// SPDX-License-Identifier: GPL-2.0 /* * Evatronix/Renesas R-Car Gen3, RZ/N1D, RZ/N1S, RZ/N1L NAND controller driver * * Copyright (C) 2021 Schneider Electric * Author: Miquel RAYNAL */ #include #include #include #include #include #include #include #include #include #include #include #include #define COMMAND_REG 0x00 #define COMMAND_SEQ(x) FIELD_PREP(GENMASK(5, 0), (x)) #define COMMAND_SEQ_10 COMMAND_SEQ(0x2A) #define COMMAND_SEQ_12 COMMAND_SEQ(0x0C) #define COMMAND_SEQ_18 COMMAND_SEQ(0x32) #define COMMAND_SEQ_19 COMMAND_SEQ(0x13) #define COMMAND_SEQ_GEN_IN COMMAND_SEQ_18 #define COMMAND_SEQ_GEN_OUT COMMAND_SEQ_19 #define COMMAND_SEQ_READ_PAGE COMMAND_SEQ_10 #define COMMAND_SEQ_WRITE_PAGE COMMAND_SEQ_12 #define COMMAND_INPUT_SEL_AHBS 0 #define COMMAND_INPUT_SEL_DMA BIT(6) #define COMMAND_FIFO_SEL 0 #define COMMAND_DATA_SEL BIT(7) #define COMMAND_0(x) FIELD_PREP(GENMASK(15, 8), (x)) #define COMMAND_1(x) FIELD_PREP(GENMASK(23, 16), (x)) #define COMMAND_2(x) FIELD_PREP(GENMASK(31, 24), (x)) #define CONTROL_REG 0x04 #define CONTROL_CHECK_RB_LINE 0 #define CONTROL_ECC_BLOCK_SIZE(x) FIELD_PREP(GENMASK(2, 1), (x)) #define CONTROL_ECC_BLOCK_SIZE_256 CONTROL_ECC_BLOCK_SIZE(0) #define CONTROL_ECC_BLOCK_SIZE_512 CONTROL_ECC_BLOCK_SIZE(1) #define CONTROL_ECC_BLOCK_SIZE_1024 CONTROL_ECC_BLOCK_SIZE(2) #define CONTROL_INT_EN BIT(4) #define CONTROL_ECC_EN BIT(5) #define CONTROL_BLOCK_SIZE(x) FIELD_PREP(GENMASK(7, 6), (x)) #define CONTROL_BLOCK_SIZE_32P CONTROL_BLOCK_SIZE(0) #define CONTROL_BLOCK_SIZE_64P CONTROL_BLOCK_SIZE(1) #define CONTROL_BLOCK_SIZE_128P CONTROL_BLOCK_SIZE(2) #define CONTROL_BLOCK_SIZE_256P CONTROL_BLOCK_SIZE(3) #define STATUS_REG 0x8 #define MEM_RDY(cs, reg) (FIELD_GET(GENMASK(3, 0), (reg)) & BIT(cs)) #define CTRL_RDY(reg) (FIELD_GET(BIT(8), (reg)) == 0) #define ECC_CTRL_REG 0x18 #define ECC_CTRL_CAP(x) FIELD_PREP(GENMASK(2, 0), (x)) #define ECC_CTRL_CAP_2B ECC_CTRL_CAP(0) #define ECC_CTRL_CAP_4B ECC_CTRL_CAP(1) #define ECC_CTRL_CAP_8B ECC_CTRL_CAP(2) #define ECC_CTRL_CAP_16B ECC_CTRL_CAP(3) #define ECC_CTRL_CAP_24B ECC_CTRL_CAP(4) #define ECC_CTRL_CAP_32B ECC_CTRL_CAP(5) #define ECC_CTRL_ERR_THRESHOLD(x) FIELD_PREP(GENMASK(13, 8), (x)) #define INT_MASK_REG 0x10 #define INT_STATUS_REG 0x14 #define INT_CMD_END BIT(1) #define INT_DMA_END BIT(3) #define INT_MEM_RDY(cs) FIELD_PREP(GENMASK(11, 8), BIT(cs)) #define INT_DMA_ENDED BIT(3) #define MEM_IS_RDY(cs, reg) (FIELD_GET(GENMASK(11, 8), (reg)) & BIT(cs)) #define DMA_HAS_ENDED(reg) FIELD_GET(BIT(3), (reg)) #define ECC_OFFSET_REG 0x1C #define ECC_OFFSET(x) FIELD_PREP(GENMASK(15, 0), (x)) #define ECC_STAT_REG 0x20 #define ECC_STAT_CORRECTABLE(cs, reg) (FIELD_GET(GENMASK(3, 0), (reg)) & BIT(cs)) #define ECC_STAT_UNCORRECTABLE(cs, reg) (FIELD_GET(GENMASK(11, 8), (reg)) & BIT(cs)) #define ADDR0_COL_REG 0x24 #define ADDR0_COL(x) FIELD_PREP(GENMASK(15, 0), (x)) #define ADDR0_ROW_REG 0x28 #define ADDR0_ROW(x) FIELD_PREP(GENMASK(23, 0), (x)) #define ADDR1_COL_REG 0x2C #define ADDR1_COL(x) FIELD_PREP(GENMASK(15, 0), (x)) #define ADDR1_ROW_REG 0x30 #define ADDR1_ROW(x) FIELD_PREP(GENMASK(23, 0), (x)) #define FIFO_DATA_REG 0x38 #define DATA_REG 0x3C #define DATA_REG_SIZE_REG 0x40 #define DMA_ADDR_LOW_REG 0x64 #define DMA_ADDR_HIGH_REG 0x68 #define DMA_CNT_REG 0x6C #define DMA_CTRL_REG 0x70 #define DMA_CTRL_INCREMENT_BURST_4 0 #define DMA_CTRL_REGISTER_MANAGED_MODE 0 #define DMA_CTRL_START BIT(7) #define MEM_CTRL_REG 0x80 #define MEM_CTRL_CS(cs) FIELD_PREP(GENMASK(1, 0), (cs)) #define MEM_CTRL_DIS_WP(cs) FIELD_PREP(GENMASK(11, 8), BIT((cs))) #define DATA_SIZE_REG 0x84 #define DATA_SIZE(x) FIELD_PREP(GENMASK(14, 0), (x)) #define TIMINGS_ASYN_REG 0x88 #define TIMINGS_ASYN_TRWP(x) FIELD_PREP(GENMASK(3, 0), max((x), 1U) - 1) #define TIMINGS_ASYN_TRWH(x) FIELD_PREP(GENMASK(7, 4), max((x), 1U) - 1) #define TIM_SEQ0_REG 0x90 #define TIM_SEQ0_TCCS(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) #define TIM_SEQ0_TADL(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1) #define TIM_SEQ0_TRHW(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1) #define TIM_SEQ0_TWHR(x) FIELD_PREP(GENMASK(29, 24), max((x), 1U) - 1) #define TIM_SEQ1_REG 0x94 #define TIM_SEQ1_TWB(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) #define TIM_SEQ1_TRR(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1) #define TIM_SEQ1_TWW(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1) #define TIM_GEN_SEQ0_REG 0x98 #define TIM_GEN_SEQ0_D0(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) #define TIM_GEN_SEQ0_D1(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1) #define TIM_GEN_SEQ0_D2(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1) #define TIM_GEN_SEQ0_D3(x) FIELD_PREP(GENMASK(29, 24), max((x), 1U) - 1) #define TIM_GEN_SEQ1_REG 0x9c #define TIM_GEN_SEQ1_D4(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) #define TIM_GEN_SEQ1_D5(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1) #define TIM_GEN_SEQ1_D6(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1) #define TIM_GEN_SEQ1_D7(x) FIELD_PREP(GENMASK(29, 24), max((x), 1U) - 1) #define TIM_GEN_SEQ2_REG 0xA0 #define TIM_GEN_SEQ2_D8(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) #define TIM_GEN_SEQ2_D9(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1) #define TIM_GEN_SEQ2_D10(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1) #define TIM_GEN_SEQ2_D11(x) FIELD_PREP(GENMASK(29, 24), max((x), 1U) - 1) #define FIFO_INIT_REG 0xB4 #define FIFO_INIT BIT(0) #define FIFO_STATE_REG 0xB4 #define FIFO_STATE_R_EMPTY(reg) FIELD_GET(BIT(0), (reg)) #define FIFO_STATE_W_FULL(reg) FIELD_GET(BIT(1), (reg)) #define FIFO_STATE_C_EMPTY(reg) FIELD_GET(BIT(2), (reg)) #define FIFO_STATE_R_FULL(reg) FIELD_GET(BIT(6), (reg)) #define FIFO_STATE_W_EMPTY(reg) FIELD_GET(BIT(7), (reg)) #define GEN_SEQ_CTRL_REG 0xB8 #define GEN_SEQ_CMD0_EN BIT(0) #define GEN_SEQ_CMD1_EN BIT(1) #define GEN_SEQ_CMD2_EN BIT(2) #define GEN_SEQ_CMD3_EN BIT(3) #define GEN_SEQ_COL_A0(x) FIELD_PREP(GENMASK(5, 4), min((x), 2U)) #define GEN_SEQ_COL_A1(x) FIELD_PREP(GENMASK(7, 6), min((x), 2U)) #define GEN_SEQ_ROW_A0(x) FIELD_PREP(GENMASK(9, 8), min((x), 3U)) #define GEN_SEQ_ROW_A1(x) FIELD_PREP(GENMASK(11, 10), min((x), 3U)) #define GEN_SEQ_DATA_EN BIT(12) #define GEN_SEQ_DELAY_EN(x) FIELD_PREP(GENMASK(14, 13), (x)) #define GEN_SEQ_DELAY0_EN GEN_SEQ_DELAY_EN(1) #define GEN_SEQ_DELAY1_EN GEN_SEQ_DELAY_EN(2) #define GEN_SEQ_IMD_SEQ BIT(15) #define GEN_SEQ_COMMAND_3(x) FIELD_PREP(GENMASK(26, 16), (x)) #define DMA_TLVL_REG 0x114 #define DMA_TLVL(x) FIELD_PREP(GENMASK(7, 0), (x)) #define DMA_TLVL_MAX DMA_TLVL(0xFF) #define TIM_GEN_SEQ3_REG 0x134 #define TIM_GEN_SEQ3_D12(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) #define ECC_CNT_REG 0x14C #define ECC_CNT(cs, reg) FIELD_GET(GENMASK(5, 0), (reg) >> ((cs) * 8)) #define RNANDC_CS_NUM 4 #define TO_CYCLES64(ps, period_ns) ((unsigned int)DIV_ROUND_UP_ULL(div_u64(ps, 1000), \ period_ns)) struct rnand_chip_sel { unsigned int cs; }; struct rnand_chip { struct nand_chip chip; struct list_head node; int selected_die; u32 ctrl; unsigned int nsels; u32 control; u32 ecc_ctrl; u32 timings_asyn; u32 tim_seq0; u32 tim_seq1; u32 tim_gen_seq0; u32 tim_gen_seq1; u32 tim_gen_seq2; u32 tim_gen_seq3; struct rnand_chip_sel sels[] __counted_by(nsels); }; struct rnandc { struct nand_controller controller; struct device *dev; void __iomem *regs; unsigned long ext_clk_rate; unsigned long assigned_cs; struct list_head chips; struct nand_chip *selected_chip; struct completion complete; bool use_polling; u8 *buf; unsigned int buf_sz; }; struct rnandc_op { u32 command; u32 addr0_col; u32 addr0_row; u32 addr1_col; u32 addr1_row; u32 data_size; u32 ecc_offset; u32 gen_seq_ctrl; u8 *buf; bool read; unsigned int len; }; static inline struct rnandc *to_rnandc(struct nand_controller *ctrl) { return container_of(ctrl, struct rnandc, controller); } static inline struct rnand_chip *to_rnand(struct nand_chip *chip) { return container_of(chip, struct rnand_chip, chip); } static inline unsigned int to_rnandc_cs(struct rnand_chip *nand) { return nand->sels[nand->selected_die].cs; } static void rnandc_dis_correction(struct rnandc *rnandc) { u32 control; control = readl_relaxed(rnandc->regs + CONTROL_REG); control &= ~CONTROL_ECC_EN; writel_relaxed(control, rnandc->regs + CONTROL_REG); } static void rnandc_en_correction(struct rnandc *rnandc) { u32 control; control = readl_relaxed(rnandc->regs + CONTROL_REG); control |= CONTROL_ECC_EN; writel_relaxed(control, rnandc->regs + CONTROL_REG); } static void rnandc_clear_status(struct rnandc *rnandc) { writel_relaxed(0, rnandc->regs + INT_STATUS_REG); writel_relaxed(0, rnandc->regs + ECC_STAT_REG); writel_relaxed(0, rnandc->regs + ECC_CNT_REG); } static void rnandc_dis_interrupts(struct rnandc *rnandc) { writel_relaxed(0, rnandc->regs + INT_MASK_REG); } static void rnandc_en_interrupts(struct rnandc *rnandc, u32 val) { if (!rnandc->use_polling) writel_relaxed(val, rnandc->regs + INT_MASK_REG); } static void rnandc_clear_fifo(struct rnandc *rnandc) { writel_relaxed(FIFO_INIT, rnandc->regs + FIFO_INIT_REG); } static void rnandc_select_target(struct nand_chip *chip, int die_nr) { struct rnand_chip *rnand = to_rnand(chip); struct rnandc *rnandc = to_rnandc(chip->controller); unsigned int cs = rnand->sels[die_nr].cs; if (chip == rnandc->selected_chip && die_nr == rnand->selected_die) return; rnandc_clear_status(rnandc); writel_relaxed(MEM_CTRL_CS(cs) | MEM_CTRL_DIS_WP(cs), rnandc->regs + MEM_CTRL_REG); writel_relaxed(rnand->control, rnandc->regs + CONTROL_REG); writel_relaxed(rnand->ecc_ctrl, rnandc->regs + ECC_CTRL_REG); writel_relaxed(rnand->timings_asyn, rnandc->regs + TIMINGS_ASYN_REG); writel_relaxed(rnand->tim_seq0, rnandc->regs + TIM_SEQ0_REG); writel_relaxed(rnand->tim_seq1, rnandc->regs + TIM_SEQ1_REG); writel_relaxed(rnand->tim_gen_seq0, rnandc->regs + TIM_GEN_SEQ0_REG); writel_relaxed(rnand->tim_gen_seq1, rnandc->regs + TIM_GEN_SEQ1_REG); writel_relaxed(rnand->tim_gen_seq2, rnandc->regs + TIM_GEN_SEQ2_REG); writel_relaxed(rnand->tim_gen_seq3, rnandc->regs + TIM_GEN_SEQ3_REG); rnandc->selected_chip = chip; rnand->selected_die = die_nr; } static void rnandc_trigger_op(struct rnandc *rnandc, struct rnandc_op *rop) { writel_relaxed(rop->addr0_col, rnandc->regs + ADDR0_COL_REG); writel_relaxed(rop->addr0_row, rnandc->regs + ADDR0_ROW_REG); writel_relaxed(rop->addr1_col, rnandc->regs + ADDR1_COL_REG); writel_relaxed(rop->addr1_row, rnandc->regs + ADDR1_ROW_REG); writel_relaxed(rop->ecc_offset, rnandc->regs + ECC_OFFSET_REG); writel_relaxed(rop->gen_seq_ctrl, rnandc->regs + GEN_SEQ_CTRL_REG); writel_relaxed(DATA_SIZE(rop->len), rnandc->regs + DATA_SIZE_REG); writel_relaxed(rop->command, rnandc->regs + COMMAND_REG); } static void rnandc_trigger_dma(struct rnandc *rnandc) { writel_relaxed(DMA_CTRL_INCREMENT_BURST_4 | DMA_CTRL_REGISTER_MANAGED_MODE | DMA_CTRL_START, rnandc->regs + DMA_CTRL_REG); } static irqreturn_t rnandc_irq_handler(int irq, void *private) { struct rnandc *rnandc = private; rnandc_dis_interrupts(rnandc); complete(&rnandc->complete); return IRQ_HANDLED; } static int rnandc_wait_end_of_op(struct rnandc *rnandc, struct nand_chip *chip) { struct rnand_chip *rnand = to_rnand(chip); unsigned int cs = to_rnandc_cs(rnand); u32 status; int ret; ret = readl_poll_timeout(rnandc->regs + STATUS_REG, status, MEM_RDY(cs, status) && CTRL_RDY(status), 1, 100000); if (ret) dev_err(rnandc->dev, "Operation timed out, status: 0x%08x\n", status); return ret; } static int rnandc_wait_end_of_io(struct rnandc *rnandc, struct nand_chip *chip) { int timeout_ms = 1000; int ret; if (rnandc->use_polling) { struct rnand_chip *rnand = to_rnand(chip); unsigned int cs = to_rnandc_cs(rnand); u32 status; ret = readl_poll_timeout(rnandc->regs + INT_STATUS_REG, status, MEM_IS_RDY(cs, status) & DMA_HAS_ENDED(status), 0, timeout_ms * 1000); } else { ret = wait_for_completion_timeout(&rnandc->complete, msecs_to_jiffies(timeout_ms)); if (!ret) ret = -ETIMEDOUT; else ret = 0; } return ret; } static int rnandc_read_page_hw_ecc(struct nand_chip *chip, u8 *buf, int oob_required, int page) { struct rnandc *rnandc = to_rnandc(chip->controller); struct mtd_info *mtd = nand_to_mtd(chip); struct rnand_chip *rnand = to_rnand(chip); unsigned int cs = to_rnandc_cs(rnand); struct rnandc_op rop = { .command = COMMAND_INPUT_SEL_DMA | COMMAND_0(NAND_CMD_READ0) | COMMAND_2(NAND_CMD_READSTART) | COMMAND_FIFO_SEL | COMMAND_SEQ_READ_PAGE, .addr0_row = page, .len = mtd->writesize, .ecc_offset = ECC_OFFSET(mtd->writesize + 2), }; unsigned int max_bitflips = 0; dma_addr_t dma_addr; u32 ecc_stat; int bf, ret, i; /* Prepare controller */ rnandc_select_target(chip, chip->cur_cs); rnandc_clear_status(rnandc); reinit_completion(&rnandc->complete); rnandc_en_interrupts(rnandc, INT_DMA_ENDED); rnandc_en_correction(rnandc); /* Configure DMA */ dma_addr = dma_map_single(rnandc->dev, rnandc->buf, mtd->writesize, DMA_FROM_DEVICE); writel(dma_addr, rnandc->regs + DMA_ADDR_LOW_REG); writel(mtd->writesize, rnandc->regs + DMA_CNT_REG); writel(DMA_TLVL_MAX, rnandc->regs + DMA_TLVL_REG); rnandc_trigger_op(rnandc, &rop); rnandc_trigger_dma(rnandc); ret = rnandc_wait_end_of_io(rnandc, chip); dma_unmap_single(rnandc->dev, dma_addr, mtd->writesize, DMA_FROM_DEVICE); rnandc_dis_correction(rnandc); if (ret) { dev_err(rnandc->dev, "Read page operation never ending\n"); return ret; } ecc_stat = readl_relaxed(rnandc->regs + ECC_STAT_REG); if (oob_required || ECC_STAT_UNCORRECTABLE(cs, ecc_stat)) { ret = nand_change_read_column_op(chip, mtd->writesize, chip->oob_poi, mtd->oobsize, false); if (ret) return ret; } if (ECC_STAT_UNCORRECTABLE(cs, ecc_stat)) { for (i = 0; i < chip->ecc.steps; i++) { unsigned int off = i * chip->ecc.size; unsigned int eccoff = i * chip->ecc.bytes; bf = nand_check_erased_ecc_chunk(rnandc->buf + off, chip->ecc.size, chip->oob_poi + 2 + eccoff, chip->ecc.bytes, NULL, 0, chip->ecc.strength); if (bf < 0) { mtd->ecc_stats.failed++; } else { mtd->ecc_stats.corrected += bf; max_bitflips = max_t(unsigned int, max_bitflips, bf); } } } else if (ECC_STAT_CORRECTABLE(cs, ecc_stat)) { bf = ECC_CNT(cs, readl_relaxed(rnandc->regs + ECC_CNT_REG)); /* * The number of bitflips is an approximation given the fact * that this controller does not provide per-chunk details but * only gives statistics on the entire page. */ mtd->ecc_stats.corrected += bf; } memcpy(buf, rnandc->buf, mtd->writesize); return 0; } static int rnandc_read_subpage_hw_ecc(struct nand_chip *chip, u32 req_offset, u32 req_len, u8 *bufpoi, int page) { struct rnandc *rnandc = to_rnandc(chip->controller); struct mtd_info *mtd = nand_to_mtd(chip); struct rnand_chip *rnand = to_rnand(chip); unsigned int cs = to_rnandc_cs(rnand); unsigned int page_off = round_down(req_offset, chip->ecc.size); unsigned int real_len = round_up(req_offset + req_len - page_off, chip->ecc.size); unsigned int start_chunk = page_off / chip->ecc.size; unsigned int nchunks = real_len / chip->ecc.size; unsigned int ecc_off = 2 + (start_chunk * chip->ecc.bytes); struct rnandc_op rop = { .command = COMMAND_INPUT_SEL_AHBS | COMMAND_0(NAND_CMD_READ0) | COMMAND_2(NAND_CMD_READSTART) | COMMAND_FIFO_SEL | COMMAND_SEQ_READ_PAGE, .addr0_row = page, .addr0_col = page_off, .len = real_len, .ecc_offset = ECC_OFFSET(mtd->writesize + ecc_off), }; unsigned int max_bitflips = 0, i; u32 ecc_stat; int bf, ret; /* Prepare controller */ rnandc_select_target(chip, chip->cur_cs); rnandc_clear_status(rnandc); rnandc_en_correction(rnandc); rnandc_trigger_op(rnandc, &rop); while (!FIFO_STATE_C_EMPTY(readl(rnandc->regs + FIFO_STATE_REG))) cpu_relax(); while (FIFO_STATE_R_EMPTY(readl(rnandc->regs + FIFO_STATE_REG))) cpu_relax(); ioread32_rep(rnandc->regs + FIFO_DATA_REG, bufpoi + page_off, real_len / 4); if (!FIFO_STATE_R_EMPTY(readl(rnandc->regs + FIFO_STATE_REG))) { dev_err(rnandc->dev, "Clearing residual data in the read FIFO\n"); rnandc_clear_fifo(rnandc); } ret = rnandc_wait_end_of_op(rnandc, chip); rnandc_dis_correction(rnandc); if (ret) { dev_err(rnandc->dev, "Read subpage operation never ending\n"); return ret; } ecc_stat = readl_relaxed(rnandc->regs + ECC_STAT_REG); if (ECC_STAT_UNCORRECTABLE(cs, ecc_stat)) { ret = nand_change_read_column_op(chip, mtd->writesize, chip->oob_poi, mtd->oobsize, false); if (ret) return ret; for (i = start_chunk; i < nchunks; i++) { unsigned int dataoff = i * chip->ecc.size; unsigned int eccoff = 2 + (i * chip->ecc.bytes); bf = nand_check_erased_ecc_chunk(bufpoi + dataoff, chip->ecc.size, chip->oob_poi + eccoff, chip->ecc.bytes, NULL, 0, chip->ecc.strength); if (bf < 0) { mtd->ecc_stats.failed++; } else { mtd->ecc_stats.corrected += bf; max_bitflips = max_t(unsigned int, max_bitflips, bf); } } } else if (ECC_STAT_CORRECTABLE(cs, ecc_stat)) { bf = ECC_CNT(cs, readl_relaxed(rnandc->regs + ECC_CNT_REG)); /* * The number of bitflips is an approximation given the fact * that this controller does not provide per-chunk details but * only gives statistics on the entire page. */ mtd->ecc_stats.corrected += bf; } return 0; } static int rnandc_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf, int oob_required, int page) { struct rnandc *rnandc = to_rnandc(chip->controller); struct mtd_info *mtd = nand_to_mtd(chip); struct rnand_chip *rnand = to_rnand(chip); unsigned int cs = to_rnandc_cs(rnand); struct rnandc_op rop = { .command = COMMAND_INPUT_SEL_DMA | COMMAND_0(NAND_CMD_SEQIN) | COMMAND_1(NAND_CMD_PAGEPROG) | COMMAND_FIFO_SEL | COMMAND_SEQ_WRITE_PAGE, .addr0_row = page, .len = mtd->writesize, .ecc_offset = ECC_OFFSET(mtd->writesize + 2), }; dma_addr_t dma_addr; int ret; memcpy(rnandc->buf, buf, mtd->writesize); /* Prepare controller */ rnandc_select_target(chip, chip->cur_cs); rnandc_clear_status(rnandc); reinit_completion(&rnandc->complete); rnandc_en_interrupts(rnandc, INT_MEM_RDY(cs)); rnandc_en_correction(rnandc); /* Configure DMA */ dma_addr = dma_map_single(rnandc->dev, (void *)rnandc->buf, mtd->writesize, DMA_TO_DEVICE); writel(dma_addr, rnandc->regs + DMA_ADDR_LOW_REG); writel(mtd->writesize, rnandc->regs + DMA_CNT_REG); writel(DMA_TLVL_MAX, rnandc->regs + DMA_TLVL_REG); rnandc_trigger_op(rnandc, &rop); rnandc_trigger_dma(rnandc); ret = rnandc_wait_end_of_io(rnandc, chip); dma_unmap_single(rnandc->dev, dma_addr, mtd->writesize, DMA_TO_DEVICE); rnandc_dis_correction(rnandc); if (ret) { dev_err(rnandc->dev, "Write page operation never ending\n"); return ret; } if (!oob_required) return 0; return nand_change_write_column_op(chip, mtd->writesize, chip->oob_poi, mtd->oobsize, false); } static int rnandc_write_subpage_hw_ecc(struct nand_chip *chip, u32 req_offset, u32 req_len, const u8 *bufpoi, int oob_required, int page) { struct rnandc *rnandc = to_rnandc(chip->controller); struct mtd_info *mtd = nand_to_mtd(chip); unsigned int page_off = round_down(req_offset, chip->ecc.size); unsigned int real_len = round_up(req_offset + req_len - page_off, chip->ecc.size); unsigned int start_chunk = page_off / chip->ecc.size; unsigned int ecc_off = 2 + (start_chunk * chip->ecc.bytes); struct rnandc_op rop = { .command = COMMAND_INPUT_SEL_AHBS | COMMAND_0(NAND_CMD_SEQIN) | COMMAND_1(NAND_CMD_PAGEPROG) | COMMAND_FIFO_SEL | COMMAND_SEQ_WRITE_PAGE, .addr0_row = page, .addr0_col = page_off, .len = real_len, .ecc_offset = ECC_OFFSET(mtd->writesize + ecc_off), }; int ret; /* Prepare controller */ rnandc_select_target(chip, chip->cur_cs); rnandc_clear_status(rnandc); rnandc_en_correction(rnandc); rnandc_trigger_op(rnandc, &rop); while (FIFO_STATE_W_FULL(readl(rnandc->regs + FIFO_STATE_REG))) cpu_relax(); iowrite32_rep(rnandc->regs + FIFO_DATA_REG, bufpoi + page_off, real_len / 4); while (!FIFO_STATE_W_EMPTY(readl(rnandc->regs + FIFO_STATE_REG))) cpu_relax(); ret = rnandc_wait_end_of_op(rnandc, chip); rnandc_dis_correction(rnandc); if (ret) { dev_err(rnandc->dev, "Write subpage operation never ending\n"); return ret; } return 0; } /* * This controller is simple enough and thus does not need to use the parser * provided by the core, instead, handle every situation here. */ static int rnandc_exec_op(struct nand_chip *chip, const struct nand_operation *op, bool check_only) { struct rnandc *rnandc = to_rnandc(chip->controller); const struct nand_op_instr *instr = NULL; struct rnandc_op rop = { .command = COMMAND_INPUT_SEL_AHBS, .gen_seq_ctrl = GEN_SEQ_IMD_SEQ, }; unsigned int cmd_phase = 0, addr_phase = 0, data_phase = 0, delay_phase = 0, delays = 0; unsigned int op_id, col_addrs, row_addrs, naddrs, remainder, words, i; const u8 *addrs; u32 last_bytes; int ret; if (!check_only) rnandc_select_target(chip, op->cs); for (op_id = 0; op_id < op->ninstrs; op_id++) { instr = &op->instrs[op_id]; nand_op_trace(" ", instr); switch (instr->type) { case NAND_OP_CMD_INSTR: switch (cmd_phase++) { case 0: rop.command |= COMMAND_0(instr->ctx.cmd.opcode); rop.gen_seq_ctrl |= GEN_SEQ_CMD0_EN; break; case 1: rop.gen_seq_ctrl |= GEN_SEQ_COMMAND_3(instr->ctx.cmd.opcode); rop.gen_seq_ctrl |= GEN_SEQ_CMD3_EN; if (addr_phase == 0) addr_phase = 1; break; case 2: rop.command |= COMMAND_2(instr->ctx.cmd.opcode); rop.gen_seq_ctrl |= GEN_SEQ_CMD2_EN; if (addr_phase <= 1) addr_phase = 2; break; case 3: rop.command |= COMMAND_1(instr->ctx.cmd.opcode); rop.gen_seq_ctrl |= GEN_SEQ_CMD1_EN; if (addr_phase <= 1) addr_phase = 2; if (delay_phase == 0) delay_phase = 1; if (data_phase == 0) data_phase = 1; break; default: return -EOPNOTSUPP; } break; case NAND_OP_ADDR_INSTR: addrs = instr->ctx.addr.addrs; naddrs = instr->ctx.addr.naddrs; if (naddrs > 5) return -EOPNOTSUPP; col_addrs = min(2U, naddrs); row_addrs = naddrs > 2 ? naddrs - col_addrs : 0; switch (addr_phase++) { case 0: for (i = 0; i < col_addrs; i++) rop.addr0_col |= addrs[i] << (i * 8); rop.gen_seq_ctrl |= GEN_SEQ_COL_A0(col_addrs); for (i = 0; i < row_addrs; i++) rop.addr0_row |= addrs[2 + i] << (i * 8); rop.gen_seq_ctrl |= GEN_SEQ_ROW_A0(row_addrs); if (cmd_phase == 0) cmd_phase = 1; break; case 1: for (i = 0; i < col_addrs; i++) rop.addr1_col |= addrs[i] << (i * 8); rop.gen_seq_ctrl |= GEN_SEQ_COL_A1(col_addrs); for (i = 0; i < row_addrs; i++) rop.addr1_row |= addrs[2 + i] << (i * 8); rop.gen_seq_ctrl |= GEN_SEQ_ROW_A1(row_addrs); if (cmd_phase <= 1) cmd_phase = 2; break; default: return -EOPNOTSUPP; } break; case NAND_OP_DATA_IN_INSTR: rop.read = true; fallthrough; case NAND_OP_DATA_OUT_INSTR: rop.gen_seq_ctrl |= GEN_SEQ_DATA_EN; rop.buf = instr->ctx.data.buf.in; rop.len = instr->ctx.data.len; rop.command |= COMMAND_FIFO_SEL; switch (data_phase++) { case 0: if (cmd_phase <= 2) cmd_phase = 3; if (addr_phase <= 1) addr_phase = 2; if (delay_phase == 0) delay_phase = 1; break; default: return -EOPNOTSUPP; } break; case NAND_OP_WAITRDY_INSTR: switch (delay_phase++) { case 0: rop.gen_seq_ctrl |= GEN_SEQ_DELAY0_EN; if (cmd_phase <= 2) cmd_phase = 3; break; case 1: rop.gen_seq_ctrl |= GEN_SEQ_DELAY1_EN; if (cmd_phase <= 3) cmd_phase = 4; if (data_phase == 0) data_phase = 1; break; default: return -EOPNOTSUPP; } break; } } /* * Sequence 19 is generic and dedicated to write operations. * Sequence 18 is also generic and works for all other operations. */ if (rop.buf && !rop.read) rop.command |= COMMAND_SEQ_GEN_OUT; else rop.command |= COMMAND_SEQ_GEN_IN; if (delays > 1) { dev_err(rnandc->dev, "Cannot handle more than one wait delay\n"); return -EOPNOTSUPP; } if (check_only) return 0; rnandc_trigger_op(rnandc, &rop); words = rop.len / sizeof(u32); remainder = rop.len % sizeof(u32); if (rop.buf && rop.read) { while (!FIFO_STATE_C_EMPTY(readl(rnandc->regs + FIFO_STATE_REG))) cpu_relax(); while (FIFO_STATE_R_EMPTY(readl(rnandc->regs + FIFO_STATE_REG))) cpu_relax(); ioread32_rep(rnandc->regs + FIFO_DATA_REG, rop.buf, words); if (remainder) { last_bytes = readl_relaxed(rnandc->regs + FIFO_DATA_REG); memcpy(rop.buf + (words * sizeof(u32)), &last_bytes, remainder); } if (!FIFO_STATE_R_EMPTY(readl(rnandc->regs + FIFO_STATE_REG))) { dev_warn(rnandc->dev, "Clearing residual data in the read FIFO\n"); rnandc_clear_fifo(rnandc); } } else if (rop.len && !rop.read) { while (FIFO_STATE_W_FULL(readl(rnandc->regs + FIFO_STATE_REG))) cpu_relax(); iowrite32_rep(rnandc->regs + FIFO_DATA_REG, rop.buf, DIV_ROUND_UP(rop.len, 4)); if (remainder) { last_bytes = 0; memcpy(&last_bytes, rop.buf + (words * sizeof(u32)), remainder); writel_relaxed(last_bytes, rnandc->regs + FIFO_DATA_REG); } while (!FIFO_STATE_W_EMPTY(readl(rnandc->regs + FIFO_STATE_REG))) cpu_relax(); } ret = rnandc_wait_end_of_op(rnandc, chip); if (ret) return ret; return 0; } static int rnandc_setup_interface(struct nand_chip *chip, int chipnr, const struct nand_interface_config *conf) { struct rnand_chip *rnand = to_rnand(chip); struct rnandc *rnandc = to_rnandc(chip->controller); unsigned int period_ns = 1000000000 / rnandc->ext_clk_rate; const struct nand_sdr_timings *sdr; unsigned int cyc, cle, ale, bef_dly, ca_to_data; sdr = nand_get_sdr_timings(conf); if (IS_ERR(sdr)) return PTR_ERR(sdr); if (sdr->tRP_min != sdr->tWP_min || sdr->tREH_min != sdr->tWH_min) { dev_err(rnandc->dev, "Read and write hold times must be identical\n"); return -EINVAL; } if (chipnr < 0) return 0; rnand->timings_asyn = TIMINGS_ASYN_TRWP(TO_CYCLES64(sdr->tRP_min, period_ns)) | TIMINGS_ASYN_TRWH(TO_CYCLES64(sdr->tREH_min, period_ns)); rnand->tim_seq0 = TIM_SEQ0_TCCS(TO_CYCLES64(sdr->tCCS_min, period_ns)) | TIM_SEQ0_TADL(TO_CYCLES64(sdr->tADL_min, period_ns)) | TIM_SEQ0_TRHW(TO_CYCLES64(sdr->tRHW_min, period_ns)) | TIM_SEQ0_TWHR(TO_CYCLES64(sdr->tWHR_min, period_ns)); rnand->tim_seq1 = TIM_SEQ1_TWB(TO_CYCLES64(sdr->tWB_max, period_ns)) | TIM_SEQ1_TRR(TO_CYCLES64(sdr->tRR_min, period_ns)) | TIM_SEQ1_TWW(TO_CYCLES64(sdr->tWW_min, period_ns)); cyc = sdr->tDS_min + sdr->tDH_min; cle = sdr->tCLH_min + sdr->tCLS_min; ale = sdr->tALH_min + sdr->tALS_min; bef_dly = sdr->tWB_max - sdr->tDH_min; ca_to_data = sdr->tWHR_min + sdr->tREA_max - sdr->tDH_min; /* * D0 = CMD -> ADDR = tCLH + tCLS - 1 cycle * D1 = CMD -> CMD = tCLH + tCLS - 1 cycle * D2 = CMD -> DLY = tWB - tDH * D3 = CMD -> DATA = tWHR + tREA - tDH */ rnand->tim_gen_seq0 = TIM_GEN_SEQ0_D0(TO_CYCLES64(cle - cyc, period_ns)) | TIM_GEN_SEQ0_D1(TO_CYCLES64(cle - cyc, period_ns)) | TIM_GEN_SEQ0_D2(TO_CYCLES64(bef_dly, period_ns)) | TIM_GEN_SEQ0_D3(TO_CYCLES64(ca_to_data, period_ns)); /* * D4 = ADDR -> CMD = tALH + tALS - 1 cyle * D5 = ADDR -> ADDR = tALH + tALS - 1 cyle * D6 = ADDR -> DLY = tWB - tDH * D7 = ADDR -> DATA = tWHR + tREA - tDH */ rnand->tim_gen_seq1 = TIM_GEN_SEQ1_D4(TO_CYCLES64(ale - cyc, period_ns)) | TIM_GEN_SEQ1_D5(TO_CYCLES64(ale - cyc, period_ns)) | TIM_GEN_SEQ1_D6(TO_CYCLES64(bef_dly, period_ns)) | TIM_GEN_SEQ1_D7(TO_CYCLES64(ca_to_data, period_ns)); /* * D8 = DLY -> DATA = tRR + tREA * D9 = DLY -> CMD = tRR * D10 = DATA -> CMD = tCLH + tCLS - 1 cycle * D11 = DATA -> DLY = tWB - tDH */ rnand->tim_gen_seq2 = TIM_GEN_SEQ2_D8(TO_CYCLES64(sdr->tRR_min + sdr->tREA_max, period_ns)) | TIM_GEN_SEQ2_D9(TO_CYCLES64(sdr->tRR_min, period_ns)) | TIM_GEN_SEQ2_D10(TO_CYCLES64(cle - cyc, period_ns)) | TIM_GEN_SEQ2_D11(TO_CYCLES64(bef_dly, period_ns)); /* D12 = DATA -> END = tCLH - tDH */ rnand->tim_gen_seq3 = TIM_GEN_SEQ3_D12(TO_CYCLES64(sdr->tCLH_min - sdr->tDH_min, period_ns)); return 0; } static int rnandc_ooblayout_ecc(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *chip = mtd_to_nand(mtd); unsigned int eccbytes = round_up(chip->ecc.bytes, 4) * chip->ecc.steps; if (section) return -ERANGE; oobregion->offset = 2; oobregion->length = eccbytes; return 0; } static int rnandc_ooblayout_free(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *chip = mtd_to_nand(mtd); unsigned int eccbytes = round_up(chip->ecc.bytes, 4) * chip->ecc.steps; if (section) return -ERANGE; oobregion->offset = 2 + eccbytes; oobregion->length = mtd->oobsize - oobregion->offset; return 0; } static const struct mtd_ooblayout_ops rnandc_ooblayout_ops = { .ecc = rnandc_ooblayout_ecc, .free = rnandc_ooblayout_free, }; static int rnandc_hw_ecc_controller_init(struct nand_chip *chip) { struct rnand_chip *rnand = to_rnand(chip); struct mtd_info *mtd = nand_to_mtd(chip); struct rnandc *rnandc = to_rnandc(chip->controller); if (mtd->writesize > SZ_16K) { dev_err(rnandc->dev, "Unsupported page size\n"); return -EINVAL; } switch (chip->ecc.size) { case SZ_256: rnand->control |= CONTROL_ECC_BLOCK_SIZE_256; break; case SZ_512: rnand->control |= CONTROL_ECC_BLOCK_SIZE_512; break; case SZ_1K: rnand->control |= CONTROL_ECC_BLOCK_SIZE_1024; break; default: dev_err(rnandc->dev, "Unsupported ECC chunk size\n"); return -EINVAL; } switch (chip->ecc.strength) { case 2: chip->ecc.bytes = 4; rnand->ecc_ctrl |= ECC_CTRL_CAP_2B; break; case 4: chip->ecc.bytes = 7; rnand->ecc_ctrl |= ECC_CTRL_CAP_4B; break; case 8: chip->ecc.bytes = 14; rnand->ecc_ctrl |= ECC_CTRL_CAP_8B; break; case 16: chip->ecc.bytes = 28; rnand->ecc_ctrl |= ECC_CTRL_CAP_16B; break; case 24: chip->ecc.bytes = 42; rnand->ecc_ctrl |= ECC_CTRL_CAP_24B; break; case 32: chip->ecc.bytes = 56; rnand->ecc_ctrl |= ECC_CTRL_CAP_32B; break; default: dev_err(rnandc->dev, "Unsupported ECC strength\n"); return -EINVAL; } rnand->ecc_ctrl |= ECC_CTRL_ERR_THRESHOLD(chip->ecc.strength); mtd_set_ooblayout(mtd, &rnandc_ooblayout_ops); chip->ecc.steps = mtd->writesize / chip->ecc.size; chip->ecc.read_page = rnandc_read_page_hw_ecc; chip->ecc.read_subpage = rnandc_read_subpage_hw_ecc; chip->ecc.write_page = rnandc_write_page_hw_ecc; chip->ecc.write_subpage = rnandc_write_subpage_hw_ecc; return 0; } static int rnandc_ecc_init(struct nand_chip *chip) { struct nand_ecc_ctrl *ecc = &chip->ecc; const struct nand_ecc_props *requirements = nanddev_get_ecc_requirements(&chip->base); struct rnandc *rnandc = to_rnandc(chip->controller); int ret; if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_NONE && (!ecc->size || !ecc->strength)) { if (requirements->step_size && requirements->strength) { ecc->size = requirements->step_size; ecc->strength = requirements->strength; } else { dev_err(rnandc->dev, "No minimum ECC strength\n"); return -EINVAL; } } switch (ecc->engine_type) { case NAND_ECC_ENGINE_TYPE_ON_HOST: ret = rnandc_hw_ecc_controller_init(chip); if (ret) return ret; break; case NAND_ECC_ENGINE_TYPE_NONE: case NAND_ECC_ENGINE_TYPE_SOFT: case NAND_ECC_ENGINE_TYPE_ON_DIE: break; default: return -EINVAL; } return 0; } static int rnandc_attach_chip(struct nand_chip *chip) { struct rnand_chip *rnand = to_rnand(chip); struct rnandc *rnandc = to_rnandc(chip->controller); struct mtd_info *mtd = nand_to_mtd(chip); struct nand_memory_organization *memorg = nanddev_get_memorg(&chip->base); int ret; /* Do not store BBT bits in the OOB section as it is not protected */ if (chip->bbt_options & NAND_BBT_USE_FLASH) chip->bbt_options |= NAND_BBT_NO_OOB; if (mtd->writesize <= 512) { dev_err(rnandc->dev, "Small page devices not supported\n"); return -EINVAL; } rnand->control |= CONTROL_CHECK_RB_LINE | CONTROL_INT_EN; switch (memorg->pages_per_eraseblock) { case 32: rnand->control |= CONTROL_BLOCK_SIZE_32P; break; case 64: rnand->control |= CONTROL_BLOCK_SIZE_64P; break; case 128: rnand->control |= CONTROL_BLOCK_SIZE_128P; break; case 256: rnand->control |= CONTROL_BLOCK_SIZE_256P; break; default: dev_err(rnandc->dev, "Unsupported memory organization\n"); return -EINVAL; } chip->options |= NAND_SUBPAGE_READ; ret = rnandc_ecc_init(chip); if (ret) { dev_err(rnandc->dev, "ECC initialization failed (%d)\n", ret); return ret; } /* Force an update of the configuration registers */ rnand->selected_die = -1; return 0; } static const struct nand_controller_ops rnandc_ops = { .attach_chip = rnandc_attach_chip, .exec_op = rnandc_exec_op, .setup_interface = rnandc_setup_interface, }; static int rnandc_alloc_dma_buf(struct rnandc *rnandc, struct mtd_info *new_mtd) { unsigned int max_len = new_mtd->writesize + new_mtd->oobsize; struct rnand_chip *entry, *temp; struct nand_chip *chip; struct mtd_info *mtd; list_for_each_entry_safe(entry, temp, &rnandc->chips, node) { chip = &entry->chip; mtd = nand_to_mtd(chip); max_len = max(max_len, mtd->writesize + mtd->oobsize); } if (rnandc->buf && rnandc->buf_sz < max_len) { devm_kfree(rnandc->dev, rnandc->buf); rnandc->buf = NULL; } if (!rnandc->buf) { rnandc->buf_sz = max_len; rnandc->buf = devm_kmalloc(rnandc->dev, max_len, GFP_KERNEL | GFP_DMA); if (!rnandc->buf) return -ENOMEM; } return 0; } static int rnandc_chip_init(struct rnandc *rnandc, struct device_node *np) { struct rnand_chip *rnand; struct mtd_info *mtd; struct nand_chip *chip; int nsels, ret, i; u32 cs; nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32)); if (nsels <= 0) { ret = (nsels < 0) ? nsels : -EINVAL; dev_err(rnandc->dev, "Invalid reg property (%d)\n", ret); return ret; } /* Alloc the driver's NAND chip structure */ rnand = devm_kzalloc(rnandc->dev, struct_size(rnand, sels, nsels), GFP_KERNEL); if (!rnand) return -ENOMEM; rnand->nsels = nsels; rnand->selected_die = -1; for (i = 0; i < nsels; i++) { ret = of_property_read_u32_index(np, "reg", i, &cs); if (ret) { dev_err(rnandc->dev, "Incomplete reg property (%d)\n", ret); return ret; } if (cs >= RNANDC_CS_NUM) { dev_err(rnandc->dev, "Invalid reg property (%d)\n", cs); return -EINVAL; } if (test_and_set_bit(cs, &rnandc->assigned_cs)) { dev_err(rnandc->dev, "CS %d already assigned\n", cs); return -EINVAL; } /* * No need to check for RB or WP properties, there is a 1:1 * mandatory mapping with the CS. */ rnand->sels[i].cs = cs; } chip = &rnand->chip; chip->controller = &rnandc->controller; nand_set_flash_node(chip, np); mtd = nand_to_mtd(chip); mtd->dev.parent = rnandc->dev; if (!mtd->name) { dev_err(rnandc->dev, "Missing MTD label\n"); return -EINVAL; } ret = nand_scan(chip, rnand->nsels); if (ret) { dev_err(rnandc->dev, "Failed to scan the NAND chip (%d)\n", ret); return ret; } ret = rnandc_alloc_dma_buf(rnandc, mtd); if (ret) goto cleanup_nand; ret = mtd_device_register(mtd, NULL, 0); if (ret) { dev_err(rnandc->dev, "Failed to register MTD device (%d)\n", ret); goto cleanup_nand; } list_add_tail(&rnand->node, &rnandc->chips); return 0; cleanup_nand: nand_cleanup(chip); return ret; } static void rnandc_chips_cleanup(struct rnandc *rnandc) { struct rnand_chip *entry, *temp; struct nand_chip *chip; int ret; list_for_each_entry_safe(entry, temp, &rnandc->chips, node) { chip = &entry->chip; ret = mtd_device_unregister(nand_to_mtd(chip)); WARN_ON(ret); nand_cleanup(chip); list_del(&entry->node); } } static int rnandc_chips_init(struct rnandc *rnandc) { int ret; for_each_child_of_node_scoped(rnandc->dev->of_node, np) { ret = rnandc_chip_init(rnandc, np); if (ret) { rnandc_chips_cleanup(rnandc); return ret; } } return 0; } static int rnandc_probe(struct platform_device *pdev) { struct rnandc *rnandc; struct clk *eclk; int irq, ret; rnandc = devm_kzalloc(&pdev->dev, sizeof(*rnandc), GFP_KERNEL); if (!rnandc) return -ENOMEM; rnandc->dev = &pdev->dev; nand_controller_init(&rnandc->controller); rnandc->controller.ops = &rnandc_ops; INIT_LIST_HEAD(&rnandc->chips); init_completion(&rnandc->complete); rnandc->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(rnandc->regs)) return PTR_ERR(rnandc->regs); devm_pm_runtime_enable(&pdev->dev); ret = pm_runtime_resume_and_get(&pdev->dev); if (ret < 0) return ret; /* The external NAND bus clock rate is needed for computing timings */ eclk = clk_get(&pdev->dev, "eclk"); if (IS_ERR(eclk)) { ret = PTR_ERR(eclk); goto dis_runtime_pm; } rnandc->ext_clk_rate = clk_get_rate(eclk); clk_put(eclk); rnandc_dis_interrupts(rnandc); irq = platform_get_irq_optional(pdev, 0); if (irq == -EPROBE_DEFER) { ret = irq; goto dis_runtime_pm; } else if (irq < 0) { dev_info(&pdev->dev, "No IRQ found, fallback to polling\n"); rnandc->use_polling = true; } else { ret = devm_request_irq(&pdev->dev, irq, rnandc_irq_handler, 0, "renesas-nand-controller", rnandc); if (ret < 0) goto dis_runtime_pm; } ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); if (ret) goto dis_runtime_pm; rnandc_clear_fifo(rnandc); platform_set_drvdata(pdev, rnandc); ret = rnandc_chips_init(rnandc); if (ret) goto dis_runtime_pm; return 0; dis_runtime_pm: pm_runtime_put(&pdev->dev); return ret; } static void rnandc_remove(struct platform_device *pdev) { struct rnandc *rnandc = platform_get_drvdata(pdev); rnandc_chips_cleanup(rnandc); pm_runtime_put(&pdev->dev); } static const struct of_device_id rnandc_id_table[] = { { .compatible = "renesas,rcar-gen3-nandc" }, { .compatible = "renesas,rzn1-nandc" }, {} /* sentinel */ }; MODULE_DEVICE_TABLE(of, rnandc_id_table); static struct platform_driver rnandc_driver = { .driver = { .name = "renesas-nandc", .of_match_table = rnandc_id_table, }, .probe = rnandc_probe, .remove = rnandc_remove, }; module_platform_driver(rnandc_driver); MODULE_AUTHOR("Miquel Raynal "); MODULE_DESCRIPTION("Renesas R-Car Gen3 & RZ/N1 NAND controller driver"); MODULE_LICENSE("GPL v2");