// SPDX-License-Identifier: GPL-2.0-or-later /* * Handles the M-Systems DiskOnChip G3 chip * * Copyright (C) 2011 Robert Jarzmik */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CREATE_TRACE_POINTS #include "docg3.h" /* * This driver handles the DiskOnChip G3 flash memory. * * As no specification is available from M-Systems/Sandisk, this drivers lacks * several functions available on the chip, as : * - IPL write * * The bus data width (8bits versus 16bits) is not handled (if_cfg flag), and * the driver assumes a 16bits data bus. * * DocG3 relies on 2 ECC algorithms, which are handled in hardware : * - a 1 byte Hamming code stored in the OOB for each page * - a 7 bytes BCH code stored in the OOB for each page * The BCH ECC is : * - BCH is in GF(2^14) * - BCH is over data of 520 bytes (512 page + 7 page_info bytes * + 1 hamming byte) * - BCH can correct up to 4 bits (t = 4) * - BCH syndroms are calculated in hardware, and checked in hardware as well * */ static unsigned int reliable_mode; module_param(reliable_mode, uint, 0); MODULE_PARM_DESC(reliable_mode, "Set the docg3 mode (0=normal MLC, 1=fast, " "2=reliable) : MLC normal operations are in normal mode"); static int docg3_ooblayout_ecc(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { if (section) return -ERANGE; /* byte 7 is Hamming ECC, byte 8-14 are BCH ECC */ oobregion->offset = 7; oobregion->length = 8; return 0; } static int docg3_ooblayout_free(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { if (section > 1) return -ERANGE; /* free bytes: byte 0 until byte 6, byte 15 */ if (!section) { oobregion->offset = 0; oobregion->length = 7; } else { oobregion->offset = 15; oobregion->length = 1; } return 0; } static const struct mtd_ooblayout_ops nand_ooblayout_docg3_ops = { .ecc = docg3_ooblayout_ecc, .free = docg3_ooblayout_free, }; static inline u8 doc_readb(struct docg3 *docg3, u16 reg) { u8 val = readb(docg3->cascade->base + reg); trace_docg3_io(0, 8, reg, (int)val); return val; } static inline u16 doc_readw(struct docg3 *docg3, u16 reg) { u16 val = readw(docg3->cascade->base + reg); trace_docg3_io(0, 16, reg, (int)val); return val; } static inline void doc_writeb(struct docg3 *docg3, u8 val, u16 reg) { writeb(val, docg3->cascade->base + reg); trace_docg3_io(1, 8, reg, val); } static inline void doc_writew(struct docg3 *docg3, u16 val, u16 reg) { writew(val, docg3->cascade->base + reg); trace_docg3_io(1, 16, reg, val); } static inline void doc_flash_command(struct docg3 *docg3, u8 cmd) { doc_writeb(docg3, cmd, DOC_FLASHCOMMAND); } static inline void doc_flash_sequence(struct docg3 *docg3, u8 seq) { doc_writeb(docg3, seq, DOC_FLASHSEQUENCE); } static inline void doc_flash_address(struct docg3 *docg3, u8 addr) { doc_writeb(docg3, addr, DOC_FLASHADDRESS); } static char const * const part_probes[] = { "cmdlinepart", "saftlpart", NULL }; static int doc_register_readb(struct docg3 *docg3, int reg) { u8 val; doc_writew(docg3, reg, DOC_READADDRESS); val = doc_readb(docg3, reg); doc_vdbg("Read register %04x : %02x\n", reg, val); return val; } static int doc_register_readw(struct docg3 *docg3, int reg) { u16 val; doc_writew(docg3, reg, DOC_READADDRESS); val = doc_readw(docg3, reg); doc_vdbg("Read register %04x : %04x\n", reg, val); return val; } /** * doc_delay - delay docg3 operations * @docg3: the device * @nbNOPs: the number of NOPs to issue * * As no specification is available, the right timings between chip commands are * unknown. The only available piece of information are the observed nops on a * working docg3 chip. * Therefore, doc_delay relies on a busy loop of NOPs, instead of scheduler * friendlier msleep() functions or blocking mdelay(). */ static void doc_delay(struct docg3 *docg3, int nbNOPs) { int i; doc_vdbg("NOP x %d\n", nbNOPs); for (i = 0; i < nbNOPs; i++) doc_writeb(docg3, 0, DOC_NOP); } static int is_prot_seq_error(struct docg3 *docg3) { int ctrl; ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); return ctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR); } static int doc_is_ready(struct docg3 *docg3) { int ctrl; ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); return ctrl & DOC_CTRL_FLASHREADY; } static int doc_wait_ready(struct docg3 *docg3) { int maxWaitCycles = 100; do { doc_delay(docg3, 4); cpu_relax(); } while (!doc_is_ready(docg3) && maxWaitCycles--); doc_delay(docg3, 2); if (maxWaitCycles > 0) return 0; else return -EIO; } static int doc_reset_seq(struct docg3 *docg3) { int ret; doc_writeb(docg3, 0x10, DOC_FLASHCONTROL); doc_flash_sequence(docg3, DOC_SEQ_RESET); doc_flash_command(docg3, DOC_CMD_RESET); doc_delay(docg3, 2); ret = doc_wait_ready(docg3); doc_dbg("doc_reset_seq() -> isReady=%s\n", ret ? "false" : "true"); return ret; } /** * doc_read_data_area - Read data from data area * @docg3: the device * @buf: the buffer to fill in (might be NULL is dummy reads) * @len: the length to read * @first: first time read, DOC_READADDRESS should be set * * Reads bytes from flash data. Handles the single byte / even bytes reads. */ static void doc_read_data_area(struct docg3 *docg3, void *buf, int len, int first) { int i, cdr, len4; u16 data16, *dst16; u8 data8, *dst8; doc_dbg("doc_read_data_area(buf=%p, len=%d)\n", buf, len); cdr = len & 0x1; len4 = len - cdr; if (first) doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS); dst16 = buf; for (i = 0; i < len4; i += 2) { data16 = doc_readw(docg3, DOC_IOSPACE_DATA); if (dst16) { *dst16 = data16; dst16++; } } if (cdr) { doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE, DOC_READADDRESS); doc_delay(docg3, 1); dst8 = (u8 *)dst16; for (i = 0; i < cdr; i++) { data8 = doc_readb(docg3, DOC_IOSPACE_DATA); if (dst8) { *dst8 = data8; dst8++; } } } } /** * doc_write_data_area - Write data into data area * @docg3: the device * @buf: the buffer to get input bytes from * @len: the length to write * * Writes bytes into flash data. Handles the single byte / even bytes writes. */ static void doc_write_data_area(struct docg3 *docg3, const void *buf, int len) { int i, cdr, len4; u16 *src16; u8 *src8; doc_dbg("doc_write_data_area(buf=%p, len=%d)\n", buf, len); cdr = len & 0x3; len4 = len - cdr; doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS); src16 = (u16 *)buf; for (i = 0; i < len4; i += 2) { doc_writew(docg3, *src16, DOC_IOSPACE_DATA); src16++; } src8 = (u8 *)src16; for (i = 0; i < cdr; i++) { doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE, DOC_READADDRESS); doc_writeb(docg3, *src8, DOC_IOSPACE_DATA); src8++; } } /** * doc_set_reliable_mode - Sets the flash to normal or reliable data mode * @docg3: the device * * The reliable data mode is a bit slower than the fast mode, but less errors * occur. Entering the reliable mode cannot be done without entering the fast * mode first. * * In reliable mode, pages 2*n and 2*n+1 are clones. Writing to page 0 of blocks * (4,5) make the hardware write also to page 1 of blocks blocks(4,5). Reading * from page 0 of blocks (4,5) or from page 1 of blocks (4,5) gives the same * result, which is a logical and between bytes from page 0 and page 1 (which is * consistent with the fact that writing to a page is _clearing_ bits of that * page). */ static void doc_set_reliable_mode(struct docg3 *docg3) { static char *strmode[] = { "normal", "fast", "reliable", "invalid" }; doc_dbg("doc_set_reliable_mode(%s)\n", strmode[docg3->reliable]); switch (docg3->reliable) { case 0: break; case 1: doc_flash_sequence(docg3, DOC_SEQ_SET_FASTMODE); doc_flash_command(docg3, DOC_CMD_FAST_MODE); break; case 2: doc_flash_sequence(docg3, DOC_SEQ_SET_RELIABLEMODE); doc_flash_command(docg3, DOC_CMD_FAST_MODE); doc_flash_command(docg3, DOC_CMD_RELIABLE_MODE); break; default: doc_err("doc_set_reliable_mode(): invalid mode\n"); break; } doc_delay(docg3, 2); } /** * doc_set_asic_mode - Set the ASIC mode * @docg3: the device * @mode: the mode * * The ASIC can work in 3 modes : * - RESET: all registers are zeroed * - NORMAL: receives and handles commands * - POWERDOWN: minimal poweruse, flash parts shut off */ static void doc_set_asic_mode(struct docg3 *docg3, u8 mode) { int i; for (i = 0; i < 12; i++) doc_readb(docg3, DOC_IOSPACE_IPL); mode |= DOC_ASICMODE_MDWREN; doc_dbg("doc_set_asic_mode(%02x)\n", mode); doc_writeb(docg3, mode, DOC_ASICMODE); doc_writeb(docg3, ~mode, DOC_ASICMODECONFIRM); doc_delay(docg3, 1); } /** * doc_set_device_id - Sets the devices id for cascaded G3 chips * @docg3: the device * @id: the chip to select (amongst 0, 1, 2, 3) * * There can be 4 cascaded G3 chips. This function selects the one which will * should be the active one. */ static void doc_set_device_id(struct docg3 *docg3, int id) { u8 ctrl; doc_dbg("doc_set_device_id(%d)\n", id); doc_writeb(docg3, id, DOC_DEVICESELECT); ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); ctrl &= ~DOC_CTRL_VIOLATION; ctrl |= DOC_CTRL_CE; doc_writeb(docg3, ctrl, DOC_FLASHCONTROL); } /** * doc_set_extra_page_mode - Change flash page layout * @docg3: the device * * Normally, the flash page is split into the data (512 bytes) and the out of * band data (16 bytes). For each, 4 more bytes can be accessed, where the wear * leveling counters are stored. To access this last area of 4 bytes, a special * mode must be input to the flash ASIC. * * Returns 0 if no error occurred, -EIO else. */ static int doc_set_extra_page_mode(struct docg3 *docg3) { int fctrl; doc_dbg("doc_set_extra_page_mode()\n"); doc_flash_sequence(docg3, DOC_SEQ_PAGE_SIZE_532); doc_flash_command(docg3, DOC_CMD_PAGE_SIZE_532); doc_delay(docg3, 2); fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); if (fctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR)) return -EIO; else return 0; } /** * doc_setup_addr_sector - Setup blocks/page/ofs address for one plane * @docg3: the device * @sector: the sector */ static void doc_setup_addr_sector(struct docg3 *docg3, int sector) { doc_delay(docg3, 1); doc_flash_address(docg3, sector & 0xff); doc_flash_address(docg3, (sector >> 8) & 0xff); doc_flash_address(docg3, (sector >> 16) & 0xff); doc_delay(docg3, 1); } /** * doc_setup_writeaddr_sector - Setup blocks/page/ofs address for one plane * @docg3: the device * @sector: the sector * @ofs: the offset in the page, between 0 and (512 + 16 + 512) */ static void doc_setup_writeaddr_sector(struct docg3 *docg3, int sector, int ofs) { ofs = ofs >> 2; doc_delay(docg3, 1); doc_flash_address(docg3, ofs & 0xff); doc_flash_address(docg3, sector & 0xff); doc_flash_address(docg3, (sector >> 8) & 0xff); doc_flash_address(docg3, (sector >> 16) & 0xff); doc_delay(docg3, 1); } /** * doc_read_seek - Set both flash planes to the specified block, page for reading * @docg3: the device * @block0: the first plane block index * @block1: the second plane block index * @page: the page index within the block * @wear: if true, read will occur on the 4 extra bytes of the wear area * @ofs: offset in page to read * * Programs the flash even and odd planes to the specific block and page. * Alternatively, programs the flash to the wear area of the specified page. */ static int doc_read_seek(struct docg3 *docg3, int block0, int block1, int page, int wear, int ofs) { int sector, ret = 0; doc_dbg("doc_seek(blocks=(%d,%d), page=%d, ofs=%d, wear=%d)\n", block0, block1, page, ofs, wear); if (!wear && (ofs < 2 * DOC_LAYOUT_PAGE_SIZE)) { doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1); doc_flash_command(docg3, DOC_CMD_READ_PLANE1); doc_delay(docg3, 2); } else { doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2); doc_flash_command(docg3, DOC_CMD_READ_PLANE2); doc_delay(docg3, 2); } doc_set_reliable_mode(docg3); if (wear) ret = doc_set_extra_page_mode(docg3); if (ret) goto out; doc_flash_sequence(docg3, DOC_SEQ_READ); sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK); doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR); doc_setup_addr_sector(docg3, sector); sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK); doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR); doc_setup_addr_sector(docg3, sector); doc_delay(docg3, 1); out: return ret; } /** * doc_write_seek - Set both flash planes to the specified block, page for writing * @docg3: the device * @block0: the first plane block index * @block1: the second plane block index * @page: the page index within the block * @ofs: offset in page to write * * Programs the flash even and odd planes to the specific block and page. * Alternatively, programs the flash to the wear area of the specified page. */ static int doc_write_seek(struct docg3 *docg3, int block0, int block1, int page, int ofs) { int ret = 0, sector; doc_dbg("doc_write_seek(blocks=(%d,%d), page=%d, ofs=%d)\n", block0, block1, page, ofs); doc_set_reliable_mode(docg3); if (ofs < 2 * DOC_LAYOUT_PAGE_SIZE) { doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1); doc_flash_command(docg3, DOC_CMD_READ_PLANE1); doc_delay(docg3, 2); } else { doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2); doc_flash_command(docg3, DOC_CMD_READ_PLANE2); doc_delay(docg3, 2); } doc_flash_sequence(docg3, DOC_SEQ_PAGE_SETUP); doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1); sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK); doc_setup_writeaddr_sector(docg3, sector, ofs); doc_flash_command(docg3, DOC_CMD_PROG_CYCLE3); doc_delay(docg3, 2); ret = doc_wait_ready(docg3); if (ret) goto out; doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1); sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK); doc_setup_writeaddr_sector(docg3, sector, ofs); doc_delay(docg3, 1); out: return ret; } /** * doc_read_page_ecc_init - Initialize hardware ECC engine * @docg3: the device * @len: the number of bytes covered by the ECC (BCH covered) * * The function does initialize the hardware ECC engine to compute the Hamming * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes). * * Return 0 if succeeded, -EIO on error */ static int doc_read_page_ecc_init(struct docg3 *docg3, int len) { doc_writew(docg3, DOC_ECCCONF0_READ_MODE | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE | (len & DOC_ECCCONF0_DATA_BYTES_MASK), DOC_ECCCONF0); doc_delay(docg3, 4); doc_register_readb(docg3, DOC_FLASHCONTROL); return doc_wait_ready(docg3); } /** * doc_write_page_ecc_init - Initialize hardware BCH ECC engine * @docg3: the device * @len: the number of bytes covered by the ECC (BCH covered) * * The function does initialize the hardware ECC engine to compute the Hamming * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes). * * Return 0 if succeeded, -EIO on error */ static int doc_write_page_ecc_init(struct docg3 *docg3, int len) { doc_writew(docg3, DOC_ECCCONF0_WRITE_MODE | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE | (len & DOC_ECCCONF0_DATA_BYTES_MASK), DOC_ECCCONF0); doc_delay(docg3, 4); doc_register_readb(docg3, DOC_FLASHCONTROL); return doc_wait_ready(docg3); } /** * doc_ecc_disable - Disable Hamming and BCH ECC hardware calculator * @docg3: the device * * Disables the hardware ECC generator and checker, for unchecked reads (as when * reading OOB only or write status byte). */ static void doc_ecc_disable(struct docg3 *docg3) { doc_writew(docg3, DOC_ECCCONF0_READ_MODE, DOC_ECCCONF0); doc_delay(docg3, 4); } /** * doc_hamming_ecc_init - Initialize hardware Hamming ECC engine * @docg3: the device * @nb_bytes: the number of bytes covered by the ECC (Hamming covered) * * This function programs the ECC hardware to compute the hamming code on the * last provided N bytes to the hardware generator. */ static void doc_hamming_ecc_init(struct docg3 *docg3, int nb_bytes) { u8 ecc_conf1; ecc_conf1 = doc_register_readb(docg3, DOC_ECCCONF1); ecc_conf1 &= ~DOC_ECCCONF1_HAMMING_BITS_MASK; ecc_conf1 |= (nb_bytes & DOC_ECCCONF1_HAMMING_BITS_MASK); doc_writeb(docg3, ecc_conf1, DOC_ECCCONF1); } /** * doc_ecc_bch_fix_data - Fix if need be read data from flash * @docg3: the device * @buf: the buffer of read data (512 + 7 + 1 bytes) * @hwecc: the hardware calculated ECC. * It's in fact recv_ecc ^ calc_ecc, where recv_ecc was read from OOB * area data, and calc_ecc the ECC calculated by the hardware generator. * * Checks if the received data matches the ECC, and if an error is detected, * tries to fix the bit flips (at most 4) in the buffer buf. As the docg3 * understands the (data, ecc, syndroms) in an inverted order in comparison to * the BCH library, the function reverses the order of bits (ie. bit7 and bit0, * bit6 and bit 1, ...) for all ECC data. * * The hardware ecc unit produces oob_ecc ^ calc_ecc. The kernel's bch * algorithm is used to decode this. However the hw operates on page * data in a bit order that is the reverse of that of the bch alg, * requiring that the bits be reversed on the result. Thanks to Ivan * Djelic for his analysis. * * Returns number of fixed bits (0, 1, 2, 3, 4) or -EBADMSG if too many bit * errors were detected and cannot be fixed. */ static int doc_ecc_bch_fix_data(struct docg3 *docg3, void *buf, u8 *hwecc) { u8 ecc[DOC_ECC_BCH_SIZE]; int errorpos[DOC_ECC_BCH_T], i, numerrs; for (i = 0; i < DOC_ECC_BCH_SIZE; i++) ecc[i] = bitrev8(hwecc[i]); numerrs = bch_decode(docg3->cascade->bch, NULL, DOC_ECC_BCH_COVERED_BYTES, NULL, ecc, NULL, errorpos); BUG_ON(numerrs == -EINVAL); if (numerrs < 0) goto out; for (i = 0; i < numerrs; i++) errorpos[i] = (errorpos[i] & ~7) | (7 - (errorpos[i] & 7)); for (i = 0; i < numerrs; i++) if (errorpos[i] < DOC_ECC_BCH_COVERED_BYTES*8) /* error is located in data, correct it */ change_bit(errorpos[i], buf); out: doc_dbg("doc_ecc_bch_fix_data: flipped %d bits\n", numerrs); return numerrs; } /** * doc_read_page_prepare - Prepares reading data from a flash page * @docg3: the device * @block0: the first plane block index on flash memory * @block1: the second plane block index on flash memory * @page: the page index in the block * @offset: the offset in the page (must be a multiple of 4) * * Prepares the page to be read in the flash memory : * - tell ASIC to map the flash pages * - tell ASIC to be in read mode * * After a call to this method, a call to doc_read_page_finish is mandatory, * to end the read cycle of the flash. * * Read data from a flash page. The length to be read must be between 0 and * (page_size + oob_size + wear_size), ie. 532, and a multiple of 4 (because * the extra bytes reading is not implemented). * * As pages are grouped by 2 (in 2 planes), reading from a page must be done * in two steps: * - one read of 512 bytes at offset 0 * - one read of 512 bytes at offset 512 + 16 * * Returns 0 if successful, -EIO if a read error occurred. */ static int doc_read_page_prepare(struct docg3 *docg3, int block0, int block1, int page, int offset) { int wear_area = 0, ret = 0; doc_dbg("doc_read_page_prepare(blocks=(%d,%d), page=%d, ofsInPage=%d)\n", block0, block1, page, offset); if (offset >= DOC_LAYOUT_WEAR_OFFSET) wear_area = 1; if (!wear_area && offset > (DOC_LAYOUT_PAGE_OOB_SIZE * 2)) return -EINVAL; doc_set_device_id(docg3, docg3->device_id); ret = doc_reset_seq(docg3); if (ret) goto err; /* Program the flash address block and page */ ret = doc_read_seek(docg3, block0, block1, page, wear_area, offset); if (ret) goto err; doc_flash_command(docg3, DOC_CMD_READ_ALL_PLANES); doc_delay(docg3, 2); doc_wait_ready(docg3); doc_flash_command(docg3, DOC_CMD_SET_ADDR_READ); doc_delay(docg3, 1); if (offset >= DOC_LAYOUT_PAGE_SIZE * 2) offset -= 2 * DOC_LAYOUT_PAGE_SIZE; doc_flash_address(docg3, offset >> 2); doc_delay(docg3, 1); doc_wait_ready(docg3); doc_flash_command(docg3, DOC_CMD_READ_FLASH); return 0; err: doc_writeb(docg3, 0, DOC_DATAEND); doc_delay(docg3, 2); return -EIO; } /** * doc_read_page_getbytes - Reads bytes from a prepared page * @docg3: the device * @len: the number of bytes to be read (must be a multiple of 4) * @buf: the buffer to be filled in (or NULL is forget bytes) * @first: 1 if first time read, DOC_READADDRESS should be set * @last_odd: 1 if last read ended up on an odd byte * * Reads bytes from a prepared page. There is a trickery here : if the last read * ended up on an odd offset in the 1024 bytes double page, ie. between the 2 * planes, the first byte must be read apart. If a word (16bit) read was used, * the read would return the byte of plane 2 as low *and* high endian, which * will mess the read. * */ static int doc_read_page_getbytes(struct docg3 *docg3, int len, u_char *buf, int first, int last_odd) { if (last_odd && len > 0) { doc_read_data_area(docg3, buf, 1, first); doc_read_data_area(docg3, buf ? buf + 1 : buf, len - 1, 0); } else { doc_read_data_area(docg3, buf, len, first); } doc_delay(docg3, 2); return len; } /** * doc_write_page_putbytes - Writes bytes into a prepared page * @docg3: the device * @len: the number of bytes to be written * @buf: the buffer of input bytes * */ static void doc_write_page_putbytes(struct docg3 *docg3, int len, const u_char *buf) { doc_write_data_area(docg3, buf, len); doc_delay(docg3, 2); } /** * doc_get_bch_hw_ecc - Get hardware calculated BCH ECC * @docg3: the device * @hwecc: the array of 7 integers where the hardware ecc will be stored */ static void doc_get_bch_hw_ecc(struct docg3 *docg3, u8 *hwecc) { int i; for (i = 0; i < DOC_ECC_BCH_SIZE; i++) hwecc[i] = doc_register_readb(docg3, DOC_BCH_HW_ECC(i)); } /** * doc_page_finish - Ends reading/writing of a flash page * @docg3: the device */ static void doc_page_finish(struct docg3 *docg3) { doc_writeb(docg3, 0, DOC_DATAEND); doc_delay(docg3, 2); } /** * doc_read_page_finish - Ends reading of a flash page * @docg3: the device * * As a side effect, resets the chip selector to 0. This ensures that after each * read operation, the floor 0 is selected. Therefore, if the systems halts, the * reboot will boot on floor 0, where the IPL is. */ static void doc_read_page_finish(struct docg3 *docg3) { doc_page_finish(docg3); doc_set_device_id(docg3, 0); } /** * calc_block_sector - Calculate blocks, pages and ofs. * * @from: offset in flash * @block0: first plane block index calculated * @block1: second plane block index calculated * @page: page calculated * @ofs: offset in page * @reliable: 0 if docg3 in normal mode, 1 if docg3 in fast mode, 2 if docg3 in * reliable mode. * * The calculation is based on the reliable/normal mode. In normal mode, the 64 * pages of a block are available. In reliable mode, as pages 2*n and 2*n+1 are * clones, only 32 pages per block are available. */ static void calc_block_sector(loff_t from, int *block0, int *block1, int *page, int *ofs, int reliable) { uint sector, pages_biblock; pages_biblock = DOC_LAYOUT_PAGES_PER_BLOCK * DOC_LAYOUT_NBPLANES; if (reliable == 1 || reliable == 2) pages_biblock /= 2; sector = from / DOC_LAYOUT_PAGE_SIZE; *block0 = sector / pages_biblock * DOC_LAYOUT_NBPLANES; *block1 = *block0 + 1; *page = sector % pages_biblock; *page /= DOC_LAYOUT_NBPLANES; if (reliable == 1 || reliable == 2) *page *= 2; if (sector % 2) *ofs = DOC_LAYOUT_PAGE_OOB_SIZE; else *ofs = 0; } /** * doc_read_oob - Read out of band bytes from flash * @mtd: the device * @from: the offset from first block and first page, in bytes, aligned on page * size * @ops: the mtd oob structure * * Reads flash memory OOB area of pages. * * Returns 0 if read successful, of -EIO, -EINVAL if an error occurred */ static int doc_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) { struct docg3 *docg3 = mtd->priv; int block0, block1, page, ret, skip, ofs = 0; u8 *oobbuf = ops->oobbuf; u8 *buf = ops->datbuf; size_t len, ooblen, nbdata, nboob; u8 hwecc[DOC_ECC_BCH_SIZE], eccconf1; struct mtd_ecc_stats old_stats; int max_bitflips = 0; if (buf) len = ops->len; else len = 0; if (oobbuf) ooblen = ops->ooblen; else ooblen = 0; if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB) oobbuf += ops->ooboffs; doc_dbg("doc_read_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n", from, ops->mode, buf, len, oobbuf, ooblen); if (ooblen % DOC_LAYOUT_OOB_SIZE) return -EINVAL; ops->oobretlen = 0; ops->retlen = 0; ret = 0; skip = from % DOC_LAYOUT_PAGE_SIZE; mutex_lock(&docg3->cascade->lock); old_stats = mtd->ecc_stats; while (ret >= 0 && (len > 0 || ooblen > 0)) { calc_block_sector(from - skip, &block0, &block1, &page, &ofs, docg3->reliable); nbdata = min_t(size_t, len, DOC_LAYOUT_PAGE_SIZE - skip); nboob = min_t(size_t, ooblen, (size_t)DOC_LAYOUT_OOB_SIZE); ret = doc_read_page_prepare(docg3, block0, block1, page, ofs); if (ret < 0) goto out; ret = doc_read_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES); if (ret < 0) goto err_in_read; ret = doc_read_page_getbytes(docg3, skip, NULL, 1, 0); if (ret < skip) goto err_in_read; ret = doc_read_page_getbytes(docg3, nbdata, buf, 0, skip % 2); if (ret < nbdata) goto err_in_read; doc_read_page_getbytes(docg3, DOC_LAYOUT_PAGE_SIZE - nbdata - skip, NULL, 0, (skip + nbdata) % 2); ret = doc_read_page_getbytes(docg3, nboob, oobbuf, 0, 0); if (ret < nboob) goto err_in_read; doc_read_page_getbytes(docg3, DOC_LAYOUT_OOB_SIZE - nboob, NULL, 0, nboob % 2); doc_get_bch_hw_ecc(docg3, hwecc); eccconf1 = doc_register_readb(docg3, DOC_ECCCONF1); if (nboob >= DOC_LAYOUT_OOB_SIZE) { doc_dbg("OOB - INFO: %*phC\n", 7, oobbuf); doc_dbg("OOB - HAMMING: %02x\n", oobbuf[7]); doc_dbg("OOB - BCH_ECC: %*phC\n", 7, oobbuf + 8); doc_dbg("OOB - UNUSED: %02x\n", oobbuf[15]); } doc_dbg("ECC checks: ECCConf1=%x\n", eccconf1); doc_dbg("ECC HW_ECC: %*phC\n", 7, hwecc); ret = -EIO; if (is_prot_seq_error(docg3)) goto err_in_read; ret = 0; if ((block0 >= DOC_LAYOUT_BLOCK_FIRST_DATA) && (eccconf1 & DOC_ECCCONF1_BCH_SYNDROM_ERR) && (eccconf1 & DOC_ECCCONF1_PAGE_IS_WRITTEN) && (ops->mode != MTD_OPS_RAW) && (nbdata == DOC_LAYOUT_PAGE_SIZE)) { ret = doc_ecc_bch_fix_data(docg3, buf, hwecc); if (ret < 0) { mtd->ecc_stats.failed++; ret = -EBADMSG; } if (ret > 0) { mtd->ecc_stats.corrected += ret; max_bitflips = max(max_bitflips, ret); ret = max_bitflips; } } doc_read_page_finish(docg3); ops->retlen += nbdata; ops->oobretlen += nboob; buf += nbdata; oobbuf += nboob; len -= nbdata; ooblen -= nboob; from += DOC_LAYOUT_PAGE_SIZE; skip = 0; } out: if (ops->stats) { ops->stats->uncorrectable_errors += mtd->ecc_stats.failed - old_stats.failed; ops->stats->corrected_bitflips += mtd->ecc_stats.corrected - old_stats.corrected; } mutex_unlock(&docg3->cascade->lock); return ret; err_in_read: doc_read_page_finish(docg3); goto out; } static int doc_reload_bbt(struct docg3 *docg3) { int block = DOC_LAYOUT_BLOCK_BBT; int ret = 0, nbpages, page; u_char *buf = docg3->bbt; nbpages = DIV_ROUND_UP(docg3->max_block + 1, 8 * DOC_LAYOUT_PAGE_SIZE); for (page = 0; !ret && (page < nbpages); page++) { ret = doc_read_page_prepare(docg3, block, block + 1, page + DOC_LAYOUT_PAGE_BBT, 0); if (!ret) ret = doc_read_page_ecc_init(docg3, DOC_LAYOUT_PAGE_SIZE); if (!ret) doc_read_page_getbytes(docg3, DOC_LAYOUT_PAGE_SIZE, buf, 1, 0); buf += DOC_LAYOUT_PAGE_SIZE; } doc_read_page_finish(docg3); return ret; } /** * doc_block_isbad - Checks whether a block is good or not * @mtd: the device * @from: the offset to find the correct block * * Returns 1 if block is bad, 0 if block is good */ static int doc_block_isbad(struct mtd_info *mtd, loff_t from) { struct docg3 *docg3 = mtd->priv; int block0, block1, page, ofs, is_good; calc_block_sector(from, &block0, &block1, &page, &ofs, docg3->reliable); doc_dbg("doc_block_isbad(from=%lld) => block=(%d,%d), page=%d, ofs=%d\n", from, block0, block1, page, ofs); if (block0 < DOC_LAYOUT_BLOCK_FIRST_DATA) return 0; if (block1 > docg3->max_block) return -EINVAL; is_good = docg3->bbt[block0 >> 3] & (1 << (block0 & 0x7)); return !is_good; } #if 0 /** * doc_get_erase_count - Get block erase count * @docg3: the device * @from: the offset in which the block is. * * Get the number of times a block was erased. The number is the maximum of * erase times between first and second plane (which should be equal normally). * * Returns The number of erases, or -EINVAL or -EIO on error. */ static int doc_get_erase_count(struct docg3 *docg3, loff_t from) { u8 buf[DOC_LAYOUT_WEAR_SIZE]; int ret, plane1_erase_count, plane2_erase_count; int block0, block1, page, ofs; doc_dbg("doc_get_erase_count(from=%lld, buf=%p)\n", from, buf); if (from % DOC_LAYOUT_PAGE_SIZE) return -EINVAL; calc_block_sector(from, &block0, &block1, &page, &ofs, docg3->reliable); if (block1 > docg3->max_block) return -EINVAL; ret = doc_reset_seq(docg3); if (!ret) ret = doc_read_page_prepare(docg3, block0, block1, page, ofs + DOC_LAYOUT_WEAR_OFFSET, 0); if (!ret) ret = doc_read_page_getbytes(docg3, DOC_LAYOUT_WEAR_SIZE, buf, 1, 0); doc_read_page_finish(docg3); if (ret || (buf[0] != DOC_ERASE_MARK) || (buf[2] != DOC_ERASE_MARK)) return -EIO; plane1_erase_count = (u8)(~buf[1]) | ((u8)(~buf[4]) << 8) | ((u8)(~buf[5]) << 16); plane2_erase_count = (u8)(~buf[3]) | ((u8)(~buf[6]) << 8) | ((u8)(~buf[7]) << 16); return max(plane1_erase_count, plane2_erase_count); } #endif /** * doc_get_op_status - get erase/write operation status * @docg3: the device * * Queries the status from the chip, and returns it * * Returns the status (bits DOC_PLANES_STATUS_*) */ static int doc_get_op_status(struct docg3 *docg3) { u8 status; doc_flash_sequence(docg3, DOC_SEQ_PLANES_STATUS); doc_flash_command(docg3, DOC_CMD_PLANES_STATUS); doc_delay(docg3, 5); doc_ecc_disable(docg3); doc_read_data_area(docg3, &status, 1, 1); return status; } /** * doc_write_erase_wait_status - wait for write or erase completion * @docg3: the device * * Wait for the chip to be ready again after erase or write operation, and check * erase/write status. * * Returns 0 if erase successful, -EIO if erase/write issue, -ETIMEOUT if * timeout */ static int doc_write_erase_wait_status(struct docg3 *docg3) { int i, status, ret = 0; for (i = 0; !doc_is_ready(docg3) && i < 5; i++) msleep(20); if (!doc_is_ready(docg3)) { doc_dbg("Timeout reached and the chip is still not ready\n"); ret = -EAGAIN; goto out; } status = doc_get_op_status(docg3); if (status & DOC_PLANES_STATUS_FAIL) { doc_dbg("Erase/Write failed on (a) plane(s), status = %x\n", status); ret = -EIO; } out: doc_page_finish(docg3); return ret; } /** * doc_erase_block - Erase a couple of blocks * @docg3: the device * @block0: the first block to erase (leftmost plane) * @block1: the second block to erase (rightmost plane) * * Erase both blocks, and return operation status * * Returns 0 if erase successful, -EIO if erase issue, -ETIMEOUT if chip not * ready for too long */ static int doc_erase_block(struct docg3 *docg3, int block0, int block1) { int ret, sector; doc_dbg("doc_erase_block(blocks=(%d,%d))\n", block0, block1); ret = doc_reset_seq(docg3); if (ret) return -EIO; doc_set_reliable_mode(docg3); doc_flash_sequence(docg3, DOC_SEQ_ERASE); sector = block0 << DOC_ADDR_BLOCK_SHIFT; doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR); doc_setup_addr_sector(docg3, sector); sector = block1 << DOC_ADDR_BLOCK_SHIFT; doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR); doc_setup_addr_sector(docg3, sector); doc_delay(docg3, 1); doc_flash_command(docg3, DOC_CMD_ERASECYCLE2); doc_delay(docg3, 2); if (is_prot_seq_error(docg3)) { doc_err("Erase blocks %d,%d error\n", block0, block1); return -EIO; } return doc_write_erase_wait_status(docg3); } /** * doc_erase - Erase a portion of the chip * @mtd: the device * @info: the erase info * * Erase a bunch of contiguous blocks, by pairs, as a "mtd" page of 1024 is * split into 2 pages of 512 bytes on 2 contiguous blocks. * * Returns 0 if erase successful, -EINVAL if addressing error, -EIO if erase * issue */ static int doc_erase(struct mtd_info *mtd, struct erase_info *info) { struct docg3 *docg3 = mtd->priv; uint64_t len; int block0, block1, page, ret = 0, ofs = 0; doc_dbg("doc_erase(from=%lld, len=%lld\n", info->addr, info->len); calc_block_sector(info->addr + info->len, &block0, &block1, &page, &ofs, docg3->reliable); if (info->addr + info->len > mtd->size || page || ofs) return -EINVAL; calc_block_sector(info->addr, &block0, &block1, &page, &ofs, docg3->reliable); mutex_lock(&docg3->cascade->lock); doc_set_device_id(docg3, docg3->device_id); doc_set_reliable_mode(docg3); for (len = info->len; !ret && len > 0; len -= mtd->erasesize) { ret = doc_erase_block(docg3, block0, block1); block0 += 2; block1 += 2; } mutex_unlock(&docg3->cascade->lock); return ret; } /** * doc_write_page - Write a single page to the chip * @docg3: the device * @to: the offset from first block and first page, in bytes, aligned on page * size * @buf: buffer to get bytes from * @oob: buffer to get out of band bytes from (can be NULL if no OOB should be * written) * @autoecc: if 0, all 16 bytes from OOB are taken, regardless of HW Hamming or * BCH computations. If 1, only bytes 0-7 and byte 15 are taken, * remaining ones are filled with hardware Hamming and BCH * computations. Its value is not meaningfull is oob == NULL. * * Write one full page (ie. 1 page split on two planes), of 512 bytes, with the * OOB data. The OOB ECC is automatically computed by the hardware Hamming and * BCH generator if autoecc is not null. * * Returns 0 if write successful, -EIO if write error, -EAGAIN if timeout */ static int doc_write_page(struct docg3 *docg3, loff_t to, const u_char *buf, const u_char *oob, int autoecc) { int block0, block1, page, ret, ofs = 0; u8 hwecc[DOC_ECC_BCH_SIZE], hamming; doc_dbg("doc_write_page(to=%lld)\n", to); calc_block_sector(to, &block0, &block1, &page, &ofs, docg3->reliable); doc_set_device_id(docg3, docg3->device_id); ret = doc_reset_seq(docg3); if (ret) goto err; /* Program the flash address block and page */ ret = doc_write_seek(docg3, block0, block1, page, ofs); if (ret) goto err; doc_write_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES); doc_delay(docg3, 2); doc_write_page_putbytes(docg3, DOC_LAYOUT_PAGE_SIZE, buf); if (oob && autoecc) { doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ, oob); doc_delay(docg3, 2); oob += DOC_LAYOUT_OOB_UNUSED_OFS; hamming = doc_register_readb(docg3, DOC_HAMMINGPARITY); doc_delay(docg3, 2); doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_HAMMING_SZ, &hamming); doc_delay(docg3, 2); doc_get_bch_hw_ecc(docg3, hwecc); doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_BCH_SZ, hwecc); doc_delay(docg3, 2); doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_UNUSED_SZ, oob); } if (oob && !autoecc) doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_SIZE, oob); doc_delay(docg3, 2); doc_page_finish(docg3); doc_delay(docg3, 2); doc_flash_command(docg3, DOC_CMD_PROG_CYCLE2); doc_delay(docg3, 2); /* * The wait status will perform another doc_page_finish() call, but that * seems to please the docg3, so leave it. */ ret = doc_write_erase_wait_status(docg3); return ret; err: doc_read_page_finish(docg3); return ret; } /** * doc_guess_autoecc - Guess autoecc mode from mbd_oob_ops * @ops: the oob operations * * Returns 0 or 1 if success, -EINVAL if invalid oob mode */ static int doc_guess_autoecc(struct mtd_oob_ops *ops) { int autoecc; switch (ops->mode) { case MTD_OPS_PLACE_OOB: case MTD_OPS_AUTO_OOB: autoecc = 1; break; case MTD_OPS_RAW: autoecc = 0; break; default: autoecc = -EINVAL; } return autoecc; } /** * doc_fill_autooob - Fill a 16 bytes OOB from 8 non-ECC bytes * @dst: the target 16 bytes OOB buffer * @oobsrc: the source 8 bytes non-ECC OOB buffer * */ static void doc_fill_autooob(u8 *dst, u8 *oobsrc) { memcpy(dst, oobsrc, DOC_LAYOUT_OOB_PAGEINFO_SZ); dst[DOC_LAYOUT_OOB_UNUSED_OFS] = oobsrc[DOC_LAYOUT_OOB_PAGEINFO_SZ]; } /** * doc_backup_oob - Backup OOB into docg3 structure * @docg3: the device * @to: the page offset in the chip * @ops: the OOB size and buffer * * As the docg3 should write a page with its OOB in one pass, and some userland * applications do write_oob() to setup the OOB and then write(), store the OOB * into a temporary storage. This is very dangerous, as 2 concurrent * applications could store an OOB, and then write their pages (which will * result into one having its OOB corrupted). * * The only reliable way would be for userland to call doc_write_oob() with both * the page data _and_ the OOB area. * * Returns 0 if success, -EINVAL if ops content invalid */ static int doc_backup_oob(struct docg3 *docg3, loff_t to, struct mtd_oob_ops *ops) { int ooblen = ops->ooblen, autoecc; if (ooblen != DOC_LAYOUT_OOB_SIZE) return -EINVAL; autoecc = doc_guess_autoecc(ops); if (autoecc < 0) return autoecc; docg3->oob_write_ofs = to; docg3->oob_autoecc = autoecc; if (ops->mode == MTD_OPS_AUTO_OOB) { doc_fill_autooob(docg3->oob_write_buf, ops->oobbuf); ops->oobretlen = 8; } else { memcpy(docg3->oob_write_buf, ops->oobbuf, DOC_LAYOUT_OOB_SIZE); ops->oobretlen = DOC_LAYOUT_OOB_SIZE; } return 0; } /** * doc_write_oob - Write out of band bytes to flash * @mtd: the device * @ofs: the offset from first block and first page, in bytes, aligned on page * size * @ops: the mtd oob structure * * Either write OOB data into a temporary buffer, for the subsequent write * page. The provided OOB should be 16 bytes long. If a data buffer is provided * as well, issue the page write. * Or provide data without OOB, and then a all zeroed OOB will be used (ECC will * still be filled in if asked for). * * Returns 0 is successful, EINVAL if length is not 14 bytes */ static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, struct mtd_oob_ops *ops) { struct docg3 *docg3 = mtd->priv; int ret, autoecc, oobdelta; u8 *oobbuf = ops->oobbuf; u8 *buf = ops->datbuf; size_t len, ooblen; u8 oob[DOC_LAYOUT_OOB_SIZE]; if (buf) len = ops->len; else len = 0; if (oobbuf) ooblen = ops->ooblen; else ooblen = 0; if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB) oobbuf += ops->ooboffs; doc_dbg("doc_write_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n", ofs, ops->mode, buf, len, oobbuf, ooblen); switch (ops->mode) { case MTD_OPS_PLACE_OOB: case MTD_OPS_RAW: oobdelta = mtd->oobsize; break; case MTD_OPS_AUTO_OOB: oobdelta = mtd->oobavail; break; default: return -EINVAL; } if ((len % DOC_LAYOUT_PAGE_SIZE) || (ooblen % oobdelta) || (ofs % DOC_LAYOUT_PAGE_SIZE)) return -EINVAL; if (len && ooblen && (len / DOC_LAYOUT_PAGE_SIZE) != (ooblen / oobdelta)) return -EINVAL; ops->oobretlen = 0; ops->retlen = 0; ret = 0; if (len == 0 && ooblen == 0) return -EINVAL; if (len == 0 && ooblen > 0) return doc_backup_oob(docg3, ofs, ops); autoecc = doc_guess_autoecc(ops); if (autoecc < 0) return autoecc; mutex_lock(&docg3->cascade->lock); while (!ret && len > 0) { memset(oob, 0, sizeof(oob)); if (ofs == docg3->oob_write_ofs) memcpy(oob, docg3->oob_write_buf, DOC_LAYOUT_OOB_SIZE); else if (ooblen > 0 && ops->mode == MTD_OPS_AUTO_OOB) doc_fill_autooob(oob, oobbuf); else if (ooblen > 0) memcpy(oob, oobbuf, DOC_LAYOUT_OOB_SIZE); ret = doc_write_page(docg3, ofs, buf, oob, autoecc); ofs += DOC_LAYOUT_PAGE_SIZE; len -= DOC_LAYOUT_PAGE_SIZE; buf += DOC_LAYOUT_PAGE_SIZE; if (ooblen) { oobbuf += oobdelta; ooblen -= oobdelta; ops->oobretlen += oobdelta; } ops->retlen += DOC_LAYOUT_PAGE_SIZE; } doc_set_device_id(docg3, 0); mutex_unlock(&docg3->cascade->lock); return ret; } static struct docg3 *sysfs_dev2docg3(struct device *dev, struct device_attribute *attr) { int floor; struct mtd_info **docg3_floors = dev_get_drvdata(dev); floor = attr->attr.name[1] - '0'; if (floor < 0 || floor >= DOC_MAX_NBFLOORS) return NULL; else return docg3_floors[floor]->priv; } static ssize_t dps0_is_key_locked(struct device *dev, struct device_attribute *attr, char *buf) { struct docg3 *docg3 = sysfs_dev2docg3(dev, attr); int dps0; mutex_lock(&docg3->cascade->lock); doc_set_device_id(docg3, docg3->device_id); dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS); doc_set_device_id(docg3, 0); mutex_unlock(&docg3->cascade->lock); return sprintf(buf, "%d\n", !(dps0 & DOC_DPS_KEY_OK)); } static ssize_t dps1_is_key_locked(struct device *dev, struct device_attribute *attr, char *buf) { struct docg3 *docg3 = sysfs_dev2docg3(dev, attr); int dps1; mutex_lock(&docg3->cascade->lock); doc_set_device_id(docg3, docg3->device_id); dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS); doc_set_device_id(docg3, 0); mutex_unlock(&docg3->cascade->lock); return sprintf(buf, "%d\n", !(dps1 & DOC_DPS_KEY_OK)); } static ssize_t dps0_insert_key(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct docg3 *docg3 = sysfs_dev2docg3(dev, attr); int i; if (count != DOC_LAYOUT_DPS_KEY_LENGTH) return -EINVAL; mutex_lock(&docg3->cascade->lock); doc_set_device_id(docg3, docg3->device_id); for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++) doc_writeb(docg3, buf[i], DOC_DPS0_KEY); doc_set_device_id(docg3, 0); mutex_unlock(&docg3->cascade->lock); return count; } static ssize_t dps1_insert_key(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct docg3 *docg3 = sysfs_dev2docg3(dev, attr); int i; if (count != DOC_LAYOUT_DPS_KEY_LENGTH) return -EINVAL; mutex_lock(&docg3->cascade->lock); doc_set_device_id(docg3, docg3->device_id); for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++) doc_writeb(docg3, buf[i], DOC_DPS1_KEY); doc_set_device_id(docg3, 0); mutex_unlock(&docg3->cascade->lock); return count; } #define FLOOR_SYSFS(id) { \ __ATTR(f##id##_dps0_is_keylocked, S_IRUGO, dps0_is_key_locked, NULL), \ __ATTR(f##id##_dps1_is_keylocked, S_IRUGO, dps1_is_key_locked, NULL), \ __ATTR(f##id##_dps0_protection_key, S_IWUSR|S_IWGRP, NULL, dps0_insert_key), \ __ATTR(f##id##_dps1_protection_key, S_IWUSR|S_IWGRP, NULL, dps1_insert_key), \ } static struct device_attribute doc_sys_attrs[DOC_MAX_NBFLOORS][4] = { FLOOR_SYSFS(0), FLOOR_SYSFS(1), FLOOR_SYSFS(2), FLOOR_SYSFS(3) }; static int doc_register_sysfs(struct platform_device *pdev, struct docg3_cascade *cascade) { struct device *dev = &pdev->dev; int floor; int ret; int i; for (floor = 0; floor < DOC_MAX_NBFLOORS && cascade->floors[floor]; floor++) { for (i = 0; i < 4; i++) { ret = device_create_file(dev, &doc_sys_attrs[floor][i]); if (ret) goto remove_files; } } return 0; remove_files: do { while (--i >= 0) device_remove_file(dev, &doc_sys_attrs[floor][i]); i = 4; } while (--floor >= 0); return ret; } static void doc_unregister_sysfs(struct platform_device *pdev, struct docg3_cascade *cascade) { struct device *dev = &pdev->dev; int floor, i; for (floor = 0; floor < DOC_MAX_NBFLOORS && cascade->floors[floor]; floor++) for (i = 0; i < 4; i++) device_remove_file(dev, &doc_sys_attrs[floor][i]); } /* * Debug sysfs entries */ static int flashcontrol_show(struct seq_file *s, void *p) { struct docg3 *docg3 = s->private; u8 fctrl; mutex_lock(&docg3->cascade->lock); fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); mutex_unlock(&docg3->cascade->lock); seq_printf(s, "FlashControl : 0x%02x (%s,CE# %s,%s,%s,flash %s)\n", fctrl, fctrl & DOC_CTRL_VIOLATION ? "protocol violation" : "-", fctrl & DOC_CTRL_CE ? "active" : "inactive", fctrl & DOC_CTRL_PROTECTION_ERROR ? "protection error" : "-", fctrl & DOC_CTRL_SEQUENCE_ERROR ? "sequence error" : "-", fctrl & DOC_CTRL_FLASHREADY ? "ready" : "not ready"); return 0; } DEFINE_SHOW_ATTRIBUTE(flashcontrol); static int asic_mode_show(struct seq_file *s, void *p) { struct docg3 *docg3 = s->private; int pctrl, mode; mutex_lock(&docg3->cascade->lock); pctrl = doc_register_readb(docg3, DOC_ASICMODE); mode = pctrl & 0x03; mutex_unlock(&docg3->cascade->lock); seq_printf(s, "%04x : RAM_WE=%d,RSTIN_RESET=%d,BDETCT_RESET=%d,WRITE_ENABLE=%d,POWERDOWN=%d,MODE=%d%d (", pctrl, pctrl & DOC_ASICMODE_RAM_WE ? 1 : 0, pctrl & DOC_ASICMODE_RSTIN_RESET ? 1 : 0, pctrl & DOC_ASICMODE_BDETCT_RESET ? 1 : 0, pctrl & DOC_ASICMODE_MDWREN ? 1 : 0, pctrl & DOC_ASICMODE_POWERDOWN ? 1 : 0, mode >> 1, mode & 0x1); switch (mode) { case DOC_ASICMODE_RESET: seq_puts(s, "reset"); break; case DOC_ASICMODE_NORMAL: seq_puts(s, "normal"); break; case DOC_ASICMODE_POWERDOWN: seq_puts(s, "powerdown"); break; } seq_puts(s, ")\n"); return 0; } DEFINE_SHOW_ATTRIBUTE(asic_mode); static int device_id_show(struct seq_file *s, void *p) { struct docg3 *docg3 = s->private; int id; mutex_lock(&docg3->cascade->lock); id = doc_register_readb(docg3, DOC_DEVICESELECT); mutex_unlock(&docg3->cascade->lock); seq_printf(s, "DeviceId = %d\n", id); return 0; } DEFINE_SHOW_ATTRIBUTE(device_id); static int protection_show(struct seq_file *s, void *p) { struct docg3 *docg3 = s->private; int protect, dps0, dps0_low, dps0_high, dps1, dps1_low, dps1_high; mutex_lock(&docg3->cascade->lock); protect = doc_register_readb(docg3, DOC_PROTECTION); dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS); dps0_low = doc_register_readw(docg3, DOC_DPS0_ADDRLOW); dps0_high = doc_register_readw(docg3, DOC_DPS0_ADDRHIGH); dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS); dps1_low = doc_register_readw(docg3, DOC_DPS1_ADDRLOW); dps1_high = doc_register_readw(docg3, DOC_DPS1_ADDRHIGH); mutex_unlock(&docg3->cascade->lock); seq_printf(s, "Protection = 0x%02x (", protect); if (protect & DOC_PROTECT_FOUNDRY_OTP_LOCK) seq_puts(s, "FOUNDRY_OTP_LOCK,"); if (protect & DOC_PROTECT_CUSTOMER_OTP_LOCK) seq_puts(s, "CUSTOMER_OTP_LOCK,"); if (protect & DOC_PROTECT_LOCK_INPUT) seq_puts(s, "LOCK_INPUT,"); if (protect & DOC_PROTECT_STICKY_LOCK) seq_puts(s, "STICKY_LOCK,"); if (protect & DOC_PROTECT_PROTECTION_ENABLED) seq_puts(s, "PROTECTION ON,"); if (protect & DOC_PROTECT_IPL_DOWNLOAD_LOCK) seq_puts(s, "IPL_DOWNLOAD_LOCK,"); if (protect & DOC_PROTECT_PROTECTION_ERROR) seq_puts(s, "PROTECT_ERR,"); else seq_puts(s, "NO_PROTECT_ERR"); seq_puts(s, ")\n"); seq_printf(s, "DPS0 = 0x%02x : Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n", dps0, dps0_low, dps0_high, !!(dps0 & DOC_DPS_OTP_PROTECTED), !!(dps0 & DOC_DPS_READ_PROTECTED), !!(dps0 & DOC_DPS_WRITE_PROTECTED), !!(dps0 & DOC_DPS_HW_LOCK_ENABLED), !!(dps0 & DOC_DPS_KEY_OK)); seq_printf(s, "DPS1 = 0x%02x : Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n", dps1, dps1_low, dps1_high, !!(dps1 & DOC_DPS_OTP_PROTECTED), !!(dps1 & DOC_DPS_READ_PROTECTED), !!(dps1 & DOC_DPS_WRITE_PROTECTED), !!(dps1 & DOC_DPS_HW_LOCK_ENABLED), !!(dps1 & DOC_DPS_KEY_OK)); return 0; } DEFINE_SHOW_ATTRIBUTE(protection); static void __init doc_dbg_register(struct mtd_info *floor) { struct dentry *root = floor->dbg.dfs_dir; struct docg3 *docg3 = floor->priv; if (IS_ERR_OR_NULL(root)) { if (IS_ENABLED(CONFIG_DEBUG_FS) && !IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) dev_warn(floor->dev.parent, "CONFIG_MTD_PARTITIONED_MASTER must be enabled to expose debugfs stuff\n"); return; } debugfs_create_file("docg3_flashcontrol", S_IRUSR, root, docg3, &flashcontrol_fops); debugfs_create_file("docg3_asic_mode", S_IRUSR, root, docg3, &asic_mode_fops); debugfs_create_file("docg3_device_id", S_IRUSR, root, docg3, &device_id_fops); debugfs_create_file("docg3_protection", S_IRUSR, root, docg3, &protection_fops); } /** * doc_set_driver_info - Fill the mtd_info structure and docg3 structure * @chip_id: The chip ID of the supported chip * @mtd: The structure to fill */ static int __init doc_set_driver_info(int chip_id, struct mtd_info *mtd) { struct docg3 *docg3 = mtd->priv; int cfg; cfg = doc_register_readb(docg3, DOC_CONFIGURATION); docg3->if_cfg = (cfg & DOC_CONF_IF_CFG ? 1 : 0); docg3->reliable = reliable_mode; switch (chip_id) { case DOC_CHIPID_G3: mtd->name = devm_kasprintf(docg3->dev, GFP_KERNEL, "docg3.%d", docg3->device_id); if (!mtd->name) return -ENOMEM; docg3->max_block = 2047; break; } mtd->type = MTD_NANDFLASH; mtd->flags = MTD_CAP_NANDFLASH; mtd->size = (docg3->max_block + 1) * DOC_LAYOUT_BLOCK_SIZE; if (docg3->reliable == 2) mtd->size /= 2; mtd->erasesize = DOC_LAYOUT_BLOCK_SIZE * DOC_LAYOUT_NBPLANES; if (docg3->reliable == 2) mtd->erasesize /= 2; mtd->writebufsize = mtd->writesize = DOC_LAYOUT_PAGE_SIZE; mtd->oobsize = DOC_LAYOUT_OOB_SIZE; mtd->_erase = doc_erase; mtd->_read_oob = doc_read_oob; mtd->_write_oob = doc_write_oob; mtd->_block_isbad = doc_block_isbad; mtd_set_ooblayout(mtd, &nand_ooblayout_docg3_ops); mtd->oobavail = 8; mtd->ecc_strength = DOC_ECC_BCH_T; return 0; } /** * doc_probe_device - Check if a device is available * @cascade: the cascade of chips this devices will belong to * @floor: the floor of the probed device * @dev: the device * * Checks whether a device at the specified IO range, and floor is available. * * Returns a mtd_info struct if there is a device, ENODEV if none found, ENOMEM * if a memory allocation failed. If floor 0 is checked, a reset of the ASIC is * launched. */ static struct mtd_info * __init doc_probe_device(struct docg3_cascade *cascade, int floor, struct device *dev) { int ret, bbt_nbpages; u16 chip_id, chip_id_inv; struct docg3 *docg3; struct mtd_info *mtd; ret = -ENOMEM; docg3 = kzalloc(sizeof(struct docg3), GFP_KERNEL); if (!docg3) goto nomem1; mtd = kzalloc(sizeof(struct mtd_info), GFP_KERNEL); if (!mtd) goto nomem2; mtd->priv = docg3; mtd->dev.parent = dev; bbt_nbpages = DIV_ROUND_UP(docg3->max_block + 1, 8 * DOC_LAYOUT_PAGE_SIZE); docg3->bbt = kcalloc(DOC_LAYOUT_PAGE_SIZE, bbt_nbpages, GFP_KERNEL); if (!docg3->bbt) goto nomem3; docg3->dev = dev; docg3->device_id = floor; docg3->cascade = cascade; doc_set_device_id(docg3, docg3->device_id); if (!floor) doc_set_asic_mode(docg3, DOC_ASICMODE_RESET); doc_set_asic_mode(docg3, DOC_ASICMODE_NORMAL); chip_id = doc_register_readw(docg3, DOC_CHIPID); chip_id_inv = doc_register_readw(docg3, DOC_CHIPID_INV); ret = 0; if (chip_id != (u16)(~chip_id_inv)) { goto nomem4; } switch (chip_id) { case DOC_CHIPID_G3: doc_info("Found a G3 DiskOnChip at addr %p, floor %d\n", docg3->cascade->base, floor); break; default: doc_err("Chip id %04x is not a DiskOnChip G3 chip\n", chip_id); goto nomem4; } ret = doc_set_driver_info(chip_id, mtd); if (ret) goto nomem4; doc_hamming_ecc_init(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ); doc_reload_bbt(docg3); return mtd; nomem4: kfree(docg3->bbt); nomem3: kfree(mtd); nomem2: kfree(docg3); nomem1: return ret ? ERR_PTR(ret) : NULL; } /** * doc_release_device - Release a docg3 floor * @mtd: the device */ static void doc_release_device(struct mtd_info *mtd) { struct docg3 *docg3 = mtd->priv; mtd_device_unregister(mtd); kfree(docg3->bbt); kfree(docg3); kfree(mtd); } /** * docg3_resume - Awakens docg3 floor * @pdev: platfrom device * * Returns 0 (always successful) */ static int docg3_resume(struct platform_device *pdev) { int i; struct docg3_cascade *cascade; struct mtd_info **docg3_floors, *mtd; struct docg3 *docg3; cascade = platform_get_drvdata(pdev); docg3_floors = cascade->floors; mtd = docg3_floors[0]; docg3 = mtd->priv; doc_dbg("docg3_resume()\n"); for (i = 0; i < 12; i++) doc_readb(docg3, DOC_IOSPACE_IPL); return 0; } /** * docg3_suspend - Put in low power mode the docg3 floor * @pdev: platform device * @state: power state * * Shuts off most of docg3 circuitery to lower power consumption. * * Returns 0 if suspend succeeded, -EIO if chip refused suspend */ static int docg3_suspend(struct platform_device *pdev, pm_message_t state) { int floor, i; struct docg3_cascade *cascade; struct mtd_info **docg3_floors, *mtd; struct docg3 *docg3; u8 ctrl, pwr_down; cascade = platform_get_drvdata(pdev); docg3_floors = cascade->floors; for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) { mtd = docg3_floors[floor]; if (!mtd) continue; docg3 = mtd->priv; doc_writeb(docg3, floor, DOC_DEVICESELECT); ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); ctrl &= ~DOC_CTRL_VIOLATION & ~DOC_CTRL_CE; doc_writeb(docg3, ctrl, DOC_FLASHCONTROL); for (i = 0; i < 10; i++) { usleep_range(3000, 4000); pwr_down = doc_register_readb(docg3, DOC_POWERMODE); if (pwr_down & DOC_POWERDOWN_READY) break; } if (pwr_down & DOC_POWERDOWN_READY) { doc_dbg("docg3_suspend(): floor %d powerdown ok\n", floor); } else { doc_err("docg3_suspend(): floor %d powerdown failed\n", floor); return -EIO; } } mtd = docg3_floors[0]; docg3 = mtd->priv; doc_set_asic_mode(docg3, DOC_ASICMODE_POWERDOWN); return 0; } /** * docg3_probe - Probe the IO space for a DiskOnChip G3 chip * @pdev: platform device * * Probes for a G3 chip at the specified IO space in the platform data * ressources. The floor 0 must be available. * * Returns 0 on success, -ENOMEM, -ENXIO on error */ static int __init docg3_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct mtd_info *mtd; struct resource *ress; void __iomem *base; int ret, floor; struct docg3_cascade *cascade; ret = -ENXIO; ress = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!ress) { dev_err(dev, "No I/O memory resource defined\n"); return ret; } ret = -ENOMEM; base = devm_ioremap(dev, ress->start, DOC_IOSPACE_SIZE); if (!base) { dev_err(dev, "devm_ioremap dev failed\n"); return ret; } cascade = devm_kcalloc(dev, DOC_MAX_NBFLOORS, sizeof(*cascade), GFP_KERNEL); if (!cascade) return ret; cascade->base = base; mutex_init(&cascade->lock); cascade->bch = bch_init(DOC_ECC_BCH_M, DOC_ECC_BCH_T, DOC_ECC_BCH_PRIMPOLY, false); if (!cascade->bch) return ret; for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) { mtd = doc_probe_device(cascade, floor, dev); if (IS_ERR(mtd)) { ret = PTR_ERR(mtd); goto err_probe; } if (!mtd) { if (floor == 0) goto notfound; else continue; } cascade->floors[floor] = mtd; ret = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0); if (ret) goto err_probe; doc_dbg_register(cascade->floors[floor]); } ret = doc_register_sysfs(pdev, cascade); if (ret) goto err_probe; platform_set_drvdata(pdev, cascade); return 0; notfound: ret = -ENODEV; dev_info(dev, "No supported DiskOnChip found\n"); err_probe: bch_free(cascade->bch); for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) if (cascade->floors[floor]) doc_release_device(cascade->floors[floor]); return ret; } /** * docg3_release - Release the driver * @pdev: the platform device * * Returns 0 */ static void docg3_release(struct platform_device *pdev) { struct docg3_cascade *cascade = platform_get_drvdata(pdev); struct docg3 *docg3 = cascade->floors[0]->priv; int floor; doc_unregister_sysfs(pdev, cascade); for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) if (cascade->floors[floor]) doc_release_device(cascade->floors[floor]); bch_free(docg3->cascade->bch); } #ifdef CONFIG_OF static const struct of_device_id docg3_dt_ids[] = { { .compatible = "m-systems,diskonchip-g3" }, {} }; MODULE_DEVICE_TABLE(of, docg3_dt_ids); #endif static struct platform_driver g3_driver = { .driver = { .name = "docg3", .of_match_table = of_match_ptr(docg3_dt_ids), }, .suspend = docg3_suspend, .resume = docg3_resume, .remove = docg3_release, }; module_platform_driver_probe(g3_driver, docg3_probe); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Robert Jarzmik "); MODULE_DESCRIPTION("MTD driver for DiskOnChip G3");