// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2018 Stefan Agner * Copyright (C) 2014-2015 Lucas Stach * Copyright (C) 2012 Avionic Design GmbH */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define COMMAND 0x00 #define COMMAND_GO BIT(31) #define COMMAND_CLE BIT(30) #define COMMAND_ALE BIT(29) #define COMMAND_PIO BIT(28) #define COMMAND_TX BIT(27) #define COMMAND_RX BIT(26) #define COMMAND_SEC_CMD BIT(25) #define COMMAND_AFT_DAT BIT(24) #define COMMAND_TRANS_SIZE(size) ((((size) - 1) & 0xf) << 20) #define COMMAND_A_VALID BIT(19) #define COMMAND_B_VALID BIT(18) #define COMMAND_RD_STATUS_CHK BIT(17) #define COMMAND_RBSY_CHK BIT(16) #define COMMAND_CE(x) BIT(8 + ((x) & 0x7)) #define COMMAND_CLE_SIZE(size) ((((size) - 1) & 0x3) << 4) #define COMMAND_ALE_SIZE(size) ((((size) - 1) & 0xf) << 0) #define STATUS 0x04 #define ISR 0x08 #define ISR_CORRFAIL_ERR BIT(24) #define ISR_UND BIT(7) #define ISR_OVR BIT(6) #define ISR_CMD_DONE BIT(5) #define ISR_ECC_ERR BIT(4) #define IER 0x0c #define IER_ERR_TRIG_VAL(x) (((x) & 0xf) << 16) #define IER_UND BIT(7) #define IER_OVR BIT(6) #define IER_CMD_DONE BIT(5) #define IER_ECC_ERR BIT(4) #define IER_GIE BIT(0) #define CONFIG 0x10 #define CONFIG_HW_ECC BIT(31) #define CONFIG_ECC_SEL BIT(30) #define CONFIG_ERR_COR BIT(29) #define CONFIG_PIPE_EN BIT(28) #define CONFIG_TVAL_4 (0 << 24) #define CONFIG_TVAL_6 (1 << 24) #define CONFIG_TVAL_8 (2 << 24) #define CONFIG_SKIP_SPARE BIT(23) #define CONFIG_BUS_WIDTH_16 BIT(21) #define CONFIG_COM_BSY BIT(20) #define CONFIG_PS_256 (0 << 16) #define CONFIG_PS_512 (1 << 16) #define CONFIG_PS_1024 (2 << 16) #define CONFIG_PS_2048 (3 << 16) #define CONFIG_PS_4096 (4 << 16) #define CONFIG_SKIP_SPARE_SIZE_4 (0 << 14) #define CONFIG_SKIP_SPARE_SIZE_8 (1 << 14) #define CONFIG_SKIP_SPARE_SIZE_12 (2 << 14) #define CONFIG_SKIP_SPARE_SIZE_16 (3 << 14) #define CONFIG_TAG_BYTE_SIZE(x) ((x) & 0xff) #define TIMING_1 0x14 #define TIMING_TRP_RESP(x) (((x) & 0xf) << 28) #define TIMING_TWB(x) (((x) & 0xf) << 24) #define TIMING_TCR_TAR_TRR(x) (((x) & 0xf) << 20) #define TIMING_TWHR(x) (((x) & 0xf) << 16) #define TIMING_TCS(x) (((x) & 0x3) << 14) #define TIMING_TWH(x) (((x) & 0x3) << 12) #define TIMING_TWP(x) (((x) & 0xf) << 8) #define TIMING_TRH(x) (((x) & 0x3) << 4) #define TIMING_TRP(x) (((x) & 0xf) << 0) #define RESP 0x18 #define TIMING_2 0x1c #define TIMING_TADL(x) ((x) & 0xf) #define CMD_REG1 0x20 #define CMD_REG2 0x24 #define ADDR_REG1 0x28 #define ADDR_REG2 0x2c #define DMA_MST_CTRL 0x30 #define DMA_MST_CTRL_GO BIT(31) #define DMA_MST_CTRL_IN (0 << 30) #define DMA_MST_CTRL_OUT BIT(30) #define DMA_MST_CTRL_PERF_EN BIT(29) #define DMA_MST_CTRL_IE_DONE BIT(28) #define DMA_MST_CTRL_REUSE BIT(27) #define DMA_MST_CTRL_BURST_1 (2 << 24) #define DMA_MST_CTRL_BURST_4 (3 << 24) #define DMA_MST_CTRL_BURST_8 (4 << 24) #define DMA_MST_CTRL_BURST_16 (5 << 24) #define DMA_MST_CTRL_IS_DONE BIT(20) #define DMA_MST_CTRL_EN_A BIT(2) #define DMA_MST_CTRL_EN_B BIT(1) #define DMA_CFG_A 0x34 #define DMA_CFG_B 0x38 #define FIFO_CTRL 0x3c #define FIFO_CTRL_CLR_ALL BIT(3) #define DATA_PTR 0x40 #define TAG_PTR 0x44 #define ECC_PTR 0x48 #define DEC_STATUS 0x4c #define DEC_STATUS_A_ECC_FAIL BIT(1) #define DEC_STATUS_ERR_COUNT_MASK 0x00ff0000 #define DEC_STATUS_ERR_COUNT_SHIFT 16 #define HWSTATUS_CMD 0x50 #define HWSTATUS_MASK 0x54 #define HWSTATUS_RDSTATUS_MASK(x) (((x) & 0xff) << 24) #define HWSTATUS_RDSTATUS_VALUE(x) (((x) & 0xff) << 16) #define HWSTATUS_RBSY_MASK(x) (((x) & 0xff) << 8) #define HWSTATUS_RBSY_VALUE(x) (((x) & 0xff) << 0) #define BCH_CONFIG 0xcc #define BCH_ENABLE BIT(0) #define BCH_TVAL_4 (0 << 4) #define BCH_TVAL_8 (1 << 4) #define BCH_TVAL_14 (2 << 4) #define BCH_TVAL_16 (3 << 4) #define DEC_STAT_RESULT 0xd0 #define DEC_STAT_BUF 0xd4 #define DEC_STAT_BUF_FAIL_SEC_FLAG_MASK 0xff000000 #define DEC_STAT_BUF_FAIL_SEC_FLAG_SHIFT 24 #define DEC_STAT_BUF_CORR_SEC_FLAG_MASK 0x00ff0000 #define DEC_STAT_BUF_CORR_SEC_FLAG_SHIFT 16 #define DEC_STAT_BUF_MAX_CORR_CNT_MASK 0x00001f00 #define DEC_STAT_BUF_MAX_CORR_CNT_SHIFT 8 #define OFFSET(val, off) ((val) < (off) ? 0 : (val) - (off)) #define SKIP_SPARE_BYTES 4 #define BITS_PER_STEP_RS 18 #define BITS_PER_STEP_BCH 13 #define INT_MASK (IER_UND | IER_OVR | IER_CMD_DONE | IER_GIE) #define HWSTATUS_CMD_DEFAULT NAND_STATUS_READY #define HWSTATUS_MASK_DEFAULT (HWSTATUS_RDSTATUS_MASK(1) | \ HWSTATUS_RDSTATUS_VALUE(0) | \ HWSTATUS_RBSY_MASK(NAND_STATUS_READY) | \ HWSTATUS_RBSY_VALUE(NAND_STATUS_READY)) struct tegra_nand_controller { struct nand_controller controller; struct device *dev; void __iomem *regs; int irq; struct clk *clk; struct completion command_complete; struct completion dma_complete; bool last_read_error; int cur_cs; struct nand_chip *chip; }; struct tegra_nand_chip { struct nand_chip chip; struct gpio_desc *wp_gpio; struct mtd_oob_region ecc; u32 config; u32 config_ecc; u32 bch_config; int cs[1]; }; static inline struct tegra_nand_controller * to_tegra_ctrl(struct nand_controller *hw_ctrl) { return container_of(hw_ctrl, struct tegra_nand_controller, controller); } static inline struct tegra_nand_chip *to_tegra_chip(struct nand_chip *chip) { return container_of(chip, struct tegra_nand_chip, chip); } static int tegra_nand_ooblayout_rs_ecc(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *chip = mtd_to_nand(mtd); int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_RS * chip->ecc.strength, BITS_PER_BYTE); if (section > 0) return -ERANGE; oobregion->offset = SKIP_SPARE_BYTES; oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4); return 0; } static int tegra_nand_ooblayout_no_free(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { return -ERANGE; } static const struct mtd_ooblayout_ops tegra_nand_oob_rs_ops = { .ecc = tegra_nand_ooblayout_rs_ecc, .free = tegra_nand_ooblayout_no_free, }; static int tegra_nand_ooblayout_bch_ecc(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *chip = mtd_to_nand(mtd); int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_BCH * chip->ecc.strength, BITS_PER_BYTE); if (section > 0) return -ERANGE; oobregion->offset = SKIP_SPARE_BYTES; oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4); return 0; } static const struct mtd_ooblayout_ops tegra_nand_oob_bch_ops = { .ecc = tegra_nand_ooblayout_bch_ecc, .free = tegra_nand_ooblayout_no_free, }; static irqreturn_t tegra_nand_irq(int irq, void *data) { struct tegra_nand_controller *ctrl = data; u32 isr, dma; isr = readl_relaxed(ctrl->regs + ISR); dma = readl_relaxed(ctrl->regs + DMA_MST_CTRL); dev_dbg(ctrl->dev, "isr %08x\n", isr); if (!isr && !(dma & DMA_MST_CTRL_IS_DONE)) return IRQ_NONE; /* * The bit name is somewhat missleading: This is also set when * HW ECC was successful. The data sheet states: * Correctable OR Un-correctable errors occurred in the DMA transfer... */ if (isr & ISR_CORRFAIL_ERR) ctrl->last_read_error = true; if (isr & ISR_CMD_DONE) complete(&ctrl->command_complete); if (isr & ISR_UND) dev_err(ctrl->dev, "FIFO underrun\n"); if (isr & ISR_OVR) dev_err(ctrl->dev, "FIFO overrun\n"); /* handle DMA interrupts */ if (dma & DMA_MST_CTRL_IS_DONE) { writel_relaxed(dma, ctrl->regs + DMA_MST_CTRL); complete(&ctrl->dma_complete); } /* clear interrupts */ writel_relaxed(isr, ctrl->regs + ISR); return IRQ_HANDLED; } static const char * const tegra_nand_reg_names[] = { "COMMAND", "STATUS", "ISR", "IER", "CONFIG", "TIMING", NULL, "TIMING2", "CMD_REG1", "CMD_REG2", "ADDR_REG1", "ADDR_REG2", "DMA_MST_CTRL", "DMA_CFG_A", "DMA_CFG_B", "FIFO_CTRL", }; static void tegra_nand_dump_reg(struct tegra_nand_controller *ctrl) { u32 reg; int i; dev_err(ctrl->dev, "Tegra NAND controller register dump\n"); for (i = 0; i < ARRAY_SIZE(tegra_nand_reg_names); i++) { const char *reg_name = tegra_nand_reg_names[i]; if (!reg_name) continue; reg = readl_relaxed(ctrl->regs + (i * 4)); dev_err(ctrl->dev, "%s: 0x%08x\n", reg_name, reg); } } static void tegra_nand_controller_abort(struct tegra_nand_controller *ctrl) { u32 isr, dma; disable_irq(ctrl->irq); /* Abort current command/DMA operation */ writel_relaxed(0, ctrl->regs + DMA_MST_CTRL); writel_relaxed(0, ctrl->regs + COMMAND); /* clear interrupts */ isr = readl_relaxed(ctrl->regs + ISR); writel_relaxed(isr, ctrl->regs + ISR); dma = readl_relaxed(ctrl->regs + DMA_MST_CTRL); writel_relaxed(dma, ctrl->regs + DMA_MST_CTRL); reinit_completion(&ctrl->command_complete); reinit_completion(&ctrl->dma_complete); enable_irq(ctrl->irq); } static int tegra_nand_cmd(struct nand_chip *chip, const struct nand_subop *subop) { const struct nand_op_instr *instr; const struct nand_op_instr *instr_data_in = NULL; struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); unsigned int op_id, size = 0, offset = 0; bool first_cmd = true; u32 reg, cmd = 0; int ret; for (op_id = 0; op_id < subop->ninstrs; op_id++) { unsigned int naddrs, i; const u8 *addrs; u32 addr1 = 0, addr2 = 0; instr = &subop->instrs[op_id]; switch (instr->type) { case NAND_OP_CMD_INSTR: if (first_cmd) { cmd |= COMMAND_CLE; writel_relaxed(instr->ctx.cmd.opcode, ctrl->regs + CMD_REG1); } else { cmd |= COMMAND_SEC_CMD; writel_relaxed(instr->ctx.cmd.opcode, ctrl->regs + CMD_REG2); } first_cmd = false; break; case NAND_OP_ADDR_INSTR: offset = nand_subop_get_addr_start_off(subop, op_id); naddrs = nand_subop_get_num_addr_cyc(subop, op_id); addrs = &instr->ctx.addr.addrs[offset]; cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(naddrs); for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) addr1 |= *addrs++ << (BITS_PER_BYTE * i); naddrs -= i; for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) addr2 |= *addrs++ << (BITS_PER_BYTE * i); writel_relaxed(addr1, ctrl->regs + ADDR_REG1); writel_relaxed(addr2, ctrl->regs + ADDR_REG2); break; case NAND_OP_DATA_IN_INSTR: size = nand_subop_get_data_len(subop, op_id); offset = nand_subop_get_data_start_off(subop, op_id); cmd |= COMMAND_TRANS_SIZE(size) | COMMAND_PIO | COMMAND_RX | COMMAND_A_VALID; instr_data_in = instr; break; case NAND_OP_DATA_OUT_INSTR: size = nand_subop_get_data_len(subop, op_id); offset = nand_subop_get_data_start_off(subop, op_id); cmd |= COMMAND_TRANS_SIZE(size) | COMMAND_PIO | COMMAND_TX | COMMAND_A_VALID; memcpy(®, instr->ctx.data.buf.out + offset, size); writel_relaxed(reg, ctrl->regs + RESP); break; case NAND_OP_WAITRDY_INSTR: cmd |= COMMAND_RBSY_CHK; break; } } cmd |= COMMAND_GO | COMMAND_CE(ctrl->cur_cs); writel_relaxed(cmd, ctrl->regs + COMMAND); ret = wait_for_completion_timeout(&ctrl->command_complete, msecs_to_jiffies(500)); if (!ret) { dev_err(ctrl->dev, "COMMAND timeout\n"); tegra_nand_dump_reg(ctrl); tegra_nand_controller_abort(ctrl); return -ETIMEDOUT; } if (instr_data_in) { reg = readl_relaxed(ctrl->regs + RESP); memcpy(instr_data_in->ctx.data.buf.in + offset, ®, size); } return 0; } static const struct nand_op_parser tegra_nand_op_parser = NAND_OP_PARSER( NAND_OP_PARSER_PATTERN(tegra_nand_cmd, NAND_OP_PARSER_PAT_CMD_ELEM(true), NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8), NAND_OP_PARSER_PAT_CMD_ELEM(true), NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), NAND_OP_PARSER_PATTERN(tegra_nand_cmd, NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 4)), NAND_OP_PARSER_PATTERN(tegra_nand_cmd, NAND_OP_PARSER_PAT_CMD_ELEM(true), NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8), NAND_OP_PARSER_PAT_CMD_ELEM(true), NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 4)), ); static void tegra_nand_select_target(struct nand_chip *chip, unsigned int die_nr) { struct tegra_nand_chip *nand = to_tegra_chip(chip); struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); ctrl->cur_cs = nand->cs[die_nr]; } static int tegra_nand_exec_op(struct nand_chip *chip, const struct nand_operation *op, bool check_only) { if (!check_only) tegra_nand_select_target(chip, op->cs); return nand_op_parser_exec_op(chip, &tegra_nand_op_parser, op, check_only); } static void tegra_nand_hw_ecc(struct tegra_nand_controller *ctrl, struct nand_chip *chip, bool enable) { struct tegra_nand_chip *nand = to_tegra_chip(chip); if (chip->ecc.algo == NAND_ECC_ALGO_BCH && enable) writel_relaxed(nand->bch_config, ctrl->regs + BCH_CONFIG); else writel_relaxed(0, ctrl->regs + BCH_CONFIG); if (enable) writel_relaxed(nand->config_ecc, ctrl->regs + CONFIG); else writel_relaxed(nand->config, ctrl->regs + CONFIG); } static int tegra_nand_page_xfer(struct mtd_info *mtd, struct nand_chip *chip, void *buf, void *oob_buf, int oob_len, int page, bool read) { struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); enum dma_data_direction dir = read ? DMA_FROM_DEVICE : DMA_TO_DEVICE; dma_addr_t dma_addr = 0, dma_addr_oob = 0; u32 addr1, cmd, dma_ctrl; int ret; tegra_nand_select_target(chip, chip->cur_cs); if (read) { writel_relaxed(NAND_CMD_READ0, ctrl->regs + CMD_REG1); writel_relaxed(NAND_CMD_READSTART, ctrl->regs + CMD_REG2); } else { writel_relaxed(NAND_CMD_SEQIN, ctrl->regs + CMD_REG1); writel_relaxed(NAND_CMD_PAGEPROG, ctrl->regs + CMD_REG2); } cmd = COMMAND_CLE | COMMAND_SEC_CMD; /* Lower 16-bits are column, by default 0 */ addr1 = page << 16; if (!buf) addr1 |= mtd->writesize; writel_relaxed(addr1, ctrl->regs + ADDR_REG1); if (chip->options & NAND_ROW_ADDR_3) { writel_relaxed(page >> 16, ctrl->regs + ADDR_REG2); cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(5); } else { cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(4); } if (buf) { dma_addr = dma_map_single(ctrl->dev, buf, mtd->writesize, dir); ret = dma_mapping_error(ctrl->dev, dma_addr); if (ret) { dev_err(ctrl->dev, "dma mapping error\n"); return -EINVAL; } writel_relaxed(mtd->writesize - 1, ctrl->regs + DMA_CFG_A); writel_relaxed(dma_addr, ctrl->regs + DATA_PTR); } if (oob_buf) { dma_addr_oob = dma_map_single(ctrl->dev, oob_buf, mtd->oobsize, dir); ret = dma_mapping_error(ctrl->dev, dma_addr_oob); if (ret) { dev_err(ctrl->dev, "dma mapping error\n"); ret = -EINVAL; goto err_unmap_dma_page; } writel_relaxed(oob_len - 1, ctrl->regs + DMA_CFG_B); writel_relaxed(dma_addr_oob, ctrl->regs + TAG_PTR); } dma_ctrl = DMA_MST_CTRL_GO | DMA_MST_CTRL_PERF_EN | DMA_MST_CTRL_IE_DONE | DMA_MST_CTRL_IS_DONE | DMA_MST_CTRL_BURST_16; if (buf) dma_ctrl |= DMA_MST_CTRL_EN_A; if (oob_buf) dma_ctrl |= DMA_MST_CTRL_EN_B; if (read) dma_ctrl |= DMA_MST_CTRL_IN | DMA_MST_CTRL_REUSE; else dma_ctrl |= DMA_MST_CTRL_OUT; writel_relaxed(dma_ctrl, ctrl->regs + DMA_MST_CTRL); cmd |= COMMAND_GO | COMMAND_RBSY_CHK | COMMAND_TRANS_SIZE(9) | COMMAND_CE(ctrl->cur_cs); if (buf) cmd |= COMMAND_A_VALID; if (oob_buf) cmd |= COMMAND_B_VALID; if (read) cmd |= COMMAND_RX; else cmd |= COMMAND_TX | COMMAND_AFT_DAT; writel_relaxed(cmd, ctrl->regs + COMMAND); ret = wait_for_completion_timeout(&ctrl->command_complete, msecs_to_jiffies(500)); if (!ret) { dev_err(ctrl->dev, "COMMAND timeout\n"); tegra_nand_dump_reg(ctrl); tegra_nand_controller_abort(ctrl); ret = -ETIMEDOUT; goto err_unmap_dma; } ret = wait_for_completion_timeout(&ctrl->dma_complete, msecs_to_jiffies(500)); if (!ret) { dev_err(ctrl->dev, "DMA timeout\n"); tegra_nand_dump_reg(ctrl); tegra_nand_controller_abort(ctrl); ret = -ETIMEDOUT; goto err_unmap_dma; } ret = 0; err_unmap_dma: if (oob_buf) dma_unmap_single(ctrl->dev, dma_addr_oob, mtd->oobsize, dir); err_unmap_dma_page: if (buf) dma_unmap_single(ctrl->dev, dma_addr, mtd->writesize, dir); return ret; } static int tegra_nand_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_required, int page) { struct mtd_info *mtd = nand_to_mtd(chip); void *oob_buf = oob_required ? chip->oob_poi : NULL; return tegra_nand_page_xfer(mtd, chip, buf, oob_buf, mtd->oobsize, page, true); } static int tegra_nand_write_page_raw(struct nand_chip *chip, const u8 *buf, int oob_required, int page) { struct mtd_info *mtd = nand_to_mtd(chip); void *oob_buf = oob_required ? chip->oob_poi : NULL; return tegra_nand_page_xfer(mtd, chip, (void *)buf, oob_buf, mtd->oobsize, page, false); } static int tegra_nand_read_oob(struct nand_chip *chip, int page) { struct mtd_info *mtd = nand_to_mtd(chip); return tegra_nand_page_xfer(mtd, chip, NULL, chip->oob_poi, mtd->oobsize, page, true); } static int tegra_nand_write_oob(struct nand_chip *chip, int page) { struct mtd_info *mtd = nand_to_mtd(chip); return tegra_nand_page_xfer(mtd, chip, NULL, chip->oob_poi, mtd->oobsize, page, false); } static int tegra_nand_read_page_hwecc(struct nand_chip *chip, u8 *buf, int oob_required, int page) { struct mtd_info *mtd = nand_to_mtd(chip); struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); struct tegra_nand_chip *nand = to_tegra_chip(chip); void *oob_buf = oob_required ? chip->oob_poi : NULL; u32 dec_stat, max_corr_cnt; unsigned long fail_sec_flag; int ret; tegra_nand_hw_ecc(ctrl, chip, true); ret = tegra_nand_page_xfer(mtd, chip, buf, oob_buf, 0, page, true); tegra_nand_hw_ecc(ctrl, chip, false); if (ret) return ret; /* No correctable or un-correctable errors, page must have 0 bitflips */ if (!ctrl->last_read_error) return 0; /* * Correctable or un-correctable errors occurred. Use DEC_STAT_BUF * which contains information for all ECC selections. * * Note that since we do not use Command Queues DEC_RESULT does not * state the number of pages we can read from the DEC_STAT_BUF. But * since CORRFAIL_ERR did occur during page read we do have a valid * result in DEC_STAT_BUF. */ ctrl->last_read_error = false; dec_stat = readl_relaxed(ctrl->regs + DEC_STAT_BUF); fail_sec_flag = (dec_stat & DEC_STAT_BUF_FAIL_SEC_FLAG_MASK) >> DEC_STAT_BUF_FAIL_SEC_FLAG_SHIFT; max_corr_cnt = (dec_stat & DEC_STAT_BUF_MAX_CORR_CNT_MASK) >> DEC_STAT_BUF_MAX_CORR_CNT_SHIFT; if (fail_sec_flag) { int bit, max_bitflips = 0; /* * Since we do not support subpage writes, a complete page * is either written or not. We can take a shortcut here by * checking wheather any of the sector has been successful * read. If at least one sectors has been read successfully, * the page must have been a written previously. It cannot * be an erased page. * * E.g. controller might return fail_sec_flag with 0x4, which * would mean only the third sector failed to correct. The * page must have been written and the third sector is really * not correctable anymore. */ if (fail_sec_flag ^ GENMASK(chip->ecc.steps - 1, 0)) { mtd->ecc_stats.failed += hweight8(fail_sec_flag); return max_corr_cnt; } /* * All sectors failed to correct, but the ECC isn't smart * enough to figure out if a page is really just erased. * Read OOB data and check whether data/OOB is completely * erased or if error correction just failed for all sub- * pages. */ ret = tegra_nand_read_oob(chip, page); if (ret < 0) return ret; for_each_set_bit(bit, &fail_sec_flag, chip->ecc.steps) { u8 *data = buf + (chip->ecc.size * bit); u8 *oob = chip->oob_poi + nand->ecc.offset + (chip->ecc.bytes * bit); ret = nand_check_erased_ecc_chunk(data, chip->ecc.size, oob, chip->ecc.bytes, NULL, 0, chip->ecc.strength); if (ret < 0) { mtd->ecc_stats.failed++; } else { mtd->ecc_stats.corrected += ret; max_bitflips = max(ret, max_bitflips); } } return max_t(unsigned int, max_corr_cnt, max_bitflips); } else { int corr_sec_flag; corr_sec_flag = (dec_stat & DEC_STAT_BUF_CORR_SEC_FLAG_MASK) >> DEC_STAT_BUF_CORR_SEC_FLAG_SHIFT; /* * The value returned in the register is the maximum of * bitflips encountered in any of the ECC regions. As there is * no way to get the number of bitflips in a specific regions * we are not able to deliver correct stats but instead * overestimate the number of corrected bitflips by assuming * that all regions where errors have been corrected * encountered the maximum number of bitflips. */ mtd->ecc_stats.corrected += max_corr_cnt * hweight8(corr_sec_flag); return max_corr_cnt; } } static int tegra_nand_write_page_hwecc(struct nand_chip *chip, const u8 *buf, int oob_required, int page) { struct mtd_info *mtd = nand_to_mtd(chip); struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); void *oob_buf = oob_required ? chip->oob_poi : NULL; int ret; tegra_nand_hw_ecc(ctrl, chip, true); ret = tegra_nand_page_xfer(mtd, chip, (void *)buf, oob_buf, 0, page, false); tegra_nand_hw_ecc(ctrl, chip, false); return ret; } static void tegra_nand_setup_timing(struct tegra_nand_controller *ctrl, const struct nand_sdr_timings *timings) { /* * The period (and all other timings in this function) is in ps, * so need to take care here to avoid integer overflows. */ unsigned int rate = clk_get_rate(ctrl->clk) / 1000000; unsigned int period = DIV_ROUND_UP(1000000, rate); u32 val, reg = 0; val = DIV_ROUND_UP(max3(timings->tAR_min, timings->tRR_min, timings->tRC_min), period); reg |= TIMING_TCR_TAR_TRR(OFFSET(val, 3)); val = DIV_ROUND_UP(max(max(timings->tCS_min, timings->tCH_min), max(timings->tALS_min, timings->tALH_min)), period); reg |= TIMING_TCS(OFFSET(val, 2)); val = DIV_ROUND_UP(max(timings->tRP_min, timings->tREA_max) + 6000, period); reg |= TIMING_TRP(OFFSET(val, 1)) | TIMING_TRP_RESP(OFFSET(val, 1)); reg |= TIMING_TWB(OFFSET(DIV_ROUND_UP(timings->tWB_max, period), 1)); reg |= TIMING_TWHR(OFFSET(DIV_ROUND_UP(timings->tWHR_min, period), 1)); reg |= TIMING_TWH(OFFSET(DIV_ROUND_UP(timings->tWH_min, period), 1)); reg |= TIMING_TWP(OFFSET(DIV_ROUND_UP(timings->tWP_min, period), 1)); reg |= TIMING_TRH(OFFSET(DIV_ROUND_UP(timings->tREH_min, period), 1)); writel_relaxed(reg, ctrl->regs + TIMING_1); val = DIV_ROUND_UP(timings->tADL_min, period); reg = TIMING_TADL(OFFSET(val, 3)); writel_relaxed(reg, ctrl->regs + TIMING_2); } static int tegra_nand_setup_interface(struct nand_chip *chip, int csline, const struct nand_interface_config *conf) { struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); const struct nand_sdr_timings *timings; timings = nand_get_sdr_timings(conf); if (IS_ERR(timings)) return PTR_ERR(timings); if (csline == NAND_DATA_IFACE_CHECK_ONLY) return 0; tegra_nand_setup_timing(ctrl, timings); return 0; } static const int rs_strength_bootable[] = { 4 }; static const int rs_strength[] = { 4, 6, 8 }; static const int bch_strength_bootable[] = { 8, 16 }; static const int bch_strength[] = { 4, 8, 14, 16 }; static int tegra_nand_get_strength(struct nand_chip *chip, const int *strength, int strength_len, int bits_per_step, int oobsize) { struct nand_device *base = mtd_to_nanddev(nand_to_mtd(chip)); const struct nand_ecc_props *requirements = nanddev_get_ecc_requirements(base); bool maximize = base->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH; int i; /* * Loop through available strengths. Backwards in case we try to * maximize the BCH strength. */ for (i = 0; i < strength_len; i++) { int strength_sel, bytes_per_step, bytes_per_page; if (maximize) { strength_sel = strength[strength_len - i - 1]; } else { strength_sel = strength[i]; if (strength_sel < requirements->strength) continue; } bytes_per_step = DIV_ROUND_UP(bits_per_step * strength_sel, BITS_PER_BYTE); bytes_per_page = round_up(bytes_per_step * chip->ecc.steps, 4); /* Check whether strength fits OOB */ if (bytes_per_page < (oobsize - SKIP_SPARE_BYTES)) return strength_sel; } return -EINVAL; } static int tegra_nand_select_strength(struct nand_chip *chip, int oobsize) { const int *strength; int strength_len, bits_per_step; switch (chip->ecc.algo) { case NAND_ECC_ALGO_RS: bits_per_step = BITS_PER_STEP_RS; if (chip->options & NAND_IS_BOOT_MEDIUM) { strength = rs_strength_bootable; strength_len = ARRAY_SIZE(rs_strength_bootable); } else { strength = rs_strength; strength_len = ARRAY_SIZE(rs_strength); } break; case NAND_ECC_ALGO_BCH: bits_per_step = BITS_PER_STEP_BCH; if (chip->options & NAND_IS_BOOT_MEDIUM) { strength = bch_strength_bootable; strength_len = ARRAY_SIZE(bch_strength_bootable); } else { strength = bch_strength; strength_len = ARRAY_SIZE(bch_strength); } break; default: return -EINVAL; } return tegra_nand_get_strength(chip, strength, strength_len, bits_per_step, oobsize); } static int tegra_nand_attach_chip(struct nand_chip *chip) { struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller); const struct nand_ecc_props *requirements = nanddev_get_ecc_requirements(&chip->base); struct tegra_nand_chip *nand = to_tegra_chip(chip); struct mtd_info *mtd = nand_to_mtd(chip); int bits_per_step; int ret; if (chip->bbt_options & NAND_BBT_USE_FLASH) chip->bbt_options |= NAND_BBT_NO_OOB; chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; chip->ecc.size = 512; chip->ecc.steps = mtd->writesize / chip->ecc.size; if (requirements->step_size != 512) { dev_err(ctrl->dev, "Unsupported step size %d\n", requirements->step_size); return -EINVAL; } chip->ecc.read_page = tegra_nand_read_page_hwecc; chip->ecc.write_page = tegra_nand_write_page_hwecc; chip->ecc.read_page_raw = tegra_nand_read_page_raw; chip->ecc.write_page_raw = tegra_nand_write_page_raw; chip->ecc.read_oob = tegra_nand_read_oob; chip->ecc.write_oob = tegra_nand_write_oob; if (chip->options & NAND_BUSWIDTH_16) nand->config |= CONFIG_BUS_WIDTH_16; if (chip->ecc.algo == NAND_ECC_ALGO_UNKNOWN) { if (mtd->writesize < 2048) chip->ecc.algo = NAND_ECC_ALGO_RS; else chip->ecc.algo = NAND_ECC_ALGO_BCH; } if (chip->ecc.algo == NAND_ECC_ALGO_BCH && mtd->writesize < 2048) { dev_err(ctrl->dev, "BCH supports 2K or 4K page size only\n"); return -EINVAL; } if (!chip->ecc.strength) { ret = tegra_nand_select_strength(chip, mtd->oobsize); if (ret < 0) { dev_err(ctrl->dev, "No valid strength found, minimum %d\n", requirements->strength); return ret; } chip->ecc.strength = ret; } nand->config_ecc = CONFIG_PIPE_EN | CONFIG_SKIP_SPARE | CONFIG_SKIP_SPARE_SIZE_4; switch (chip->ecc.algo) { case NAND_ECC_ALGO_RS: bits_per_step = BITS_PER_STEP_RS * chip->ecc.strength; mtd_set_ooblayout(mtd, &tegra_nand_oob_rs_ops); nand->config_ecc |= CONFIG_HW_ECC | CONFIG_ECC_SEL | CONFIG_ERR_COR; switch (chip->ecc.strength) { case 4: nand->config_ecc |= CONFIG_TVAL_4; break; case 6: nand->config_ecc |= CONFIG_TVAL_6; break; case 8: nand->config_ecc |= CONFIG_TVAL_8; break; default: dev_err(ctrl->dev, "ECC strength %d not supported\n", chip->ecc.strength); return -EINVAL; } break; case NAND_ECC_ALGO_BCH: bits_per_step = BITS_PER_STEP_BCH * chip->ecc.strength; mtd_set_ooblayout(mtd, &tegra_nand_oob_bch_ops); nand->bch_config = BCH_ENABLE; switch (chip->ecc.strength) { case 4: nand->bch_config |= BCH_TVAL_4; break; case 8: nand->bch_config |= BCH_TVAL_8; break; case 14: nand->bch_config |= BCH_TVAL_14; break; case 16: nand->bch_config |= BCH_TVAL_16; break; default: dev_err(ctrl->dev, "ECC strength %d not supported\n", chip->ecc.strength); return -EINVAL; } break; default: dev_err(ctrl->dev, "ECC algorithm not supported\n"); return -EINVAL; } dev_info(ctrl->dev, "Using %s with strength %d per 512 byte step\n", chip->ecc.algo == NAND_ECC_ALGO_BCH ? "BCH" : "RS", chip->ecc.strength); chip->ecc.bytes = DIV_ROUND_UP(bits_per_step, BITS_PER_BYTE); switch (mtd->writesize) { case 256: nand->config |= CONFIG_PS_256; break; case 512: nand->config |= CONFIG_PS_512; break; case 1024: nand->config |= CONFIG_PS_1024; break; case 2048: nand->config |= CONFIG_PS_2048; break; case 4096: nand->config |= CONFIG_PS_4096; break; default: dev_err(ctrl->dev, "Unsupported writesize %d\n", mtd->writesize); return -ENODEV; } /* Store complete configuration for HW ECC in config_ecc */ nand->config_ecc |= nand->config; /* Non-HW ECC read/writes complete OOB */ nand->config |= CONFIG_TAG_BYTE_SIZE(mtd->oobsize - 1); writel_relaxed(nand->config, ctrl->regs + CONFIG); return 0; } static const struct nand_controller_ops tegra_nand_controller_ops = { .attach_chip = &tegra_nand_attach_chip, .exec_op = tegra_nand_exec_op, .setup_interface = tegra_nand_setup_interface, }; static int tegra_nand_chips_init(struct device *dev, struct tegra_nand_controller *ctrl) { struct device_node *np = dev->of_node; struct device_node *np_nand; int nsels, nchips = of_get_child_count(np); struct tegra_nand_chip *nand; struct mtd_info *mtd; struct nand_chip *chip; int ret; u32 cs; if (nchips != 1) { dev_err(dev, "Currently only one NAND chip supported\n"); return -EINVAL; } np_nand = of_get_next_child(np, NULL); nsels = of_property_count_elems_of_size(np_nand, "reg", sizeof(u32)); if (nsels != 1) { dev_err(dev, "Missing/invalid reg property\n"); return -EINVAL; } /* Retrieve CS id, currently only single die NAND supported */ ret = of_property_read_u32(np_nand, "reg", &cs); if (ret) { dev_err(dev, "could not retrieve reg property: %d\n", ret); return ret; } nand = devm_kzalloc(dev, sizeof(*nand), GFP_KERNEL); if (!nand) return -ENOMEM; nand->cs[0] = cs; nand->wp_gpio = devm_gpiod_get_optional(dev, "wp", GPIOD_OUT_LOW); if (IS_ERR(nand->wp_gpio)) { ret = PTR_ERR(nand->wp_gpio); dev_err(dev, "Failed to request WP GPIO: %d\n", ret); return ret; } chip = &nand->chip; chip->controller = &ctrl->controller; mtd = nand_to_mtd(chip); mtd->dev.parent = dev; mtd->owner = THIS_MODULE; nand_set_flash_node(chip, np_nand); if (!mtd->name) mtd->name = "tegra_nand"; chip->options = NAND_NO_SUBPAGE_WRITE | NAND_USES_DMA; ret = nand_scan(chip, 1); if (ret) return ret; mtd_ooblayout_ecc(mtd, 0, &nand->ecc); ret = mtd_device_register(mtd, NULL, 0); if (ret) { dev_err(dev, "Failed to register mtd device: %d\n", ret); nand_cleanup(chip); return ret; } ctrl->chip = chip; return 0; } static int tegra_nand_probe(struct platform_device *pdev) { struct reset_control *rst; struct tegra_nand_controller *ctrl; int err = 0; ctrl = devm_kzalloc(&pdev->dev, sizeof(*ctrl), GFP_KERNEL); if (!ctrl) return -ENOMEM; ctrl->dev = &pdev->dev; platform_set_drvdata(pdev, ctrl); nand_controller_init(&ctrl->controller); ctrl->controller.ops = &tegra_nand_controller_ops; ctrl->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(ctrl->regs)) return PTR_ERR(ctrl->regs); rst = devm_reset_control_get(&pdev->dev, "nand"); if (IS_ERR(rst)) return PTR_ERR(rst); ctrl->clk = devm_clk_get(&pdev->dev, "nand"); if (IS_ERR(ctrl->clk)) return PTR_ERR(ctrl->clk); err = devm_tegra_core_dev_init_opp_table_common(&pdev->dev); if (err) return err; /* * This driver doesn't support active power management yet, * so we will simply keep device resumed. */ pm_runtime_enable(&pdev->dev); err = pm_runtime_resume_and_get(&pdev->dev); if (err) goto err_dis_pm; err = reset_control_reset(rst); if (err) { dev_err(ctrl->dev, "Failed to reset HW: %d\n", err); goto err_put_pm; } writel_relaxed(HWSTATUS_CMD_DEFAULT, ctrl->regs + HWSTATUS_CMD); writel_relaxed(HWSTATUS_MASK_DEFAULT, ctrl->regs + HWSTATUS_MASK); writel_relaxed(INT_MASK, ctrl->regs + IER); init_completion(&ctrl->command_complete); init_completion(&ctrl->dma_complete); ctrl->irq = platform_get_irq(pdev, 0); if (ctrl->irq < 0) { err = ctrl->irq; goto err_put_pm; } err = devm_request_irq(&pdev->dev, ctrl->irq, tegra_nand_irq, 0, dev_name(&pdev->dev), ctrl); if (err) { dev_err(ctrl->dev, "Failed to get IRQ: %d\n", err); goto err_put_pm; } writel_relaxed(DMA_MST_CTRL_IS_DONE, ctrl->regs + DMA_MST_CTRL); err = tegra_nand_chips_init(ctrl->dev, ctrl); if (err) goto err_put_pm; return 0; err_put_pm: pm_runtime_put_sync_suspend(ctrl->dev); pm_runtime_force_suspend(ctrl->dev); err_dis_pm: pm_runtime_disable(&pdev->dev); return err; } static void tegra_nand_remove(struct platform_device *pdev) { struct tegra_nand_controller *ctrl = platform_get_drvdata(pdev); struct nand_chip *chip = ctrl->chip; struct mtd_info *mtd = nand_to_mtd(chip); WARN_ON(mtd_device_unregister(mtd)); nand_cleanup(chip); pm_runtime_put_sync_suspend(ctrl->dev); pm_runtime_force_suspend(ctrl->dev); } static int __maybe_unused tegra_nand_runtime_resume(struct device *dev) { struct tegra_nand_controller *ctrl = dev_get_drvdata(dev); int err; err = clk_prepare_enable(ctrl->clk); if (err) { dev_err(dev, "Failed to enable clock: %d\n", err); return err; } return 0; } static int __maybe_unused tegra_nand_runtime_suspend(struct device *dev) { struct tegra_nand_controller *ctrl = dev_get_drvdata(dev); clk_disable_unprepare(ctrl->clk); return 0; } static const struct dev_pm_ops tegra_nand_pm = { SET_RUNTIME_PM_OPS(tegra_nand_runtime_suspend, tegra_nand_runtime_resume, NULL) }; static const struct of_device_id tegra_nand_of_match[] = { { .compatible = "nvidia,tegra20-nand" }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, tegra_nand_of_match); static struct platform_driver tegra_nand_driver = { .driver = { .name = "tegra-nand", .of_match_table = tegra_nand_of_match, .pm = &tegra_nand_pm, }, .probe = tegra_nand_probe, .remove = tegra_nand_remove, }; module_platform_driver(tegra_nand_driver); MODULE_DESCRIPTION("NVIDIA Tegra NAND driver"); MODULE_AUTHOR("Thierry Reding "); MODULE_AUTHOR("Lucas Stach "); MODULE_AUTHOR("Stefan Agner "); MODULE_LICENSE("GPL v2");