// SPDX-License-Identifier: GPL-2.0 /* * Microchip Inter-Processor communication (IPC) driver * * Copyright (c) 2021 - 2024 Microchip Technology Inc. All rights reserved. * * Author: Valentina Fernandez * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #define IRQ_STATUS_BITS 12 #define NUM_CHANS_PER_CLUSTER 5 #define IPC_DMA_BIT_MASK 32 #define SBI_EXT_MICROCHIP_TECHNOLOGY (SBI_EXT_VENDOR_START | \ MICROCHIP_VENDOR_ID) enum { SBI_EXT_IPC_PROBE = 0x100, SBI_EXT_IPC_CH_INIT, SBI_EXT_IPC_SEND, SBI_EXT_IPC_RECEIVE, SBI_EXT_IPC_STATUS, }; enum ipc_hw { MIV_IHC, }; /** * struct mchp_ipc_mbox_info - IPC probe message format * * @hw_type: IPC implementation available in the hardware * @num_channels: number of IPC channels available in the hardware * * Used to retrieve information on the IPC implementation * using the SBI_EXT_IPC_PROBE SBI function id. */ struct mchp_ipc_mbox_info { enum ipc_hw hw_type; u8 num_channels; }; /** * struct mchp_ipc_init - IPC channel init message format * * @max_msg_size: maxmimum message size in bytes of a given channel * * struct used by the SBI_EXT_IPC_CH_INIT SBI function id to get * the max message size in bytes of the initialized channel. */ struct mchp_ipc_init { u16 max_msg_size; }; /** * struct mchp_ipc_status - IPC status message format * * @status: interrupt status for all channels associated to a cluster * @cluster: specifies the cluster instance that originated an irq * * struct used by the SBI_EXT_IPC_STATUS SBI function id to get * the message present and message clear interrupt status for all the * channels associated to a cluster. */ struct mchp_ipc_status { u32 status; u8 cluster; }; /** * struct mchp_ipc_sbi_msg - IPC SBI payload message * * @buf_addr: physical address where the received data should be copied to * @size: maximum size(in bytes) that can be stored in the buffer pointed to by `buf` * @irq_type: mask representing the irq types that triggered an irq * * struct used by the SBI_EXT_IPC_SEND/SBI_EXT_IPC_RECEIVE SBI function * ids to send/receive a message from an associated processor using * the IPC. */ struct mchp_ipc_sbi_msg { u64 buf_addr; u16 size; u8 irq_type; }; struct mchp_ipc_cluster_cfg { void *buf_base; phys_addr_t buf_base_addr; int irq; }; struct mchp_ipc_sbi_mbox { struct device *dev; struct mbox_chan *chans; struct mchp_ipc_cluster_cfg *cluster_cfg; void *buf_base; unsigned long buf_base_addr; struct mbox_controller controller; enum ipc_hw hw_type; }; static int mchp_ipc_sbi_chan_send(u32 command, u32 channel, unsigned long address) { struct sbiret ret; ret = sbi_ecall(SBI_EXT_MICROCHIP_TECHNOLOGY, command, channel, address, 0, 0, 0, 0); if (ret.error) return sbi_err_map_linux_errno(ret.error); else return ret.value; } static int mchp_ipc_sbi_send(u32 command, unsigned long address) { struct sbiret ret; ret = sbi_ecall(SBI_EXT_MICROCHIP_TECHNOLOGY, command, address, 0, 0, 0, 0, 0); if (ret.error) return sbi_err_map_linux_errno(ret.error); else return ret.value; } static struct mchp_ipc_sbi_mbox *to_mchp_ipc_mbox(struct mbox_controller *mbox) { return container_of(mbox, struct mchp_ipc_sbi_mbox, controller); } static inline void mchp_ipc_prepare_receive_req(struct mbox_chan *chan) { struct mchp_ipc_sbi_chan *chan_info = (struct mchp_ipc_sbi_chan *)chan->con_priv; struct mchp_ipc_sbi_msg request; request.buf_addr = chan_info->msg_buf_rx_addr; request.size = chan_info->max_msg_size; memcpy(chan_info->buf_base_rx, &request, sizeof(struct mchp_ipc_sbi_msg)); } static inline void mchp_ipc_process_received_data(struct mbox_chan *chan, struct mchp_ipc_msg *ipc_msg) { struct mchp_ipc_sbi_chan *chan_info = (struct mchp_ipc_sbi_chan *)chan->con_priv; struct mchp_ipc_sbi_msg sbi_msg; memcpy(&sbi_msg, chan_info->buf_base_rx, sizeof(struct mchp_ipc_sbi_msg)); ipc_msg->buf = (u32 *)chan_info->msg_buf_rx; ipc_msg->size = sbi_msg.size; } static irqreturn_t mchp_ipc_cluster_aggr_isr(int irq, void *data) { struct mbox_chan *chan; struct mchp_ipc_sbi_chan *chan_info; struct mchp_ipc_sbi_mbox *ipc = (struct mchp_ipc_sbi_mbox *)data; struct mchp_ipc_msg ipc_msg; struct mchp_ipc_status status_msg; int ret; unsigned long hartid; u32 i, chan_index, chan_id; /* Find out the hart that originated the irq */ for_each_online_cpu(i) { hartid = cpuid_to_hartid_map(i); if (irq == ipc->cluster_cfg[hartid].irq) break; } status_msg.cluster = hartid; memcpy(ipc->cluster_cfg[hartid].buf_base, &status_msg, sizeof(struct mchp_ipc_status)); ret = mchp_ipc_sbi_send(SBI_EXT_IPC_STATUS, ipc->cluster_cfg[hartid].buf_base_addr); if (ret < 0) { dev_err_ratelimited(ipc->dev, "could not get IHC irq status ret=%d\n", ret); return IRQ_HANDLED; } memcpy(&status_msg, ipc->cluster_cfg[hartid].buf_base, sizeof(struct mchp_ipc_status)); /* * Iterate over each bit set in the IHC interrupt status register (IRQ_STATUS) to identify * the channel(s) that have a message to be processed/acknowledged. * The bits are organized in alternating format, where each pair of bits represents * the status of the message present and message clear interrupts for each cluster/hart * (from hart 0 to hart 5). Each cluster can have up to 5 fixed channels associated. */ for_each_set_bit(i, (unsigned long *)&status_msg.status, IRQ_STATUS_BITS) { /* Find out the destination hart that triggered the interrupt */ chan_index = i / 2; /* * The IP has no loopback channels, so we need to decrement the index when * the target hart has a greater index than our own */ if (chan_index >= status_msg.cluster) chan_index--; /* * Calculate the channel id given the hart and channel index. Channel IDs * are unique across all clusters of an IPC, and iterate contiguously * across all clusters. */ chan_id = status_msg.cluster * (NUM_CHANS_PER_CLUSTER + chan_index); chan = &ipc->chans[chan_id]; chan_info = (struct mchp_ipc_sbi_chan *)chan->con_priv; if (i % 2 == 0) { mchp_ipc_prepare_receive_req(chan); ret = mchp_ipc_sbi_chan_send(SBI_EXT_IPC_RECEIVE, chan_id, chan_info->buf_base_rx_addr); if (ret < 0) continue; mchp_ipc_process_received_data(chan, &ipc_msg); mbox_chan_received_data(&ipc->chans[chan_id], (void *)&ipc_msg); } else { ret = mchp_ipc_sbi_chan_send(SBI_EXT_IPC_RECEIVE, chan_id, chan_info->buf_base_rx_addr); mbox_chan_txdone(&ipc->chans[chan_id], ret); } } return IRQ_HANDLED; } static int mchp_ipc_send_data(struct mbox_chan *chan, void *data) { struct mchp_ipc_sbi_chan *chan_info = (struct mchp_ipc_sbi_chan *)chan->con_priv; const struct mchp_ipc_msg *msg = data; struct mchp_ipc_sbi_msg sbi_payload; memcpy(chan_info->msg_buf_tx, msg->buf, msg->size); sbi_payload.buf_addr = chan_info->msg_buf_tx_addr; sbi_payload.size = msg->size; memcpy(chan_info->buf_base_tx, &sbi_payload, sizeof(sbi_payload)); return mchp_ipc_sbi_chan_send(SBI_EXT_IPC_SEND, chan_info->id, chan_info->buf_base_tx_addr); } static int mchp_ipc_startup(struct mbox_chan *chan) { struct mchp_ipc_sbi_chan *chan_info = (struct mchp_ipc_sbi_chan *)chan->con_priv; struct mchp_ipc_sbi_mbox *ipc = to_mchp_ipc_mbox(chan->mbox); struct mchp_ipc_init ch_init_msg; int ret; /* * The TX base buffer is used to transmit two types of messages: * - struct mchp_ipc_init to initialize the channel * - struct mchp_ipc_sbi_msg to transmit user data/payload * Ensure the TX buffer size is large enough to accommodate either message type. */ size_t max_size = max(sizeof(struct mchp_ipc_init), sizeof(struct mchp_ipc_sbi_msg)); chan_info->buf_base_tx = kmalloc(max_size, GFP_KERNEL); if (!chan_info->buf_base_tx) { ret = -ENOMEM; goto fail; } chan_info->buf_base_tx_addr = __pa(chan_info->buf_base_tx); chan_info->buf_base_rx = kmalloc(max_size, GFP_KERNEL); if (!chan_info->buf_base_rx) { ret = -ENOMEM; goto fail_free_buf_base_tx; } chan_info->buf_base_rx_addr = __pa(chan_info->buf_base_rx); ret = mchp_ipc_sbi_chan_send(SBI_EXT_IPC_CH_INIT, chan_info->id, chan_info->buf_base_tx_addr); if (ret < 0) { dev_err(ipc->dev, "channel %u init failed\n", chan_info->id); goto fail_free_buf_base_rx; } memcpy(&ch_init_msg, chan_info->buf_base_tx, sizeof(struct mchp_ipc_init)); chan_info->max_msg_size = ch_init_msg.max_msg_size; chan_info->msg_buf_tx = kmalloc(chan_info->max_msg_size, GFP_KERNEL); if (!chan_info->msg_buf_tx) { ret = -ENOMEM; goto fail_free_buf_base_rx; } chan_info->msg_buf_tx_addr = __pa(chan_info->msg_buf_tx); chan_info->msg_buf_rx = kmalloc(chan_info->max_msg_size, GFP_KERNEL); if (!chan_info->msg_buf_rx) { ret = -ENOMEM; goto fail_free_buf_msg_tx; } chan_info->msg_buf_rx_addr = __pa(chan_info->msg_buf_rx); switch (ipc->hw_type) { case MIV_IHC: return 0; default: goto fail_free_buf_msg_rx; } if (ret) { dev_err(ipc->dev, "failed to register interrupt(s)\n"); goto fail_free_buf_msg_rx; } return ret; fail_free_buf_msg_rx: kfree(chan_info->msg_buf_rx); fail_free_buf_msg_tx: kfree(chan_info->msg_buf_tx); fail_free_buf_base_rx: kfree(chan_info->buf_base_rx); fail_free_buf_base_tx: kfree(chan_info->buf_base_tx); fail: return ret; } static void mchp_ipc_shutdown(struct mbox_chan *chan) { struct mchp_ipc_sbi_chan *chan_info = (struct mchp_ipc_sbi_chan *)chan->con_priv; kfree(chan_info->buf_base_tx); kfree(chan_info->buf_base_rx); kfree(chan_info->msg_buf_tx); kfree(chan_info->msg_buf_rx); } static const struct mbox_chan_ops mchp_ipc_ops = { .startup = mchp_ipc_startup, .send_data = mchp_ipc_send_data, .shutdown = mchp_ipc_shutdown, }; static struct mbox_chan *mchp_ipc_mbox_xlate(struct mbox_controller *controller, const struct of_phandle_args *spec) { struct mchp_ipc_sbi_mbox *ipc = to_mchp_ipc_mbox(controller); unsigned int chan_id = spec->args[0]; if (chan_id >= ipc->controller.num_chans) { dev_err(ipc->dev, "invalid channel id %d\n", chan_id); return ERR_PTR(-EINVAL); } return &ipc->chans[chan_id]; } static int mchp_ipc_get_cluster_aggr_irq(struct mchp_ipc_sbi_mbox *ipc) { struct platform_device *pdev = to_platform_device(ipc->dev); char *irq_name; int cpuid, ret; unsigned long hartid; bool irq_found = false; for_each_online_cpu(cpuid) { hartid = cpuid_to_hartid_map(cpuid); irq_name = devm_kasprintf(ipc->dev, GFP_KERNEL, "hart-%lu", hartid); ret = platform_get_irq_byname_optional(pdev, irq_name); if (ret <= 0) continue; ipc->cluster_cfg[hartid].irq = ret; ret = devm_request_irq(ipc->dev, ipc->cluster_cfg[hartid].irq, mchp_ipc_cluster_aggr_isr, IRQF_SHARED, "miv-ihc-irq", ipc); if (ret) return ret; ipc->cluster_cfg[hartid].buf_base = devm_kmalloc(ipc->dev, sizeof(struct mchp_ipc_status), GFP_KERNEL); if (!ipc->cluster_cfg[hartid].buf_base) return -ENOMEM; ipc->cluster_cfg[hartid].buf_base_addr = __pa(ipc->cluster_cfg[hartid].buf_base); irq_found = true; } return irq_found; } static int mchp_ipc_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct mchp_ipc_mbox_info ipc_info; struct mchp_ipc_sbi_mbox *ipc; struct mchp_ipc_sbi_chan *priv; bool irq_avail = false; int ret; u32 chan_id; ret = sbi_probe_extension(SBI_EXT_MICROCHIP_TECHNOLOGY); if (ret <= 0) return dev_err_probe(dev, ret, "Microchip SBI extension not detected\n"); ipc = devm_kzalloc(dev, sizeof(*ipc), GFP_KERNEL); if (!ipc) return -ENOMEM; platform_set_drvdata(pdev, ipc); ipc->buf_base = devm_kmalloc(dev, sizeof(struct mchp_ipc_mbox_info), GFP_KERNEL); if (!ipc->buf_base) return -ENOMEM; ipc->buf_base_addr = __pa(ipc->buf_base); ret = mchp_ipc_sbi_send(SBI_EXT_IPC_PROBE, ipc->buf_base_addr); if (ret < 0) return dev_err_probe(dev, ret, "could not probe IPC SBI service\n"); memcpy(&ipc_info, ipc->buf_base, sizeof(struct mchp_ipc_mbox_info)); ipc->controller.num_chans = ipc_info.num_channels; ipc->hw_type = ipc_info.hw_type; ipc->chans = devm_kcalloc(dev, ipc->controller.num_chans, sizeof(*ipc->chans), GFP_KERNEL); if (!ipc->chans) return -ENOMEM; ipc->dev = dev; ipc->controller.txdone_irq = true; ipc->controller.dev = ipc->dev; ipc->controller.ops = &mchp_ipc_ops; ipc->controller.chans = ipc->chans; ipc->controller.of_xlate = mchp_ipc_mbox_xlate; for (chan_id = 0; chan_id < ipc->controller.num_chans; chan_id++) { priv = devm_kmalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; ipc->chans[chan_id].con_priv = priv; priv->id = chan_id; } if (ipc->hw_type == MIV_IHC) { ipc->cluster_cfg = devm_kcalloc(dev, num_online_cpus(), sizeof(struct mchp_ipc_cluster_cfg), GFP_KERNEL); if (!ipc->cluster_cfg) return -ENOMEM; if (mchp_ipc_get_cluster_aggr_irq(ipc)) irq_avail = true; } if (!irq_avail) return dev_err_probe(dev, -ENODEV, "missing interrupt property\n"); ret = devm_mbox_controller_register(dev, &ipc->controller); if (ret) return dev_err_probe(dev, ret, "Inter-Processor communication (IPC) registration failed\n"); return 0; } static const struct of_device_id mchp_ipc_of_match[] = { {.compatible = "microchip,sbi-ipc", }, {} }; MODULE_DEVICE_TABLE(of, mchp_ipc_of_match); static struct platform_driver mchp_ipc_driver = { .driver = { .name = "microchip_ipc", .of_match_table = mchp_ipc_of_match, }, .probe = mchp_ipc_probe, }; module_platform_driver(mchp_ipc_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Valentina Fernandez "); MODULE_DESCRIPTION("Microchip Inter-Processor Communication (IPC) driver");