BIT(1) #define MIER_SDIE BIT(9) #define MIER_NDIE BIT(10) #define MCFGR1_AUTOSTOP BIT(8) #define MCFGR1_IGNACK BIT(9) #define MRDR_RXEMPTY BIT(14) #define MDER_TDDE BIT(0) #define MDER_RDDE BIT(1) #define SCR_SEN BIT(0) #define SCR_RST BIT(1) #define SCR_FILTEN BIT(4) #define SCR_RTF BIT(8) #define SCR_RRF BIT(9) #define SSR_TDF BIT(0) #define SSR_RDF BIT(1) #define SSR_AVF BIT(2) #define SSR_TAF BIT(3) #define SSR_RSF BIT(8) #define SSR_SDF BIT(9) #define SSR_BEF BIT(10) #define SSR_FEF BIT(11) #define SSR_SBF BIT(24) #define SSR_BBF BIT(25) #define SSR_CLEAR_BITS (SSR_RSF | SSR_SDF | SSR_BEF | SSR_FEF) #define SIER_TDIE BIT(0) #define SIER_RDIE BIT(1) #define SIER_AVIE BIT(2) #define SIER_TAIE BIT(3) #define SIER_RSIE BIT(8) #define SIER_SDIE BIT(9) #define SIER_BEIE BIT(10) #define SIER_FEIE BIT(11) #define SIER_AM0F BIT(12) #define SCFGR1_RXSTALL BIT(1) #define SCFGR1_TXDSTALL BIT(2) #define SCFGR2_FILTSDA_SHIFT 24 #define SCFGR2_FILTSCL_SHIFT 16 #define SCFGR2_CLKHOLD(x) (x) #define SCFGR2_FILTSDA(x) ((x) << SCFGR2_FILTSDA_SHIFT) #define SCFGR2_FILTSCL(x) ((x) << SCFGR2_FILTSCL_SHIFT) #define SASR_READ_REQ 0x1 #define SLAVE_INT_FLAG (SIER_TDIE | SIER_RDIE | SIER_AVIE | \ SIER_SDIE | SIER_BEIE) #define I2C_CLK_RATIO 2 #define CHUNK_DATA 256 #define I2C_PM_TIMEOUT 10 /* ms */ #define I2C_DMA_THRESHOLD 8 /* bytes */ enum lpi2c_imx_mode { STANDARD, /* 100+Kbps */ FAST, /* 400+Kbps */ FAST_PLUS, /* 1.0+Mbps */ HS, /* 3.4+Mbps */ ULTRA_FAST, /* 5.0+Mbps */ }; enum lpi2c_imx_pincfg { TWO_PIN_OD, TWO_PIN_OO, TWO_PIN_PP, FOUR_PIN_PP, }; struct lpi2c_imx_dma { bool using_pio_mode; u8 rx_cmd_buf_len; u8 *dma_buf; u16 *rx_cmd_buf; unsigned int dma_len; unsigned int tx_burst_num; unsigned int rx_burst_num; unsigned long dma_msg_flag; resource_size_t phy_addr; dma_addr_t dma_tx_addr; dma_addr_t dma_addr; enum dma_data_direction dma_data_dir; enum dma_transfer_direction dma_transfer_dir; struct dma_chan *chan_tx; struct dma_chan *chan_rx; }; struct lpi2c_imx_struct { struct i2c_adapter adapter; int num_clks; struct clk_bulk_data *clks; void __iomem *base; __u8 *rx_buf; __u8 *tx_buf; struct completion complete; unsigned long rate_per; unsigned int msglen; unsigned int delivered; unsigned int block_data; unsigned int bitrate; unsigned int txfifosize; unsigned int rxfifosize; enum lpi2c_imx_mode mode; struct i2c_bus_recovery_info rinfo; bool can_use_dma; struct lpi2c_imx_dma *dma; struct i2c_client *target; }; static void lpi2c_imx_intctrl(struct lpi2c_imx_struct *lpi2c_imx, unsigned int enable) { writel(enable, lpi2c_imx->base + LPI2C_MIER); } static int lpi2c_imx_bus_busy(struct lpi2c_imx_struct *lpi2c_imx) { unsigned long orig_jiffies = jiffies; unsigned int temp; while (1) { temp = readl(lpi2c_imx->base + LPI2C_MSR); /* check for arbitration lost, clear if set */ if (temp & MSR_ALF) { writel(temp, lpi2c_imx->base + LPI2C_MSR); return -EAGAIN; } if (temp & (MSR_BBF | MSR_MBF)) break; if (time_after(jiffies, orig_jiffies + msecs_to_jiffies(500))) { dev_dbg(&lpi2c_imx->adapter.dev, "bus not work\n"); if (lpi2c_imx->adapter.bus_recovery_info) i2c_recover_bus(&lpi2c_imx->adapter); return -ETIMEDOUT; } schedule(); } return 0; } static void lpi2c_imx_set_mode(struct lpi2c_imx_struct *lpi2c_imx) { unsigned int bitrate = lpi2c_imx->bitrate; enum lpi2c_imx_mode mode; if (bitrate < I2C_MAX_FAST_MODE_FREQ) mode = STANDARD; else if (bitrate < I2C_MAX_FAST_MODE_PLUS_FREQ) mode = FAST; else if (bitrate < I2C_MAX_HIGH_SPEED_MODE_FREQ) mode = FAST_PLUS; else if (bitrate < I2C_MAX_ULTRA_FAST_MODE_FREQ) mode = HS; else mode = ULTRA_FAST; lpi2c_imx->mode = mode; } static int lpi2c_imx_start(struct lpi2c_imx_struct *lpi2c_imx, struct i2c_msg *msgs) { unsigned int temp; temp = readl(lpi2c_imx->base + LPI2C_MCR); temp |= MCR_RRF | MCR_RTF; writel(temp, lpi2c_imx->base + LPI2C_MCR); writel(0x7f00, lpi2c_imx->base + LPI2C_MSR); temp = i2c_8bit_addr_from_msg(msgs) | (GEN_START << 8); writel(temp, lpi2c_imx->base + LPI2C_MTDR); return lpi2c_imx_bus_busy(lpi2c_imx); } static void lpi2c_imx_stop(struct lpi2c_imx_struct *lpi2c_imx) { unsigned long orig_jiffies = jiffies; unsigned int temp; writel(GEN_STOP << 8, lpi2c_imx->base + LPI2C_MTDR); do { temp = readl(lpi2c_imx->base + LPI2C_MSR); if (temp & MSR_SDF) break; if (time_after(jiffies, orig_jiffies + msecs_to_jiffies(500))) { dev_dbg(&lpi2c_imx->adapter.dev, "stop timeout\n"); if (lpi2c_imx->adapter.bus_recovery_info) i2c_recover_bus(&lpi2c_imx->adapter); break; } schedule(); } while (1); } /* CLKLO = I2C_CLK_RATIO * CLKHI, SETHOLD = CLKHI, DATAVD = CLKHI/2 */ static int lpi2c_imx_config(struct lpi2c_imx_struct *lpi2c_imx) { u8 prescale, filt, sethold, datavd; unsigned int clk_rate, clk_cycle, clkhi, clklo; enum lpi2c_imx_pincfg pincfg; unsigned int temp; lpi2c_imx_set_mode(lpi2c_imx); clk_rate = lpi2c_imx->rate_per; if (lpi2c_imx->mode == HS || lpi2c_imx->mode == ULTRA_FAST) filt = 0; else filt = 2; for (prescale = 0; prescale <= 7; prescale++) { clk_cycle = clk_rate / ((1 << prescale) * lpi2c_imx->bitrate) - 3 - (filt >> 1); clkhi = DIV_ROUND_UP(clk_cycle, I2C_CLK_RATIO + 1); clklo = clk_cycle - clkhi; if (clklo < 64) break; } if (prescale > 7) return -EINVAL; /* set MCFGR1: PINCFG, PRESCALE, IGNACK */ if (lpi2c_imx->mode == ULTRA_FAST) pincfg = TWO_PIN_OO; else pincfg = TWO_PIN_OD; temp = prescale | pincfg << 24; if (lpi2c_imx->mode == ULTRA_FAST) temp |= MCFGR1_IGNACK; writel(temp, lpi2c_imx->base + LPI2C_MCFGR1); /* set MCFGR2: FILTSDA, FILTSCL */ temp = (filt << 16) | (filt << 24); writel(temp, lpi2c_imx->base + LPI2C_MCFGR2); /* set MCCR: DATAVD, SETHOLD, CLKHI, CLKLO */ sethold = clkhi; datavd = clkhi >> 1; temp = datavd << 24 | sethold << 16 | clkhi << 8 | clklo; if (lpi2c_imx->mode == HS) writel(temp, lpi2c_imx->base + LPI2C_MCCR1); else writel(temp, lpi2c_imx->base + LPI2C_MCCR0); return 0; } static int lpi2c_imx_master_enable(struct lpi2c_imx_struct *lpi2c_imx) { unsigned int temp; int ret; ret = pm_runtime_resume_and_get(lpi2c_imx->adapter.dev.parent); if (ret < 0) return ret; temp = MCR_RST; writel(temp, lpi2c_imx->base + LPI2C_MCR); writel(0, lpi2c_imx->base + LPI2C_MCR); ret = lpi2c_imx_config(lpi2c_imx); if (ret) goto rpm_put; temp = readl(lpi2c_imx->base + LPI2C_MCR); temp |= MCR_MEN; writel(temp, lpi2c_imx->base + LPI2C_MCR); return 0; rpm_put: pm_runtime_mark_last_busy(lpi2c_imx->adapter.dev.parent); pm_runtime_put_autosuspend(lpi2c_imx->adapter.dev.parent); return ret; } static int lpi2c_imx_master_disable(struct lpi2c_imx_struct *lpi2c_imx) { u32 temp; temp = readl(lpi2c_imx->base + LPI2C_MCR); temp &= ~MCR_MEN; writel(temp, lpi2c_imx->base + LPI2C_MCR); pm_runtime_mark_last_busy(lpi2c_imx->adapter.dev.parent); pm_runtime_put_autosuspend(lpi2c_imx->adapter.dev.parent); return 0; } static int lpi2c_imx_pio_msg_complete(struct lpi2c_imx_struct *lpi2c_imx) { unsigned long time_left; time_left = wait_for_completion_timeout(&lpi2c_imx->complete, HZ); return time_left ? 0 : -ETIMEDOUT; } static int lpi2c_imx_txfifo_empty(struct lpi2c_imx_struct *lpi2c_imx) { unsigned long orig_jiffies = jiffies; u32 txcnt; do { txcnt = readl(lpi2c_imx->base + LPI2C_MFSR) & 0xff; if (readl(lpi2c_imx->base + LPI2C_MSR) & MSR_NDF) { dev_dbg(&lpi2c_imx->adapter.dev, "NDF detected\n"); return -EIO; } if (time_after(jiffies, orig_jiffies + msecs_to_jiffies(500))) { dev_dbg(&lpi2c_imx->adapter.dev, "txfifo empty timeout\n"); if (lpi2c_imx->adapter.bus_recovery_info) i2c_recover_bus(&lpi2c_imx->adapter); return -ETIMEDOUT; } schedule(); } while (txcnt); return 0; } static void lpi2c_imx_set_tx_watermark(struct lpi2c_imx_struct *lpi2c_imx) { writel(lpi2c_imx->txfifosize >> 1, lpi2c_imx->base + LPI2C_MFCR); } static void lpi2c_imx_set_rx_watermark(struct lpi2c_imx_struct *lpi2c_imx) { unsigned int temp, remaining; remaining = lpi2c_imx->msglen - lpi2c_imx->delivered; if (remaining > (lpi2c_imx->rxfifosize >> 1)) temp = lpi2c_imx->rxfifosize >> 1; else temp = 0; writel(temp << 16, lpi2c_imx->base + LPI2C_MFCR); } static void lpi2c_imx_write_txfifo(struct lpi2c_imx_struct *lpi2c_imx) { unsigned int data, txcnt; txcnt = readl(lpi2c_imx->base + LPI2C_MFSR) & 0xff; while (txcnt < lpi2c_imx->txfifosize) { if (lpi2c_imx->delivered == lpi2c_imx->msglen) break; data = lpi2c_imx->tx_buf[lpi2c_imx->delivered++]; writel(data, lpi2c_imx->base + LPI2C_MTDR); txcnt++; } if (lpi2c_imx->delivered < lpi2c_imx->msglen) lpi2c_imx_intctrl(lpi2c_imx, MIER_TDIE | MIER_NDIE); else complete(&lpi2c_imx->complete); } static void lpi2c_imx_read_rxfifo(struct lpi2c_imx_struct *lpi2c_imx) { unsigned int blocklen, remaining; unsigned int temp, data; do { data = readl(lpi2c_imx->base + LPI2C_MRDR); if (data & MRDR_RXEMPTY) break; lpi2c_imx->rx_buf[lpi2c_imx->delivered++] = data & 0xff; } while (1); /* * First byte is the length of remaining packet in the SMBus block * data read. Add it to msgs->len. */ if (lpi2c_imx->block_data) { blocklen = lpi2c_imx->rx_buf[0]; lpi2c_imx->msglen += blocklen; } remaining = lpi2c_imx->msglen - lpi2c_imx->delivered; if (!remaining) { complete(&lpi2c_imx->complete); return; } /* not finished, still waiting for rx data */ lpi2c_imx_set_rx_watermark(lpi2c_imx); /* multiple receive commands */ if (lpi2c_imx->block_data) { lpi2c_imx->block_data = 0; temp = remaining; temp |= (RECV_DATA << 8); writel(temp, lpi2c_imx->base + LPI2C_MTDR); } else if (!(lpi2c_imx->delivered & 0xff)) { temp = (remaining > CHUNK_DATA ? CHUNK_DATA : remaining) - 1; temp |= (RECV_DATA << 8); writel(temp, lpi2c_imx->base + LPI2C_MTDR); } lpi2c_imx_intctrl(lpi2c_imx, MIER_RDIE); } static void lpi2c_imx_write(struct lpi2c_imx_struct *lpi2c_imx, struct i2c_msg *msgs) { lpi2c_imx->tx_buf = msgs->buf; lpi2c_imx_set_tx_watermark(lpi2c_imx); lpi2c_imx_write_txfifo(lpi2c_imx); } static void lpi2c_imx_read(struct lpi2c_imx_struct *lpi2c_imx, struct i2c_msg *msgs) { unsigned int temp; lpi2c_imx->rx_buf = msgs->buf; lpi2c_imx->block_data = msgs->flags & I2C_M_RECV_LEN; lpi2c_imx_set_rx_watermark(lpi2c_imx); temp = msgs->len > CHUNK_DATA ? CHUNK_DATA - 1 : msgs->len - 1; temp |= (RECV_DATA << 8); writel(temp, lpi2c_imx->base + LPI2C_MTDR); lpi2c_imx_intctrl(lpi2c_imx, MIER_RDIE | MIER_NDIE); } static bool is_use_dma(struct lpi2c_imx_struct *lpi2c_imx, struct i2c_msg *msg) { if (!lpi2c_imx->can_use_dma) return false; /* * When the length of data is less than I2C_DMA_THRESHOLD, * cpu mode is used directly to avoid low performance. */ return !(msg->len < I2C_DMA_THRESHOLD); } static int lpi2c_imx_pio_xfer(struct lpi2c_imx_struct *lpi2c_imx, struct i2c_msg *msg) { reinit_completion(&lpi2c_imx->complete); if (msg->flags & I2C_M_RD) lpi2c_imx_read(lpi2c_imx, msg); else lpi2c_imx_write(lpi2c_imx, msg); return lpi2c_imx_pio_msg_complete(lpi2c_imx); } static int lpi2c_imx_dma_timeout_calculate(struct lpi2c_imx_struct *lpi2c_imx) { unsigned long time = 0; time = 8 * lpi2c_imx->dma->dma_len * 1000 / lpi2c_imx->bitrate; /* Add extra second for scheduler related activities */ time += 1; /* Double calculated time */ return msecs_to_jiffies(time * MSEC_PER_SEC); } static int lpi2c_imx_alloc_rx_cmd_buf(struct lpi2c_imx_struct *lpi2c_imx) { struct lpi2c_imx_dma *dma = lpi2c_imx->dma; u16 rx_remain = dma->dma_len; int cmd_num; u16 temp; /* * Calculate the number of rx command words via the DMA TX channel * writing into command register based on the i2c msg len, and build * the rx command words buffer. */ cmd_num = DIV_ROUND_UP(rx_remain, CHUNK_DATA); dma->rx_cmd_buf = kcalloc(cmd_num, sizeof(u16), GFP_KERNEL); dma->rx_cmd_buf_len = cmd_num * sizeof(u16); if (!dma->rx_cmd_buf) { dev_err(&lpi2c_imx->adapter.dev, "Alloc RX cmd buffer failed\n"); return -ENOMEM; } for (int i = 0; i < cmd_num ; i++) { temp = rx_remain > CHUNK_DATA ? CHUNK_DATA - 1 : rx_remain - 1; temp |= (RECV_DATA << 8); rx_remain -= CHUNK_DATA; dma->rx_cmd_buf[i] = temp; } return 0; } static int lpi2c_imx_dma_msg_complete(struct lpi2c_imx_struct *lpi2c_imx) { unsigned long time_left, time; time = lpi2c_imx_dma_timeout_calculate(lpi2c_imx); time_left = wait_for_completion_timeout(&lpi2c_imx->complete, time); if (time_left == 0) { dev_err(&lpi2c_imx->adapter.dev, "I/O Error in DMA Data Transfer\n"); return -ETIMEDOUT; } return 0; } static void lpi2c_dma_unmap(struct lpi2c_imx_dma *dma) { struct dma_chan *chan = dma->dma_data_dir == DMA_FROM_DEVICE ? dma->chan_rx : dma->chan_tx; dma_unmap_single(chan->device->dev, dma->dma_addr, dma->dma_len, dma->dma_data_dir); dma->dma_data_dir = DMA_NONE; } static void lpi2c_cleanup_rx_cmd_dma(struct lpi2c_imx_dma *dma) { dmaengine_terminate_sync(dma->chan_tx); dma_unmap_single(dma->chan_tx->device->dev, dma->dma_tx_addr, dma->rx_cmd_buf_len, DMA_TO_DEVICE); } static void lpi2c_cleanup_dma(struct lpi2c_imx_dma *dma) { if (dma->dma_data_dir == DMA_FROM_DEVICE) dmaengine_terminate_sync(dma->chan_rx); else if (dma->dma_data_dir == DMA_TO_DEVICE) dmaengine_terminate_sync(dma->chan_tx); lpi2c_dma_unmap(dma); } static void lpi2c_dma_callback(void *data) { struct lpi2c_imx_struct *lpi2c_imx = (struct lpi2c_imx_struct *)data; complete(&lpi2c_imx->complete); } static int lpi2c_dma_rx_cmd_submit(struct lpi2c_imx_struct *lpi2c_imx) { struct dma_async_tx_descriptor *rx_cmd_desc; struct lpi2c_imx_dma *dma = lpi2c_imx->dma; struct dma_chan *txchan = dma->chan_tx; dma_cookie_t cookie; dma->dma_tx_addr = dma_map_single(txchan->device->dev, dma->rx_cmd_buf, dma->rx_cmd_buf_len, DMA_TO_DEVICE); if (dma_mapping_error(txchan->device->dev, dma->dma_tx_addr)) { dev_err(&lpi2c_imx->adapter.dev, "DMA map failed, use pio\n"); return -EINVAL; } rx_cmd_desc = dmaengine_prep_slave_single(txchan, dma->dma_tx_addr, dma->rx_cmd_buf_len, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!rx_cmd_desc) { dev_err(&lpi2c_imx->adapter.dev, "DMA prep slave sg failed, use pio\n"); goto desc_prepare_err_exit; } cookie = dmaengine_submit(rx_cmd_desc); if (dma_submit_error(cookie)) { dev_err(&lpi2c_imx->adapter.dev, "submitting DMA failed, use pio\n"); goto submit_err_exit; } dma_async_issue_pending(txchan); return 0; desc_prepare_err_exit: dma_unmap_single(txchan->device->dev, dma->dma_tx_addr, dma->rx_cmd_buf_len, DMA_TO_DEVICE); return -EINVAL; submit_err_exit: dma_unmap_single(txchan->device->dev, dma->dma_tx_addr, dma->rx_cmd_buf_len, DMA_TO_DEVICE); dmaengine_desc_free(rx_cmd_desc); return -EINVAL; } static int lpi2c_dma_submit(struct lpi2c_imx_struct *lpi2c_imx) { struct lpi2c_imx_dma *dma = lpi2c_imx->dma; struct dma_async_tx_descriptor *desc; struct dma_chan *chan; dma_cookie_t cookie; if (dma->dma_msg_flag & I2C_M_RD) { chan = dma->chan_rx; dma->dma_data_dir = DMA_FROM_DEVICE; dma->dma_transfer_dir = DMA_DEV_TO_MEM; } else { chan = dma->chan_tx; dma->dma_data_dir = DMA_TO_DEVICE; dma->dma_transfer_dir = DMA_MEM_TO_DEV; } dma->dma_addr = dma_map_single(chan->device->dev, dma->dma_buf, dma->dma_len, dma->dma_data_dir); if (dma_mapping_error(chan->device->dev, dma->dma_addr)) { dev_err(&lpi2c_imx->adapter.dev, "DMA map failed, use pio\n"); return -EINVAL; } desc = dmaengine_prep_slave_single(chan, dma->dma_addr, dma->dma_len, dma->dma_transfer_dir, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!desc) { dev_err(&lpi2c_imx->adapter.dev, "DMA prep slave sg failed, use pio\n"); goto desc_prepare_err_exit; } reinit_completion(&lpi2c_imx->complete); desc->callback = lpi2c_dma_callback; desc->callback_param = lpi2c_imx; cookie = dmaengine_submit(desc); if (dma_submit_error(cookie)) { dev_err(&lpi2c_imx->adapter.dev, "submitting DMA failed, use pio\n"); goto submit_err_exit; } /* Can't switch to PIO mode when DMA have started transfer */ dma->using_pio_mode = false; dma_async_issue_pending(chan); return 0; desc_prepare_err_exit: lpi2c_dma_unmap(dma); return -EINVAL; submit_err_exit: lpi2c_dma_unmap(dma); dmaengine_desc_free(desc); return -EINVAL; } static int lpi2c_imx_find_max_burst_num(unsigned int fifosize, unsigned int len) { unsigned int i; for (i = fifosize / 2; i > 0; i--) if (!(len % i)) break; return i; } /* * For a highest DMA efficiency, tx/rx burst number should be calculated according * to the FIFO depth. */ static void lpi2c_imx_dma_burst_num_calculate(struct lpi2c_imx_struct *lpi2c_imx) { struct lpi2c_imx_dma *dma = lpi2c_imx->dma; unsigned int cmd_num; if (dma->dma_msg_flag & I2C_M_RD) { /* * One RX cmd word can trigger DMA receive no more than 256 bytes. * The number of RX cmd words should be calculated based on the data * length. */ cmd_num = DIV_ROUND_UP(dma->dma_len, CHUNK_DATA); dma->tx_burst_num = lpi2c_imx_find_max_burst_num(lpi2c_imx->txfifosize, cmd_num); dma->rx_burst_num = lpi2c_imx_find_max_burst_num(lpi2c_imx->rxfifosize, dma->dma_len); } else { dma->tx_burst_num = lpi2c_imx_find_max_burst_num(lpi2c_imx->txfifosize, dma->dma_len); } } static int lpi2c_dma_config(struct lpi2c_imx_struct *lpi2c_imx) { struct lpi2c_imx_dma *dma = lpi2c_imx->dma; struct dma_slave_config rx = {}, tx = {}; int ret; lpi2c_imx_dma_burst_num_calculate(lpi2c_imx); if (dma->dma_msg_flag & I2C_M_RD) { tx.dst_addr = dma->phy_addr + LPI2C_MTDR; tx.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; tx.dst_maxburst = dma->tx_burst_num; tx.direction = DMA_MEM_TO_DEV; ret = dmaengine_slave_config(dma->chan_tx, &tx); if (ret < 0) return ret; rx.src_addr = dma->phy_addr + LPI2C_MRDR; rx.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; rx.src_maxburst = dma->rx_burst_num; rx.direction = DMA_DEV_TO_MEM; ret = dmaengine_slave_config(dma->chan_rx, &rx); if (ret < 0) return ret; } else { tx.dst_addr = dma->phy_addr + LPI2C_MTDR; tx.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; tx.dst_maxburst = dma->tx_burst_num; tx.direction = DMA_MEM_TO_DEV; ret = dmaengine_slave_config(dma->chan_tx, &tx); if (ret < 0) return ret; } return 0; } static void lpi2c_dma_enable(struct lpi2c_imx_struct *lpi2c_imx) { struct lpi2c_imx_dma *dma = lpi2c_imx->dma; /* * TX interrupt will be triggered when the number of words in * the transmit FIFO is equal or less than TX watermark. * RX interrupt will be triggered when the number of words in * the receive FIFO is greater than RX watermark. * In order to trigger the DMA interrupt, TX watermark should be * set equal to the DMA TX burst number but RX watermark should * be set less than the DMA RX burst number. */ if (dma->dma_msg_flag & I2C_M_RD) { /* Set I2C TX/RX watermark */ writel(dma->tx_burst_num | (dma->rx_burst_num - 1) << 16, lpi2c_imx->base + LPI2C_MFCR); /* Enable I2C DMA TX/RX function */ writel(MDER_TDDE | MDER_RDDE, lpi2c_imx->base + LPI2C_MDER); } else { /* Set I2C TX watermark */ writel(dma->tx_burst_num, lpi2c_imx->base + LPI2C_MFCR); /* Enable I2C DMA TX function */ writel(MDER_TDDE, lpi2c_imx->base + LPI2C_MDER); } /* Enable NACK detected */ lpi2c_imx_intctrl(lpi2c_imx, MIER_NDIE); }; /* * When lpi2c is in TX DMA mode we can use one DMA TX channel to write * data word into TXFIFO, but in RX DMA mode it is different. * * The LPI2C MTDR register is a command data and transmit data register. * Bits 8-10 are the command data field and Bits 0-7 are the transmit * data field. When the LPI2C master needs to read data, the number of * bytes to read should be set in the command field and RECV_DATA should * be set into the command data field to receive (DATA[7:0] + 1) bytes. * The recv data command word is made of RECV_DATA in the command data * field and the number of bytes to read in transmit data field. When the * length of data to be read exceeds 256 bytes, recv data command word * needs to be written to TXFIFO multiple times. * * So when in RX DMA mode, the TX channel also must to be configured to * send RX command words and the RX command word must be set in advance * before transmitting. */ static int lpi2c_imx_dma_xfer(struct lpi2c_imx_struct *lpi2c_imx, struct i2c_msg *msg) { struct lpi2c_imx_dma *dma = lpi2c_imx->dma; int ret; /* When DMA mode fails before transferring, CPU mode can be used. */ dma->using_pio_mode = true; dma->dma_len = msg->len; dma->dma_msg_flag = msg->flags; dma->dma_buf = i2c_get_dma_safe_msg_buf(msg, I2C_DMA_THRESHOLD); if (!dma->dma_buf) return -ENOMEM; ret = lpi2c_dma_config(lpi2c_imx); if (ret) { dev_err(&lpi2c_imx->adapter.dev, "Failed to configure DMA (%d)\n", ret); goto disable_dma; } lpi2c_dma_enable(lpi2c_imx); ret = lpi2c_dma_submit(lpi2c_imx); if (ret) { dev_err(&lpi2c_imx->adapter.dev, "DMA submission failed (%d)\n", ret); goto disable_dma; } if (dma->dma_msg_flag & I2C_M_RD) { ret = lpi2c_imx_alloc_rx_cmd_buf(lpi2c_imx); if (ret) goto disable_cleanup_data_dma; ret = lpi2c_dma_rx_cmd_submit(lpi2c_imx); if (ret) goto disable_cleanup_data_dma; } ret = lpi2c_imx_dma_msg_complete(lpi2c_imx); if (ret) goto disable_cleanup_all_dma; /* When encountering NACK in transfer, clean up all DMA transfers */ if ((readl(lpi2c_imx->base + LPI2C_MSR) & MSR_NDF) && !ret) { ret = -EIO; goto disable_cleanup_all_dma; } if (dma->dma_msg_flag & I2C_M_RD) dma_unmap_single(dma->chan_tx->device->dev, dma->dma_tx_addr, dma->rx_cmd_buf_len, DMA_TO_DEVICE); lpi2c_dma_unmap(dma); goto disable_dma; disable_cleanup_all_dma: if (dma->dma_msg_flag & I2C_M_RD) lpi2c_cleanup_rx_cmd_dma(dma); disable_cleanup_data_dma: lpi2c_cleanup_dma(dma); disable_dma: /* Disable I2C DMA function */ writel(0, lpi2c_imx->base + LPI2C_MDER); if (dma->dma_msg_flag & I2C_M_RD) kfree(dma->rx_cmd_buf); if (ret) i2c_put_dma_safe_msg_buf(dma->dma_buf, msg, false); else i2c_put_dma_safe_msg_buf(dma->dma_buf, msg, true); return ret; } static int lpi2c_imx_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs, int num) { struct lpi2c_imx_struct *lpi2c_imx = i2c_get_adapdata(adapter); unsigned int temp; int i, result; result = lpi2c_imx_master_enable(lpi2c_imx); if (result) return result; for (i = 0; i < num; i++) { result = lpi2c_imx_start(lpi2c_imx, &msgs[i]); if (result) goto disable; /* quick smbus */ if (num == 1 && msgs[0].len == 0) goto stop; lpi2c_imx->rx_buf = NULL; lpi2c_imx->tx_buf = NULL; lpi2c_imx->delivered = 0; lpi2c_imx->msglen = msgs[i].len; init_completion(&lpi2c_imx->complete); if (is_use_dma(lpi2c_imx, &msgs[i])) { result = lpi2c_imx_dma_xfer(lpi2c_imx, &msgs[i]); if (result && lpi2c_imx->dma->using_pio_mode) result = lpi2c_imx_pio_xfer(lpi2c_imx, &msgs[i]); } else { result = lpi2c_imx_pio_xfer(lpi2c_imx, &msgs[i]); } if (result) goto stop; if (!(msgs[i].flags & I2C_M_RD)) { result = lpi2c_imx_txfifo_empty(lpi2c_imx); if (result) goto stop; } } stop: lpi2c_imx_stop(lpi2c_imx); temp = readl(lpi2c_imx->base + LPI2C_MSR); if ((temp & MSR_NDF) && !result) result = -EIO; disable: lpi2c_imx_master_disable(lpi2c_imx); dev_dbg(&lpi2c_imx->adapter.dev, "<%s> exit with: %s: %d\n", __func__, (result < 0) ? "error" : "success msg", (result < 0) ? result : num); return (result < 0) ? result : num; } static irqreturn_t lpi2c_imx_target_isr(struct lpi2c_imx_struct *lpi2c_imx, u32 ssr, u32 sier_filter) { u8 value; u32 sasr; /* Arbitration lost */ if (sier_filter & SSR_BEF) { writel(0, lpi2c_imx->base + LPI2C_SIER); return IRQ_HANDLED; } /* Address detected */ if (sier_filter & SSR_AVF) { sasr = readl(lpi2c_imx->base + LPI2C_SASR); if (SASR_READ_REQ & sasr) { /* Read request */ i2c_slave_event(lpi2c_imx->target, I2C_SLAVE_READ_REQUESTED, &value); writel(value, lpi2c_imx->base + LPI2C_STDR); goto ret; } else { /* Write request */ i2c_slave_event(lpi2c_imx->target, I2C_SLAVE_WRITE_REQUESTED, &value); } } if (sier_filter & SSR_SDF) /* STOP */ i2c_slave_event(lpi2c_imx->target, I2C_SLAVE_STOP, &value); if (sier_filter & SSR_TDF) { /* Target send data */ i2c_slave_event(lpi2c_imx->target, I2C_SLAVE_READ_PROCESSED, &value); writel(value, lpi2c_imx->base + LPI2C_STDR); } if (sier_filter & SSR_RDF) { /* Target receive data */ value = readl(lpi2c_imx->base + LPI2C_SRDR); i2c_slave_event(lpi2c_imx->target, I2C_SLAVE_WRITE_RECEIVED, &value); } ret: /* Clear SSR */ writel(ssr & SSR_CLEAR_BITS, lpi2c_imx->base + LPI2C_SSR); return IRQ_HANDLED; } static irqreturn_t lpi2c_imx_master_isr(struct lpi2c_imx_struct *lpi2c_imx) { unsigned int enabled; unsigned int temp; enabled = readl(lpi2c_imx->base + LPI2C_MIER); lpi2c_imx_intctrl(lpi2c_imx, 0); temp = readl(lpi2c_imx->base + LPI2C_MSR); temp &= enabled; if (temp & MSR_NDF) complete(&lpi2c_imx->complete); else if (temp & MSR_RDF) lpi2c_imx_read_rxfifo(lpi2c_imx); else if (temp & MSR_TDF) lpi2c_imx_write_txfifo(lpi2c_imx); return IRQ_HANDLED; } static irqreturn_t lpi2c_imx_isr(int irq, void *dev_id) { struct lpi2c_imx_struct *lpi2c_imx = dev_id; if (lpi2c_imx->target) { u32 scr = readl(lpi2c_imx->base + LPI2C_SCR); u32 ssr = readl(lpi2c_imx->base + LPI2C_SSR); u32 sier_filter = ssr & readl(lpi2c_imx->base + LPI2C_SIER); /* * The target is enabled and an interrupt has been triggered. * Enter the target's irq handler. */ if ((scr & SCR_SEN) && sier_filter) return lpi2c_imx_target_isr(lpi2c_imx, ssr, sier_filter); } /* * Otherwise the interrupt has been triggered by the master. * Enter the master's irq handler. */ return lpi2c_imx_master_isr(lpi2c_imx); } static void lpi2c_imx_target_init(struct lpi2c_imx_struct *lpi2c_imx) { u32 temp; /* reset target module */ writel(SCR_RST, lpi2c_imx->base + LPI2C_SCR); writel(0, lpi2c_imx->base + LPI2C_SCR); /* Set target address */ writel((lpi2c_imx->target->addr << 1), lpi2c_imx->base + LPI2C_SAMR); writel(SCFGR1_RXSTALL | SCFGR1_TXDSTALL, lpi2c_imx->base + LPI2C_SCFGR1); /* * set SCFGR2: FILTSDA, FILTSCL and CLKHOLD * * FILTSCL/FILTSDA can eliminate signal skew. It should generally be * set to the same value and should be set >= 50ns. * * CLKHOLD is only used when clock stretching is enabled, but it will * extend the clock stretching to ensure there is an additional delay * between the target driving SDA and the target releasing the SCL pin. * * CLKHOLD setting is crucial for lpi2c target. When master read data * from target, if there is a delay caused by cpu idle, excessive load, * or other delays between two bytes in one message transmission, it * will cause a short interval time between the driving SDA signal and * releasing SCL signal. The lpi2c master will mistakenly think it is a stop * signal resulting in an arbitration failure. This issue can be avoided * by setting CLKHOLD. * * In order to ensure lpi2c function normally when the lpi2c speed is as * low as 100kHz, CLKHOLD should be set to 3 and it is also compatible with * higher clock frequency like 400kHz and 1MHz. */ temp = SCFGR2_FILTSDA(2) | SCFGR2_FILTSCL(2) | SCFGR2_CLKHOLD(3); writel(temp, lpi2c_imx->base + LPI2C_SCFGR2); /* * Enable module: * SCR_FILTEN can enable digital filter and output delay counter for LPI2C * target mode. So SCR_FILTEN need be asserted when enable SDA/SCL FILTER * and CLKHOLD. */ writel(SCR_SEN | SCR_FILTEN, lpi2c_imx->base + LPI2C_SCR); /* Enable interrupt from i2c module */ writel(SLAVE_INT_FLAG, lpi2c_imx->base + LPI2C_SIER); } static int lpi2c_imx_register_target(struct i2c_client *client) { struct lpi2c_imx_struct *lpi2c_imx = i2c_get_adapdata(client->adapter); int ret; if (lpi2c_imx->target) return -EBUSY; lpi2c_imx->target = client; ret = pm_runtime_resume_and_get(lpi2c_imx->adapter.dev.parent); if (ret < 0) { dev_err(&lpi2c_imx->adapter.dev, "failed to resume i2c controller"); return ret; } lpi2c_imx_target_init(lpi2c_imx); return 0; } static int lpi2c_imx_unregister_target(struct i2c_client *client) { struct lpi2c_imx_struct *lpi2c_imx = i2c_get_adapdata(client->adapter); int ret; if (!lpi2c_imx->target) return -EINVAL; /* Reset target address. */ writel(0, lpi2c_imx->base + LPI2C_SAMR); writel(SCR_RST, lpi2c_imx->base + LPI2C_SCR); writel(0, lpi2c_imx->base + LPI2C_SCR); lpi2c_imx->target = NULL; ret = pm_runtime_put_sync(lpi2c_imx->adapter.dev.parent); if (ret < 0) dev_err(&lpi2c_imx->adapter.dev, "failed to suspend i2c controller"); return ret; } static int lpi2c_imx_init_recovery_info(struct lpi2c_imx_struct *lpi2c_imx, struct platform_device *pdev) { struct i2c_bus_recovery_info *bri = &lpi2c_imx->rinfo; bri->pinctrl = devm_pinctrl_get(&pdev->dev); if (IS_ERR(bri->pinctrl)) return PTR_ERR(bri->pinctrl); lpi2c_imx->adapter.bus_recovery_info = bri; return 0; } static void dma_exit(struct device *dev, struct lpi2c_imx_dma *dma) { if (dma->chan_rx) dma_release_channel(dma->chan_rx); if (dma->chan_tx) dma_release_channel(dma->chan_tx); devm_kfree(dev, dma); } static int lpi2c_dma_init(struct device *dev, dma_addr_t phy_addr) { struct lpi2c_imx_struct *lpi2c_imx = dev_get_drvdata(dev); struct lpi2c_imx_dma *dma; int ret; dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL); if (!dma) return -ENOMEM; dma->phy_addr = phy_addr; /* Prepare for TX DMA: */ dma->chan_tx = dma_request_chan(dev, "tx"); if (IS_ERR(dma->chan_tx)) { ret = PTR_ERR(dma->chan_tx); if (ret != -ENODEV && ret != -EPROBE_DEFER) dev_err(dev, "can't request DMA tx channel (%d)\n", ret); dma->chan_tx = NULL; goto dma_exit; } /* Prepare for RX DMA: */ dma->chan_rx = dma_request_chan(dev, "rx"); if (IS_ERR(dma->chan_rx)) { ret = PTR_ERR(dma->chan_rx); if (ret != -ENODEV && ret != -EPROBE_DEFER) dev_err(dev, "can't request DMA rx channel (%d)\n", ret); dma->chan_rx = NULL; goto dma_exit; } lpi2c_imx->can_use_dma = true; lpi2c_imx->dma = dma; return 0; dma_exit: dma_exit(dev, dma); return ret; } static u32 lpi2c_imx_func(struct i2c_adapter *adapter) { return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_SMBUS_READ_BLOCK_DATA; } static const struct i2c_algorithm lpi2c_imx_algo = { .master_xfer = lpi2c_imx_xfer, .functionality = lpi2c_imx_func, .reg_target = lpi2c_imx_register_target, .unreg_target = lpi2c_imx_unregister_target, }; static const struct of_device_id lpi2c_imx_of_match[] = { { .compatible = "fsl,imx7ulp-lpi2c" }, { } }; MODULE_DEVICE_TABLE(of, lpi2c_imx_of_match); static int lpi2c_imx_probe(struct platform_device *pdev) { struct lpi2c_imx_struct *lpi2c_imx; struct resource *res; dma_addr_t phy_addr; unsigned int temp; int irq, ret; lpi2c_imx = devm_kzalloc(&pdev->dev, sizeof(*lpi2c_imx), GFP_KERNEL); if (!lpi2c_imx) return -ENOMEM; lpi2c_imx->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); if (IS_ERR(lpi2c_imx->base)) return PTR_ERR(lpi2c_imx->base); irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; lpi2c_imx->adapter.owner = THIS_MODULE; lpi2c_imx->adapter.algo = &lpi2c_imx_algo; lpi2c_imx->adapter.dev.parent = &pdev->dev; lpi2c_imx->adapter.dev.of_node = pdev->dev.of_node; strscpy(lpi2c_imx->adapter.name, pdev->name, sizeof(lpi2c_imx->adapter.name)); phy_addr = (dma_addr_t)res->start; ret = devm_clk_bulk_get_all(&pdev->dev, &lpi2c_imx->clks); if (ret < 0) return dev_err_probe(&pdev->dev, ret, "can't get I2C peripheral clock\n"); lpi2c_imx->num_clks = ret; ret = of_property_read_u32(pdev->dev.of_node, "clock-frequency", &lpi2c_imx->bitrate); if (ret) lpi2c_imx->bitrate = I2C_MAX_STANDARD_MODE_FREQ; ret = devm_request_irq(&pdev->dev, irq, lpi2c_imx_isr, IRQF_NO_SUSPEND, pdev->name, lpi2c_imx); if (ret) return dev_err_probe(&pdev->dev, ret, "can't claim irq %d\n", irq); i2c_set_adapdata(&lpi2c_imx->adapter, lpi2c_imx); platform_set_drvdata(pdev, lpi2c_imx); ret = clk_bulk_prepare_enable(lpi2c_imx->num_clks, lpi2c_imx->clks); if (ret) return ret; /* * Lock the parent clock rate to avoid getting parent clock upon * each transfer */ ret = devm_clk_rate_exclusive_get(&pdev->dev, lpi2c_imx->clks[0].clk); if (ret) return dev_err_probe(&pdev->dev, ret, "can't lock I2C peripheral clock rate\n"); lpi2c_imx->rate_per = clk_get_rate(lpi2c_imx->clks[0].clk); if (!lpi2c_imx->rate_per) return dev_err_probe(&pdev->dev, -EINVAL, "can't get I2C peripheral clock rate\n"); pm_runtime_set_autosuspend_delay(&pdev->dev, I2C_PM_TIMEOUT); pm_runtime_use_autosuspend(&pdev->dev); pm_runtime_get_noresume(&pdev->dev); pm_runtime_set_active(&pdev->dev); pm_runtime_enable(&pdev->dev); temp = readl(lpi2c_imx->base + LPI2C_PARAM); lpi2c_imx->txfifosize = 1 << (temp & 0x0f); lpi2c_imx->rxfifosize = 1 << ((temp >> 8) & 0x0f); /* Init optional bus recovery function */ ret = lpi2c_imx_init_recovery_info(lpi2c_imx, pdev); /* Give it another chance if pinctrl used is not ready yet */ if (ret == -EPROBE_DEFER) goto rpm_disable; /* Init DMA */ ret = lpi2c_dma_init(&pdev->dev, phy_addr); if (ret) { if (ret == -EPROBE_DEFER) goto rpm_disable; dev_info(&pdev->dev, "use pio mode\n"); } ret = i2c_add_adapter(&lpi2c_imx->adapter); if (ret) goto rpm_disable; pm_runtime_mark_last_busy(&pdev->dev); pm_runtime_put_autosuspend(&pdev->dev); dev_info(&lpi2c_imx->adapter.dev, "LPI2C adapter registered\n"); return 0; rpm_disable: pm_runtime_put(&pdev->dev); pm_runtime_disable(&pdev->dev); pm_runtime_dont_use_autosuspend(&pdev->dev); return ret; } static void lpi2c_imx_remove(struct platform_device *pdev) { struct lpi2c_imx_struct *lpi2c_imx = platform_get_drvdata(pdev); i2c_del_adapter(&lpi2c_imx->adapter); pm_runtime_disable(&pdev->dev); pm_runtime_dont_use_autosuspend(&pdev->dev); } static int __maybe_unused lpi2c_runtime_suspend(struct device *dev) { struct lpi2c_imx_struct *lpi2c_imx = dev_get_drvdata(dev); clk_bulk_disable(lpi2c_imx->num_clks, lpi2c_imx->clks); pinctrl_pm_select_sleep_state(dev); return 0; } static int __maybe_unused lpi2c_runtime_resume(struct device *dev) { struct lpi2c_imx_struct *lpi2c_imx = dev_get_drvdata(dev); int ret; pinctrl_pm_select_default_state(dev); ret = clk_bulk_enable(lpi2c_imx->num_clks, lpi2c_imx->clks); if (ret) { dev_err(dev, "failed to enable I2C clock, ret=%d\n", ret); return ret; } return 0; } static int __maybe_unused lpi2c_suspend_noirq(struct device *dev) { return pm_runtime_force_suspend(dev); } static int __maybe_unused lpi2c_resume_noirq(struct device *dev) { struct lpi2c_imx_struct *lpi2c_imx = dev_get_drvdata(dev); int ret; ret = pm_runtime_force_resume(dev); if (ret) return ret; /* * If the I2C module powers down during system suspend, * the register values will be lost. Therefore, reinitialize * the target when the system resumes. */ if (lpi2c_imx->target) lpi2c_imx_target_init(lpi2c_imx); return 0; } static int lpi2c_suspend(struct device *dev) { /* * Some I2C devices may need the I2C controller to remain active * during resume_noirq() or suspend_noirq(). If the controller is * autosuspended, there is no way to wake it up once runtime PM is * disabled (in suspend_late()). * * During system resume, the I2C controller will be available only * after runtime PM is re-enabled (in resume_early()). However, this * may be too late for some devices. * * Wake up the controller in the suspend() callback while runtime PM * is still enabled. The I2C controller will remain available until * the suspend_noirq() callback (pm_runtime_force_suspend()) is * called. During resume, the I2C controller can be restored by the * resume_noirq() callback (pm_runtime_force_resume()). * * Finally, the resume() callback re-enables autosuspend, ensuring * the I2C controller remains available until the system enters * suspend_noirq() and from resume_noirq(). */ return pm_runtime_resume_and_get(dev); } static int lpi2c_resume(struct device *dev) { pm_runtime_mark_last_busy(dev); pm_runtime_put_autosuspend(dev); return 0; } static const struct dev_pm_ops lpi2c_pm_ops = { SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(lpi2c_suspend_noirq, lpi2c_resume_noirq) SYSTEM_SLEEP_PM_OPS(lpi2c_suspend, lpi2c_resume) SET_RUNTIME_PM_OPS(lpi2c_runtime_suspend, lpi2c_runtime_resume, NULL) }; static struct platform_driver lpi2c_imx_driver = { .probe = lpi2c_imx_probe, .remove = lpi2c_imx_remove, .driver = { .name = DRIVER_NAME, .of_match_table = lpi2c_imx_of_match, .pm = &lpi2c_pm_ops, }, }; module_platform_driver(lpi2c_imx_driver); MODULE_AUTHOR("Gao Pan "); MODULE_DESCRIPTION("I2C adapter driver for LPI2C bus"); MODULE_LICENSE("GPL");