// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2016-2017 Micron Technology, Inc. * * Authors: * Peter Pan * Boris Brezillon */ #define pr_fmt(fmt) "spi-nand: " fmt #include #include #include #include #include #include #include #include #include #include static int spinand_read_reg_op(struct spinand_device *spinand, u8 reg, u8 *val) { struct spi_mem_op op = SPINAND_GET_FEATURE_OP(reg, spinand->scratchbuf); int ret; ret = spi_mem_exec_op(spinand->spimem, &op); if (ret) return ret; *val = *spinand->scratchbuf; return 0; } int spinand_write_reg_op(struct spinand_device *spinand, u8 reg, u8 val) { struct spi_mem_op op = SPINAND_SET_FEATURE_OP(reg, spinand->scratchbuf); *spinand->scratchbuf = val; return spi_mem_exec_op(spinand->spimem, &op); } static int spinand_read_status(struct spinand_device *spinand, u8 *status) { return spinand_read_reg_op(spinand, REG_STATUS, status); } static int spinand_get_cfg(struct spinand_device *spinand, u8 *cfg) { struct nand_device *nand = spinand_to_nand(spinand); if (WARN_ON(spinand->cur_target < 0 || spinand->cur_target >= nand->memorg.ntargets)) return -EINVAL; *cfg = spinand->cfg_cache[spinand->cur_target]; return 0; } static int spinand_set_cfg(struct spinand_device *spinand, u8 cfg) { struct nand_device *nand = spinand_to_nand(spinand); int ret; if (WARN_ON(spinand->cur_target < 0 || spinand->cur_target >= nand->memorg.ntargets)) return -EINVAL; if (spinand->cfg_cache[spinand->cur_target] == cfg) return 0; ret = spinand_write_reg_op(spinand, REG_CFG, cfg); if (ret) return ret; spinand->cfg_cache[spinand->cur_target] = cfg; return 0; } /** * spinand_upd_cfg() - Update the configuration register * @spinand: the spinand device * @mask: the mask encoding the bits to update in the config reg * @val: the new value to apply * * Update the configuration register. * * Return: 0 on success, a negative error code otherwise. */ int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val) { int ret; u8 cfg; ret = spinand_get_cfg(spinand, &cfg); if (ret) return ret; cfg &= ~mask; cfg |= val; return spinand_set_cfg(spinand, cfg); } /** * spinand_select_target() - Select a specific NAND target/die * @spinand: the spinand device * @target: the target/die to select * * Select a new target/die. If chip only has one die, this function is a NOOP. * * Return: 0 on success, a negative error code otherwise. */ int spinand_select_target(struct spinand_device *spinand, unsigned int target) { struct nand_device *nand = spinand_to_nand(spinand); int ret; if (WARN_ON(target >= nand->memorg.ntargets)) return -EINVAL; if (spinand->cur_target == target) return 0; if (nand->memorg.ntargets == 1) { spinand->cur_target = target; return 0; } ret = spinand->select_target(spinand, target); if (ret) return ret; spinand->cur_target = target; return 0; } static int spinand_read_cfg(struct spinand_device *spinand) { struct nand_device *nand = spinand_to_nand(spinand); unsigned int target; int ret; for (target = 0; target < nand->memorg.ntargets; target++) { ret = spinand_select_target(spinand, target); if (ret) return ret; /* * We use spinand_read_reg_op() instead of spinand_get_cfg() * here to bypass the config cache. */ ret = spinand_read_reg_op(spinand, REG_CFG, &spinand->cfg_cache[target]); if (ret) return ret; } return 0; } static int spinand_init_cfg_cache(struct spinand_device *spinand) { struct nand_device *nand = spinand_to_nand(spinand); struct device *dev = &spinand->spimem->spi->dev; spinand->cfg_cache = devm_kcalloc(dev, nand->memorg.ntargets, sizeof(*spinand->cfg_cache), GFP_KERNEL); if (!spinand->cfg_cache) return -ENOMEM; return 0; } static int spinand_init_quad_enable(struct spinand_device *spinand) { bool enable = false; if (!(spinand->flags & SPINAND_HAS_QE_BIT)) return 0; if (spinand->op_templates.read_cache->data.buswidth == 4 || spinand->op_templates.write_cache->data.buswidth == 4 || spinand->op_templates.update_cache->data.buswidth == 4) enable = true; return spinand_upd_cfg(spinand, CFG_QUAD_ENABLE, enable ? CFG_QUAD_ENABLE : 0); } static int spinand_ecc_enable(struct spinand_device *spinand, bool enable) { return spinand_upd_cfg(spinand, CFG_ECC_ENABLE, enable ? CFG_ECC_ENABLE : 0); } static int spinand_cont_read_enable(struct spinand_device *spinand, bool enable) { return spinand->set_cont_read(spinand, enable); } static int spinand_check_ecc_status(struct spinand_device *spinand, u8 status) { struct nand_device *nand = spinand_to_nand(spinand); if (spinand->eccinfo.get_status) return spinand->eccinfo.get_status(spinand, status); switch (status & STATUS_ECC_MASK) { case STATUS_ECC_NO_BITFLIPS: return 0; case STATUS_ECC_HAS_BITFLIPS: /* * We have no way to know exactly how many bitflips have been * fixed, so let's return the maximum possible value so that * wear-leveling layers move the data immediately. */ return nanddev_get_ecc_conf(nand)->strength; case STATUS_ECC_UNCOR_ERROR: return -EBADMSG; default: break; } return -EINVAL; } static int spinand_noecc_ooblayout_ecc(struct mtd_info *mtd, int section, struct mtd_oob_region *region) { return -ERANGE; } static int spinand_noecc_ooblayout_free(struct mtd_info *mtd, int section, struct mtd_oob_region *region) { if (section) return -ERANGE; /* Reserve 2 bytes for the BBM. */ region->offset = 2; region->length = 62; return 0; } static const struct mtd_ooblayout_ops spinand_noecc_ooblayout = { .ecc = spinand_noecc_ooblayout_ecc, .free = spinand_noecc_ooblayout_free, }; static int spinand_ondie_ecc_init_ctx(struct nand_device *nand) { struct spinand_device *spinand = nand_to_spinand(nand); struct mtd_info *mtd = nanddev_to_mtd(nand); struct spinand_ondie_ecc_conf *engine_conf; nand->ecc.ctx.conf.engine_type = NAND_ECC_ENGINE_TYPE_ON_DIE; nand->ecc.ctx.conf.step_size = nand->ecc.requirements.step_size; nand->ecc.ctx.conf.strength = nand->ecc.requirements.strength; engine_conf = kzalloc(sizeof(*engine_conf), GFP_KERNEL); if (!engine_conf) return -ENOMEM; nand->ecc.ctx.priv = engine_conf; if (spinand->eccinfo.ooblayout) mtd_set_ooblayout(mtd, spinand->eccinfo.ooblayout); else mtd_set_ooblayout(mtd, &spinand_noecc_ooblayout); return 0; } static void spinand_ondie_ecc_cleanup_ctx(struct nand_device *nand) { kfree(nand->ecc.ctx.priv); } static int spinand_ondie_ecc_prepare_io_req(struct nand_device *nand, struct nand_page_io_req *req) { struct spinand_device *spinand = nand_to_spinand(nand); bool enable = (req->mode != MTD_OPS_RAW); memset(spinand->oobbuf, 0xff, nanddev_per_page_oobsize(nand)); /* Only enable or disable the engine */ return spinand_ecc_enable(spinand, enable); } static int spinand_ondie_ecc_finish_io_req(struct nand_device *nand, struct nand_page_io_req *req) { struct spinand_ondie_ecc_conf *engine_conf = nand->ecc.ctx.priv; struct spinand_device *spinand = nand_to_spinand(nand); struct mtd_info *mtd = spinand_to_mtd(spinand); int ret; if (req->mode == MTD_OPS_RAW) return 0; /* Nothing to do when finishing a page write */ if (req->type == NAND_PAGE_WRITE) return 0; /* Finish a page read: check the status, report errors/bitflips */ ret = spinand_check_ecc_status(spinand, engine_conf->status); if (ret == -EBADMSG) { mtd->ecc_stats.failed++; } else if (ret > 0) { unsigned int pages; /* * Continuous reads don't allow us to get the detail, * so we may exagerate the actual number of corrected bitflips. */ if (!req->continuous) pages = 1; else pages = req->datalen / nanddev_page_size(nand); mtd->ecc_stats.corrected += ret * pages; } return ret; } static const struct nand_ecc_engine_ops spinand_ondie_ecc_engine_ops = { .init_ctx = spinand_ondie_ecc_init_ctx, .cleanup_ctx = spinand_ondie_ecc_cleanup_ctx, .prepare_io_req = spinand_ondie_ecc_prepare_io_req, .finish_io_req = spinand_ondie_ecc_finish_io_req, }; static struct nand_ecc_engine spinand_ondie_ecc_engine = { .ops = &spinand_ondie_ecc_engine_ops, }; static void spinand_ondie_ecc_save_status(struct nand_device *nand, u8 status) { struct spinand_ondie_ecc_conf *engine_conf = nand->ecc.ctx.priv; if (nand->ecc.ctx.conf.engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE && engine_conf) engine_conf->status = status; } static int spinand_write_enable_op(struct spinand_device *spinand) { struct spi_mem_op op = SPINAND_WR_EN_DIS_OP(true); return spi_mem_exec_op(spinand->spimem, &op); } static int spinand_load_page_op(struct spinand_device *spinand, const struct nand_page_io_req *req) { struct nand_device *nand = spinand_to_nand(spinand); unsigned int row = nanddev_pos_to_row(nand, &req->pos); struct spi_mem_op op = SPINAND_PAGE_READ_OP(row); return spi_mem_exec_op(spinand->spimem, &op); } static int spinand_read_from_cache_op(struct spinand_device *spinand, const struct nand_page_io_req *req) { struct nand_device *nand = spinand_to_nand(spinand); struct mtd_info *mtd = spinand_to_mtd(spinand); struct spi_mem_dirmap_desc *rdesc; unsigned int nbytes = 0; void *buf = NULL; u16 column = 0; ssize_t ret; if (req->datalen) { buf = spinand->databuf; if (!req->continuous) nbytes = nanddev_page_size(nand); else nbytes = round_up(req->dataoffs + req->datalen, nanddev_page_size(nand)); column = 0; } if (req->ooblen) { nbytes += nanddev_per_page_oobsize(nand); if (!buf) { buf = spinand->oobbuf; column = nanddev_page_size(nand); } } if (req->mode == MTD_OPS_RAW) rdesc = spinand->dirmaps[req->pos.plane].rdesc; else rdesc = spinand->dirmaps[req->pos.plane].rdesc_ecc; if (spinand->flags & SPINAND_HAS_READ_PLANE_SELECT_BIT) column |= req->pos.plane << fls(nanddev_page_size(nand)); while (nbytes) { ret = spi_mem_dirmap_read(rdesc, column, nbytes, buf); if (ret < 0) return ret; if (!ret || ret > nbytes) return -EIO; nbytes -= ret; column += ret; buf += ret; /* * Dirmap accesses are allowed to toggle the CS. * Toggling the CS during a continuous read is forbidden. */ if (nbytes && req->continuous) return -EIO; } if (req->datalen) memcpy(req->databuf.in, spinand->databuf + req->dataoffs, req->datalen); if (req->ooblen) { if (req->mode == MTD_OPS_AUTO_OOB) mtd_ooblayout_get_databytes(mtd, req->oobbuf.in, spinand->oobbuf, req->ooboffs, req->ooblen); else memcpy(req->oobbuf.in, spinand->oobbuf + req->ooboffs, req->ooblen); } return 0; } static int spinand_write_to_cache_op(struct spinand_device *spinand, const struct nand_page_io_req *req) { struct nand_device *nand = spinand_to_nand(spinand); struct mtd_info *mtd = spinand_to_mtd(spinand); struct spi_mem_dirmap_desc *wdesc; unsigned int nbytes, column = 0; void *buf = spinand->databuf; ssize_t ret; /* * Looks like PROGRAM LOAD (AKA write cache) does not necessarily reset * the cache content to 0xFF (depends on vendor implementation), so we * must fill the page cache entirely even if we only want to program * the data portion of the page, otherwise we might corrupt the BBM or * user data previously programmed in OOB area. * * Only reset the data buffer manually, the OOB buffer is prepared by * ECC engines ->prepare_io_req() callback. */ nbytes = nanddev_page_size(nand) + nanddev_per_page_oobsize(nand); memset(spinand->databuf, 0xff, nanddev_page_size(nand)); if (req->datalen) memcpy(spinand->databuf + req->dataoffs, req->databuf.out, req->datalen); if (req->ooblen) { if (req->mode == MTD_OPS_AUTO_OOB) mtd_ooblayout_set_databytes(mtd, req->oobbuf.out, spinand->oobbuf, req->ooboffs, req->ooblen); else memcpy(spinand->oobbuf + req->ooboffs, req->oobbuf.out, req->ooblen); } if (req->mode == MTD_OPS_RAW) wdesc = spinand->dirmaps[req->pos.plane].wdesc; else wdesc = spinand->dirmaps[req->pos.plane].wdesc_ecc; if (spinand->flags & SPINAND_HAS_PROG_PLANE_SELECT_BIT) column |= req->pos.plane << fls(nanddev_page_size(nand)); while (nbytes) { ret = spi_mem_dirmap_write(wdesc, column, nbytes, buf); if (ret < 0) return ret; if (!ret || ret > nbytes) return -EIO; nbytes -= ret; column += ret; buf += ret; } return 0; } static int spinand_program_op(struct spinand_device *spinand, const struct nand_page_io_req *req) { struct nand_device *nand = spinand_to_nand(spinand); unsigned int row = nanddev_pos_to_row(nand, &req->pos); struct spi_mem_op op = SPINAND_PROG_EXEC_OP(row); return spi_mem_exec_op(spinand->spimem, &op); } static int spinand_erase_op(struct spinand_device *spinand, const struct nand_pos *pos) { struct nand_device *nand = spinand_to_nand(spinand); unsigned int row = nanddev_pos_to_row(nand, pos); struct spi_mem_op op = SPINAND_BLK_ERASE_OP(row); return spi_mem_exec_op(spinand->spimem, &op); } static int spinand_wait(struct spinand_device *spinand, unsigned long initial_delay_us, unsigned long poll_delay_us, u8 *s) { struct spi_mem_op op = SPINAND_GET_FEATURE_OP(REG_STATUS, spinand->scratchbuf); u8 status; int ret; ret = spi_mem_poll_status(spinand->spimem, &op, STATUS_BUSY, 0, initial_delay_us, poll_delay_us, SPINAND_WAITRDY_TIMEOUT_MS); if (ret) return ret; status = *spinand->scratchbuf; if (!(status & STATUS_BUSY)) goto out; /* * Extra read, just in case the STATUS_READY bit has changed * since our last check */ ret = spinand_read_status(spinand, &status); if (ret) return ret; out: if (s) *s = status; return status & STATUS_BUSY ? -ETIMEDOUT : 0; } static int spinand_read_id_op(struct spinand_device *spinand, u8 naddr, u8 ndummy, u8 *buf) { struct spi_mem_op op = SPINAND_READID_OP( naddr, ndummy, spinand->scratchbuf, SPINAND_MAX_ID_LEN); int ret; ret = spi_mem_exec_op(spinand->spimem, &op); if (!ret) memcpy(buf, spinand->scratchbuf, SPINAND_MAX_ID_LEN); return ret; } static int spinand_reset_op(struct spinand_device *spinand) { struct spi_mem_op op = SPINAND_RESET_OP; int ret; ret = spi_mem_exec_op(spinand->spimem, &op); if (ret) return ret; return spinand_wait(spinand, SPINAND_RESET_INITIAL_DELAY_US, SPINAND_RESET_POLL_DELAY_US, NULL); } static int spinand_lock_block(struct spinand_device *spinand, u8 lock) { return spinand_write_reg_op(spinand, REG_BLOCK_LOCK, lock); } static int spinand_read_page(struct spinand_device *spinand, const struct nand_page_io_req *req) { struct nand_device *nand = spinand_to_nand(spinand); u8 status; int ret; ret = nand_ecc_prepare_io_req(nand, (struct nand_page_io_req *)req); if (ret) return ret; ret = spinand_load_page_op(spinand, req); if (ret) return ret; ret = spinand_wait(spinand, SPINAND_READ_INITIAL_DELAY_US, SPINAND_READ_POLL_DELAY_US, &status); if (ret < 0) return ret; spinand_ondie_ecc_save_status(nand, status); ret = spinand_read_from_cache_op(spinand, req); if (ret) return ret; return nand_ecc_finish_io_req(nand, (struct nand_page_io_req *)req); } static int spinand_write_page(struct spinand_device *spinand, const struct nand_page_io_req *req) { struct nand_device *nand = spinand_to_nand(spinand); u8 status; int ret; ret = nand_ecc_prepare_io_req(nand, (struct nand_page_io_req *)req); if (ret) return ret; ret = spinand_write_enable_op(spinand); if (ret) return ret; ret = spinand_write_to_cache_op(spinand, req); if (ret) return ret; ret = spinand_program_op(spinand, req); if (ret) return ret; ret = spinand_wait(spinand, SPINAND_WRITE_INITIAL_DELAY_US, SPINAND_WRITE_POLL_DELAY_US, &status); if (!ret && (status & STATUS_PROG_FAILED)) return -EIO; return nand_ecc_finish_io_req(nand, (struct nand_page_io_req *)req); } static int spinand_mtd_regular_page_read(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops, unsigned int *max_bitflips) { struct spinand_device *spinand = mtd_to_spinand(mtd); struct nand_device *nand = mtd_to_nanddev(mtd); struct nand_io_iter iter; bool disable_ecc = false; bool ecc_failed = false; int ret; if (ops->mode == MTD_OPS_RAW || !mtd->ooblayout) disable_ecc = true; nanddev_io_for_each_page(nand, NAND_PAGE_READ, from, ops, &iter) { if (disable_ecc) iter.req.mode = MTD_OPS_RAW; ret = spinand_select_target(spinand, iter.req.pos.target); if (ret) break; ret = spinand_read_page(spinand, &iter.req); if (ret < 0 && ret != -EBADMSG) break; if (ret == -EBADMSG) ecc_failed = true; else *max_bitflips = max_t(unsigned int, *max_bitflips, ret); ret = 0; ops->retlen += iter.req.datalen; ops->oobretlen += iter.req.ooblen; } if (ecc_failed && !ret) ret = -EBADMSG; return ret; } static int spinand_mtd_continuous_page_read(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops, unsigned int *max_bitflips) { struct spinand_device *spinand = mtd_to_spinand(mtd); struct nand_device *nand = mtd_to_nanddev(mtd); struct nand_io_iter iter; u8 status; int ret; ret = spinand_cont_read_enable(spinand, true); if (ret) return ret; /* * The cache is divided into two halves. While one half of the cache has * the requested data, the other half is loaded with the next chunk of data. * Therefore, the host can read out the data continuously from page to page. * Each data read must be a multiple of 4-bytes and full pages should be read; * otherwise, the data output might get out of sequence from one read command * to another. */ nanddev_io_for_each_block(nand, NAND_PAGE_READ, from, ops, &iter) { ret = spinand_select_target(spinand, iter.req.pos.target); if (ret) goto end_cont_read; ret = nand_ecc_prepare_io_req(nand, &iter.req); if (ret) goto end_cont_read; ret = spinand_load_page_op(spinand, &iter.req); if (ret) goto end_cont_read; ret = spinand_wait(spinand, SPINAND_READ_INITIAL_DELAY_US, SPINAND_READ_POLL_DELAY_US, NULL); if (ret < 0) goto end_cont_read; ret = spinand_read_from_cache_op(spinand, &iter.req); if (ret) goto end_cont_read; ops->retlen += iter.req.datalen; ret = spinand_read_status(spinand, &status); if (ret) goto end_cont_read; spinand_ondie_ecc_save_status(nand, status); ret = nand_ecc_finish_io_req(nand, &iter.req); if (ret < 0) goto end_cont_read; *max_bitflips = max_t(unsigned int, *max_bitflips, ret); ret = 0; } end_cont_read: /* * Once all the data has been read out, the host can either pull CS# * high and wait for tRST or manually clear the bit in the configuration * register to terminate the continuous read operation. We have no * guarantee the SPI controller drivers will effectively deassert the CS * when we expect them to, so take the register based approach. */ spinand_cont_read_enable(spinand, false); return ret; } static void spinand_cont_read_init(struct spinand_device *spinand) { struct nand_device *nand = spinand_to_nand(spinand); enum nand_ecc_engine_type engine_type = nand->ecc.ctx.conf.engine_type; /* OOBs cannot be retrieved so external/on-host ECC engine won't work */ if (spinand->set_cont_read && (engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE || engine_type == NAND_ECC_ENGINE_TYPE_NONE)) { spinand->cont_read_possible = true; } } static bool spinand_use_cont_read(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) { struct nand_device *nand = mtd_to_nanddev(mtd); struct spinand_device *spinand = nand_to_spinand(nand); struct nand_pos start_pos, end_pos; if (!spinand->cont_read_possible) return false; /* OOBs won't be retrieved */ if (ops->ooblen || ops->oobbuf) return false; nanddev_offs_to_pos(nand, from, &start_pos); nanddev_offs_to_pos(nand, from + ops->len - 1, &end_pos); /* * Continuous reads never cross LUN boundaries. Some devices don't * support crossing planes boundaries. Some devices don't even support * crossing blocks boundaries. The common case being to read through UBI, * we will very rarely read two consequent blocks or more, so it is safer * and easier (can be improved) to only enable continuous reads when * reading within the same erase block. */ if (start_pos.target != end_pos.target || start_pos.plane != end_pos.plane || start_pos.eraseblock != end_pos.eraseblock) return false; return start_pos.page < end_pos.page; } static int spinand_mtd_read(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) { struct spinand_device *spinand = mtd_to_spinand(mtd); struct mtd_ecc_stats old_stats; unsigned int max_bitflips = 0; int ret; mutex_lock(&spinand->lock); old_stats = mtd->ecc_stats; if (spinand_use_cont_read(mtd, from, ops)) ret = spinand_mtd_continuous_page_read(mtd, from, ops, &max_bitflips); else ret = spinand_mtd_regular_page_read(mtd, from, ops, &max_bitflips); if (ops->stats) { ops->stats->uncorrectable_errors += mtd->ecc_stats.failed - old_stats.failed; ops->stats->corrected_bitflips += mtd->ecc_stats.corrected - old_stats.corrected; } mutex_unlock(&spinand->lock); return ret ? ret : max_bitflips; } static int spinand_mtd_write(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops) { struct spinand_device *spinand = mtd_to_spinand(mtd); struct nand_device *nand = mtd_to_nanddev(mtd); struct nand_io_iter iter; bool disable_ecc = false; int ret = 0; if (ops->mode == MTD_OPS_RAW || !mtd->ooblayout) disable_ecc = true; mutex_lock(&spinand->lock); nanddev_io_for_each_page(nand, NAND_PAGE_WRITE, to, ops, &iter) { if (disable_ecc) iter.req.mode = MTD_OPS_RAW; ret = spinand_select_target(spinand, iter.req.pos.target); if (ret) break; ret = spinand_write_page(spinand, &iter.req); if (ret) break; ops->retlen += iter.req.datalen; ops->oobretlen += iter.req.ooblen; } mutex_unlock(&spinand->lock); return ret; } static bool spinand_isbad(struct nand_device *nand, const struct nand_pos *pos) { struct spinand_device *spinand = nand_to_spinand(nand); u8 marker[2] = { }; struct nand_page_io_req req = { .pos = *pos, .ooblen = sizeof(marker), .ooboffs = 0, .oobbuf.in = marker, .mode = MTD_OPS_RAW, }; spinand_select_target(spinand, pos->target); spinand_read_page(spinand, &req); if (marker[0] != 0xff || marker[1] != 0xff) return true; return false; } static int spinand_mtd_block_isbad(struct mtd_info *mtd, loff_t offs) { struct nand_device *nand = mtd_to_nanddev(mtd); struct spinand_device *spinand = nand_to_spinand(nand); struct nand_pos pos; int ret; nanddev_offs_to_pos(nand, offs, &pos); mutex_lock(&spinand->lock); ret = nanddev_isbad(nand, &pos); mutex_unlock(&spinand->lock); return ret; } static int spinand_markbad(struct nand_device *nand, const struct nand_pos *pos) { struct spinand_device *spinand = nand_to_spinand(nand); u8 marker[2] = { }; struct nand_page_io_req req = { .pos = *pos, .ooboffs = 0, .ooblen = sizeof(marker), .oobbuf.out = marker, .mode = MTD_OPS_RAW, }; int ret; ret = spinand_select_target(spinand, pos->target); if (ret) return ret; ret = spinand_write_enable_op(spinand); if (ret) return ret; return spinand_write_page(spinand, &req); } static int spinand_mtd_block_markbad(struct mtd_info *mtd, loff_t offs) { struct nand_device *nand = mtd_to_nanddev(mtd); struct spinand_device *spinand = nand_to_spinand(nand); struct nand_pos pos; int ret; nanddev_offs_to_pos(nand, offs, &pos); mutex_lock(&spinand->lock); ret = nanddev_markbad(nand, &pos); mutex_unlock(&spinand->lock); return ret; } static int spinand_erase(struct nand_device *nand, const struct nand_pos *pos) { struct spinand_device *spinand = nand_to_spinand(nand); u8 status; int ret; ret = spinand_select_target(spinand, pos->target); if (ret) return ret; ret = spinand_write_enable_op(spinand); if (ret) return ret; ret = spinand_erase_op(spinand, pos); if (ret) return ret; ret = spinand_wait(spinand, SPINAND_ERASE_INITIAL_DELAY_US, SPINAND_ERASE_POLL_DELAY_US, &status); if (!ret && (status & STATUS_ERASE_FAILED)) ret = -EIO; return ret; } static int spinand_mtd_erase(struct mtd_info *mtd, struct erase_info *einfo) { struct spinand_device *spinand = mtd_to_spinand(mtd); int ret; mutex_lock(&spinand->lock); ret = nanddev_mtd_erase(mtd, einfo); mutex_unlock(&spinand->lock); return ret; } static int spinand_mtd_block_isreserved(struct mtd_info *mtd, loff_t offs) { struct spinand_device *spinand = mtd_to_spinand(mtd); struct nand_device *nand = mtd_to_nanddev(mtd); struct nand_pos pos; int ret; nanddev_offs_to_pos(nand, offs, &pos); mutex_lock(&spinand->lock); ret = nanddev_isreserved(nand, &pos); mutex_unlock(&spinand->lock); return ret; } static int spinand_create_dirmap(struct spinand_device *spinand, unsigned int plane) { struct nand_device *nand = spinand_to_nand(spinand); struct spi_mem_dirmap_info info = { .length = nanddev_page_size(nand) + nanddev_per_page_oobsize(nand), }; struct spi_mem_dirmap_desc *desc; if (spinand->cont_read_possible) info.length = nanddev_eraseblock_size(nand); /* The plane number is passed in MSB just above the column address */ info.offset = plane << fls(nand->memorg.pagesize); info.op_tmpl = *spinand->op_templates.update_cache; desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev, spinand->spimem, &info); if (IS_ERR(desc)) return PTR_ERR(desc); spinand->dirmaps[plane].wdesc = desc; info.op_tmpl = *spinand->op_templates.read_cache; desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev, spinand->spimem, &info); if (IS_ERR(desc)) return PTR_ERR(desc); spinand->dirmaps[plane].rdesc = desc; if (nand->ecc.engine->integration != NAND_ECC_ENGINE_INTEGRATION_PIPELINED) { spinand->dirmaps[plane].wdesc_ecc = spinand->dirmaps[plane].wdesc; spinand->dirmaps[plane].rdesc_ecc = spinand->dirmaps[plane].rdesc; return 0; } info.op_tmpl = *spinand->op_templates.update_cache; info.op_tmpl.data.ecc = true; desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev, spinand->spimem, &info); if (IS_ERR(desc)) return PTR_ERR(desc); spinand->dirmaps[plane].wdesc_ecc = desc; info.op_tmpl = *spinand->op_templates.read_cache; info.op_tmpl.data.ecc = true; desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev, spinand->spimem, &info); if (IS_ERR(desc)) return PTR_ERR(desc); spinand->dirmaps[plane].rdesc_ecc = desc; return 0; } static int spinand_create_dirmaps(struct spinand_device *spinand) { struct nand_device *nand = spinand_to_nand(spinand); int i, ret; spinand->dirmaps = devm_kzalloc(&spinand->spimem->spi->dev, sizeof(*spinand->dirmaps) * nand->memorg.planes_per_lun, GFP_KERNEL); if (!spinand->dirmaps) return -ENOMEM; for (i = 0; i < nand->memorg.planes_per_lun; i++) { ret = spinand_create_dirmap(spinand, i); if (ret) return ret; } return 0; } static const struct nand_ops spinand_ops = { .erase = spinand_erase, .markbad = spinand_markbad, .isbad = spinand_isbad, }; static const struct spinand_manufacturer *spinand_manufacturers[] = { &alliancememory_spinand_manufacturer, &ato_spinand_manufacturer, &esmt_c8_spinand_manufacturer, &foresee_spinand_manufacturer, &gigadevice_spinand_manufacturer, ¯onix_spinand_manufacturer, µn_spinand_manufacturer, ¶gon_spinand_manufacturer, &toshiba_spinand_manufacturer, &winbond_spinand_manufacturer, &xtx_spinand_manufacturer, }; static int spinand_manufacturer_match(struct spinand_device *spinand, enum spinand_readid_method rdid_method) { u8 *id = spinand->id.data; unsigned int i; int ret; for (i = 0; i < ARRAY_SIZE(spinand_manufacturers); i++) { const struct spinand_manufacturer *manufacturer = spinand_manufacturers[i]; if (id[0] != manufacturer->id) continue; ret = spinand_match_and_init(spinand, manufacturer->chips, manufacturer->nchips, rdid_method); if (ret < 0) continue; spinand->manufacturer = manufacturer; return 0; } return -EOPNOTSUPP; } static int spinand_id_detect(struct spinand_device *spinand) { u8 *id = spinand->id.data; int ret; ret = spinand_read_id_op(spinand, 0, 0, id); if (ret) return ret; ret = spinand_manufacturer_match(spinand, SPINAND_READID_METHOD_OPCODE); if (!ret) return 0; ret = spinand_read_id_op(spinand, 1, 0, id); if (ret) return ret; ret = spinand_manufacturer_match(spinand, SPINAND_READID_METHOD_OPCODE_ADDR); if (!ret) return 0; ret = spinand_read_id_op(spinand, 0, 1, id); if (ret) return ret; ret = spinand_manufacturer_match(spinand, SPINAND_READID_METHOD_OPCODE_DUMMY); return ret; } static int spinand_manufacturer_init(struct spinand_device *spinand) { if (spinand->manufacturer->ops->init) return spinand->manufacturer->ops->init(spinand); return 0; } static void spinand_manufacturer_cleanup(struct spinand_device *spinand) { /* Release manufacturer private data */ if (spinand->manufacturer->ops->cleanup) return spinand->manufacturer->ops->cleanup(spinand); } static const struct spi_mem_op * spinand_select_op_variant(struct spinand_device *spinand, const struct spinand_op_variants *variants) { struct nand_device *nand = spinand_to_nand(spinand); unsigned int i; for (i = 0; i < variants->nops; i++) { struct spi_mem_op op = variants->ops[i]; unsigned int nbytes; int ret; nbytes = nanddev_per_page_oobsize(nand) + nanddev_page_size(nand); while (nbytes) { op.data.nbytes = nbytes; ret = spi_mem_adjust_op_size(spinand->spimem, &op); if (ret) break; if (!spi_mem_supports_op(spinand->spimem, &op)) break; nbytes -= op.data.nbytes; } if (!nbytes) return &variants->ops[i]; } return NULL; } /** * spinand_match_and_init() - Try to find a match between a device ID and an * entry in a spinand_info table * @spinand: SPI NAND object * @table: SPI NAND device description table * @table_size: size of the device description table * @rdid_method: read id method to match * * Match between a device ID retrieved through the READ_ID command and an * entry in the SPI NAND description table. If a match is found, the spinand * object will be initialized with information provided by the matching * spinand_info entry. * * Return: 0 on success, a negative error code otherwise. */ int spinand_match_and_init(struct spinand_device *spinand, const struct spinand_info *table, unsigned int table_size, enum spinand_readid_method rdid_method) { u8 *id = spinand->id.data; struct nand_device *nand = spinand_to_nand(spinand); unsigned int i; for (i = 0; i < table_size; i++) { const struct spinand_info *info = &table[i]; const struct spi_mem_op *op; if (rdid_method != info->devid.method) continue; if (memcmp(id + 1, info->devid.id, info->devid.len)) continue; nand->memorg = table[i].memorg; nanddev_set_ecc_requirements(nand, &table[i].eccreq); spinand->eccinfo = table[i].eccinfo; spinand->flags = table[i].flags; spinand->id.len = 1 + table[i].devid.len; spinand->select_target = table[i].select_target; spinand->set_cont_read = table[i].set_cont_read; op = spinand_select_op_variant(spinand, info->op_variants.read_cache); if (!op) return -ENOTSUPP; spinand->op_templates.read_cache = op; op = spinand_select_op_variant(spinand, info->op_variants.write_cache); if (!op) return -ENOTSUPP; spinand->op_templates.write_cache = op; op = spinand_select_op_variant(spinand, info->op_variants.update_cache); spinand->op_templates.update_cache = op; return 0; } return -ENOTSUPP; } static int spinand_detect(struct spinand_device *spinand) { struct device *dev = &spinand->spimem->spi->dev; struct nand_device *nand = spinand_to_nand(spinand); int ret; ret = spinand_reset_op(spinand); if (ret) return ret; ret = spinand_id_detect(spinand); if (ret) { dev_err(dev, "unknown raw ID %*phN\n", SPINAND_MAX_ID_LEN, spinand->id.data); return ret; } if (nand->memorg.ntargets > 1 && !spinand->select_target) { dev_err(dev, "SPI NANDs with more than one die must implement ->select_target()\n"); return -EINVAL; } dev_info(&spinand->spimem->spi->dev, "%s SPI NAND was found.\n", spinand->manufacturer->name); dev_info(&spinand->spimem->spi->dev, "%llu MiB, block size: %zu KiB, page size: %zu, OOB size: %u\n", nanddev_size(nand) >> 20, nanddev_eraseblock_size(nand) >> 10, nanddev_page_size(nand), nanddev_per_page_oobsize(nand)); return 0; } static int spinand_init_flash(struct spinand_device *spinand) { struct device *dev = &spinand->spimem->spi->dev; struct nand_device *nand = spinand_to_nand(spinand); int ret, i; ret = spinand_read_cfg(spinand); if (ret) return ret; ret = spinand_init_quad_enable(spinand); if (ret) return ret; ret = spinand_upd_cfg(spinand, CFG_OTP_ENABLE, 0); if (ret) return ret; ret = spinand_manufacturer_init(spinand); if (ret) { dev_err(dev, "Failed to initialize the SPI NAND chip (err = %d)\n", ret); return ret; } /* After power up, all blocks are locked, so unlock them here. */ for (i = 0; i < nand->memorg.ntargets; i++) { ret = spinand_select_target(spinand, i); if (ret) break; ret = spinand_lock_block(spinand, BL_ALL_UNLOCKED); if (ret) break; } if (ret) spinand_manufacturer_cleanup(spinand); return ret; } static void spinand_mtd_resume(struct mtd_info *mtd) { struct spinand_device *spinand = mtd_to_spinand(mtd); int ret; ret = spinand_reset_op(spinand); if (ret) return; ret = spinand_init_flash(spinand); if (ret) return; spinand_ecc_enable(spinand, false); } static int spinand_init(struct spinand_device *spinand) { struct device *dev = &spinand->spimem->spi->dev; struct mtd_info *mtd = spinand_to_mtd(spinand); struct nand_device *nand = mtd_to_nanddev(mtd); int ret; /* * We need a scratch buffer because the spi_mem interface requires that * buf passed in spi_mem_op->data.buf be DMA-able. */ spinand->scratchbuf = kzalloc(SPINAND_MAX_ID_LEN, GFP_KERNEL); if (!spinand->scratchbuf) return -ENOMEM; ret = spinand_detect(spinand); if (ret) goto err_free_bufs; /* * Use kzalloc() instead of devm_kzalloc() here, because some drivers * may use this buffer for DMA access. * Memory allocated by devm_ does not guarantee DMA-safe alignment. */ spinand->databuf = kzalloc(nanddev_eraseblock_size(nand), GFP_KERNEL); if (!spinand->databuf) { ret = -ENOMEM; goto err_free_bufs; } spinand->oobbuf = spinand->databuf + nanddev_page_size(nand); ret = spinand_init_cfg_cache(spinand); if (ret) goto err_free_bufs; ret = spinand_init_flash(spinand); if (ret) goto err_free_bufs; ret = nanddev_init(nand, &spinand_ops, THIS_MODULE); if (ret) goto err_manuf_cleanup; /* SPI-NAND default ECC engine is on-die */ nand->ecc.defaults.engine_type = NAND_ECC_ENGINE_TYPE_ON_DIE; nand->ecc.ondie_engine = &spinand_ondie_ecc_engine; spinand_ecc_enable(spinand, false); ret = nanddev_ecc_engine_init(nand); if (ret) goto err_cleanup_nanddev; /* * Continuous read can only be enabled with an on-die ECC engine, so the * ECC initialization must have happened previously. */ spinand_cont_read_init(spinand); mtd->_read_oob = spinand_mtd_read; mtd->_write_oob = spinand_mtd_write; mtd->_block_isbad = spinand_mtd_block_isbad; mtd->_block_markbad = spinand_mtd_block_markbad; mtd->_block_isreserved = spinand_mtd_block_isreserved; mtd->_erase = spinand_mtd_erase; mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks; mtd->_resume = spinand_mtd_resume; if (nand->ecc.engine) { ret = mtd_ooblayout_count_freebytes(mtd); if (ret < 0) goto err_cleanup_ecc_engine; } mtd->oobavail = ret; /* Propagate ECC information to mtd_info */ mtd->ecc_strength = nanddev_get_ecc_conf(nand)->strength; mtd->ecc_step_size = nanddev_get_ecc_conf(nand)->step_size; mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4); ret = spinand_create_dirmaps(spinand); if (ret) { dev_err(dev, "Failed to create direct mappings for read/write operations (err = %d)\n", ret); goto err_cleanup_ecc_engine; } return 0; err_cleanup_ecc_engine: nanddev_ecc_engine_cleanup(nand); err_cleanup_nanddev: nanddev_cleanup(nand); err_manuf_cleanup: spinand_manufacturer_cleanup(spinand); err_free_bufs: kfree(spinand->databuf); kfree(spinand->scratchbuf); return ret; } static void spinand_cleanup(struct spinand_device *spinand) { struct nand_device *nand = spinand_to_nand(spinand); nanddev_cleanup(nand); spinand_manufacturer_cleanup(spinand); kfree(spinand->databuf); kfree(spinand->scratchbuf); } static int spinand_probe(struct spi_mem *mem) { struct spinand_device *spinand; struct mtd_info *mtd; int ret; spinand = devm_kzalloc(&mem->spi->dev, sizeof(*spinand), GFP_KERNEL); if (!spinand) return -ENOMEM; spinand->spimem = mem; spi_mem_set_drvdata(mem, spinand); spinand_set_of_node(spinand, mem->spi->dev.of_node); mutex_init(&spinand->lock); mtd = spinand_to_mtd(spinand); mtd->dev.parent = &mem->spi->dev; ret = spinand_init(spinand); if (ret) return ret; ret = mtd_device_register(mtd, NULL, 0); if (ret) goto err_spinand_cleanup; return 0; err_spinand_cleanup: spinand_cleanup(spinand); return ret; } static int spinand_remove(struct spi_mem *mem) { struct spinand_device *spinand; struct mtd_info *mtd; int ret; spinand = spi_mem_get_drvdata(mem); mtd = spinand_to_mtd(spinand); ret = mtd_device_unregister(mtd); if (ret) return ret; spinand_cleanup(spinand); return 0; } static const struct spi_device_id spinand_ids[] = { { .name = "spi-nand" }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(spi, spinand_ids); #ifdef CONFIG_OF static const struct of_device_id spinand_of_ids[] = { { .compatible = "spi-nand" }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, spinand_of_ids); #endif static struct spi_mem_driver spinand_drv = { .spidrv = { .id_table = spinand_ids, .driver = { .name = "spi-nand", .of_match_table = of_match_ptr(spinand_of_ids), }, }, .probe = spinand_probe, .remove = spinand_remove, }; module_spi_mem_driver(spinand_drv); MODULE_DESCRIPTION("SPI NAND framework"); MODULE_AUTHOR("Peter Pan"); MODULE_LICENSE("GPL v2");