// SPDX-License-Identifier: GPL-2.0 /* * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c * * Copyright (C) 2005, Intec Automation Inc. * Copyright (C) 2014, Freescale Semiconductor, Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "core.h" /* Define max times to check status register before we give up. */ /* * For everything but full-chip erase; probably could be much smaller, but kept * around for safety for now */ #define DEFAULT_READY_WAIT_JIFFIES (40UL * HZ) /* * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up * for larger flash */ #define CHIP_ERASE_2MB_READY_WAIT_JIFFIES (40UL * HZ) #define SPI_NOR_MAX_ADDR_NBYTES 4 #define SPI_NOR_SRST_SLEEP_MIN 200 #define SPI_NOR_SRST_SLEEP_MAX 400 /** * spi_nor_get_cmd_ext() - Get the command opcode extension based on the * extension type. * @nor: pointer to a 'struct spi_nor' * @op: pointer to the 'struct spi_mem_op' whose properties * need to be initialized. * * Right now, only "repeat" and "invert" are supported. * * Return: The opcode extension. */ static u8 spi_nor_get_cmd_ext(const struct spi_nor *nor, const struct spi_mem_op *op) { switch (nor->cmd_ext_type) { case SPI_NOR_EXT_INVERT: return ~op->cmd.opcode; case SPI_NOR_EXT_REPEAT: return op->cmd.opcode; default: dev_err(nor->dev, "Unknown command extension type\n"); return 0; } } /** * spi_nor_spimem_setup_op() - Set up common properties of a spi-mem op. * @nor: pointer to a 'struct spi_nor' * @op: pointer to the 'struct spi_mem_op' whose properties * need to be initialized. * @proto: the protocol from which the properties need to be set. */ void spi_nor_spimem_setup_op(const struct spi_nor *nor, struct spi_mem_op *op, const enum spi_nor_protocol proto) { u8 ext; op->cmd.buswidth = spi_nor_get_protocol_inst_nbits(proto); if (op->addr.nbytes) op->addr.buswidth = spi_nor_get_protocol_addr_nbits(proto); if (op->dummy.nbytes) op->dummy.buswidth = spi_nor_get_protocol_data_nbits(proto); if (op->data.nbytes) op->data.buswidth = spi_nor_get_protocol_data_nbits(proto); if (spi_nor_protocol_is_dtr(proto)) { /* * SPIMEM supports mixed DTR modes, but right now we can only * have all phases either DTR or STR. IOW, SPIMEM can have * something like 4S-4D-4D, but SPI NOR can't. So, set all 4 * phases to either DTR or STR. */ op->cmd.dtr = true; op->addr.dtr = true; op->dummy.dtr = true; op->data.dtr = true; /* 2 bytes per clock cycle in DTR mode. */ op->dummy.nbytes *= 2; ext = spi_nor_get_cmd_ext(nor, op); op->cmd.opcode = (op->cmd.opcode << 8) | ext; op->cmd.nbytes = 2; } if (proto == SNOR_PROTO_8_8_8_DTR && nor->flags & SNOR_F_SWAP16) op->data.swap16 = true; } /** * spi_nor_spimem_bounce() - check if a bounce buffer is needed for the data * transfer * @nor: pointer to 'struct spi_nor' * @op: pointer to 'struct spi_mem_op' template for transfer * * If we have to use the bounce buffer, the data field in @op will be updated. * * Return: true if the bounce buffer is needed, false if not */ static bool spi_nor_spimem_bounce(struct spi_nor *nor, struct spi_mem_op *op) { /* op->data.buf.in occupies the same memory as op->data.buf.out */ if (object_is_on_stack(op->data.buf.in) || !virt_addr_valid(op->data.buf.in)) { if (op->data.nbytes > nor->bouncebuf_size) op->data.nbytes = nor->bouncebuf_size; op->data.buf.in = nor->bouncebuf; return true; } return false; } /** * spi_nor_spimem_exec_op() - execute a memory operation * @nor: pointer to 'struct spi_nor' * @op: pointer to 'struct spi_mem_op' template for transfer * * Return: 0 on success, -error otherwise. */ static int spi_nor_spimem_exec_op(struct spi_nor *nor, struct spi_mem_op *op) { int error; error = spi_mem_adjust_op_size(nor->spimem, op); if (error) return error; return spi_mem_exec_op(nor->spimem, op); } int spi_nor_controller_ops_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, size_t len) { if (spi_nor_protocol_is_dtr(nor->reg_proto)) return -EOPNOTSUPP; return nor->controller_ops->read_reg(nor, opcode, buf, len); } int spi_nor_controller_ops_write_reg(struct spi_nor *nor, u8 opcode, const u8 *buf, size_t len) { if (spi_nor_protocol_is_dtr(nor->reg_proto)) return -EOPNOTSUPP; return nor->controller_ops->write_reg(nor, opcode, buf, len); } static int spi_nor_controller_ops_erase(struct spi_nor *nor, loff_t offs) { if (spi_nor_protocol_is_dtr(nor->reg_proto)) return -EOPNOTSUPP; return nor->controller_ops->erase(nor, offs); } /** * spi_nor_spimem_read_data() - read data from flash's memory region via * spi-mem * @nor: pointer to 'struct spi_nor' * @from: offset to read from * @len: number of bytes to read * @buf: pointer to dst buffer * * Return: number of bytes read successfully, -errno otherwise */ static ssize_t spi_nor_spimem_read_data(struct spi_nor *nor, loff_t from, size_t len, u8 *buf) { struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 0), SPI_MEM_OP_ADDR(nor->addr_nbytes, from, 0), SPI_MEM_OP_DUMMY(nor->read_dummy, 0), SPI_MEM_OP_DATA_IN(len, buf, 0)); bool usebouncebuf; ssize_t nbytes; int error; spi_nor_spimem_setup_op(nor, &op, nor->read_proto); /* convert the dummy cycles to the number of bytes */ op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8; if (spi_nor_protocol_is_dtr(nor->read_proto)) op.dummy.nbytes *= 2; usebouncebuf = spi_nor_spimem_bounce(nor, &op); if (nor->dirmap.rdesc) { nbytes = spi_mem_dirmap_read(nor->dirmap.rdesc, op.addr.val, op.data.nbytes, op.data.buf.in); } else { error = spi_nor_spimem_exec_op(nor, &op); if (error) return error; nbytes = op.data.nbytes; } if (usebouncebuf && nbytes > 0) memcpy(buf, op.data.buf.in, nbytes); return nbytes; } /** * spi_nor_read_data() - read data from flash memory * @nor: pointer to 'struct spi_nor' * @from: offset to read from * @len: number of bytes to read * @buf: pointer to dst buffer * * Return: number of bytes read successfully, -errno otherwise */ ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len, u8 *buf) { if (nor->spimem) return spi_nor_spimem_read_data(nor, from, len, buf); return nor->controller_ops->read(nor, from, len, buf); } /** * spi_nor_spimem_write_data() - write data to flash memory via * spi-mem * @nor: pointer to 'struct spi_nor' * @to: offset to write to * @len: number of bytes to write * @buf: pointer to src buffer * * Return: number of bytes written successfully, -errno otherwise */ static ssize_t spi_nor_spimem_write_data(struct spi_nor *nor, loff_t to, size_t len, const u8 *buf) { struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 0), SPI_MEM_OP_ADDR(nor->addr_nbytes, to, 0), SPI_MEM_OP_NO_DUMMY, SPI_MEM_OP_DATA_OUT(len, buf, 0)); ssize_t nbytes; int error; if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second) op.addr.nbytes = 0; spi_nor_spimem_setup_op(nor, &op, nor->write_proto); if (spi_nor_spimem_bounce(nor, &op)) memcpy(nor->bouncebuf, buf, op.data.nbytes); if (nor->dirmap.wdesc) { nbytes = spi_mem_dirmap_write(nor->dirmap.wdesc, op.addr.val, op.data.nbytes, op.data.buf.out); } else { error = spi_nor_spimem_exec_op(nor, &op); if (error) return error; nbytes = op.data.nbytes; } return nbytes; } /** * spi_nor_write_data() - write data to flash memory * @nor: pointer to 'struct spi_nor' * @to: offset to write to * @len: number of bytes to write * @buf: pointer to src buffer * * Return: number of bytes written successfully, -errno otherwise */ ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len, const u8 *buf) { if (nor->spimem) return spi_nor_spimem_write_data(nor, to, len, buf); return nor->controller_ops->write(nor, to, len, buf); } /** * spi_nor_read_any_reg() - read any register from flash memory, nonvolatile or * volatile. * @nor: pointer to 'struct spi_nor'. * @op: SPI memory operation. op->data.buf must be DMA-able. * @proto: SPI protocol to use for the register operation. * * Return: zero on success, -errno otherwise */ int spi_nor_read_any_reg(struct spi_nor *nor, struct spi_mem_op *op, enum spi_nor_protocol proto) { if (!nor->spimem) return -EOPNOTSUPP; spi_nor_spimem_setup_op(nor, op, proto); return spi_nor_spimem_exec_op(nor, op); } /** * spi_nor_write_any_volatile_reg() - write any volatile register to flash * memory. * @nor: pointer to 'struct spi_nor' * @op: SPI memory operation. op->data.buf must be DMA-able. * @proto: SPI protocol to use for the register operation. * * Writing volatile registers are instant according to some manufacturers * (Cypress, Micron) and do not need any status polling. * * Return: zero on success, -errno otherwise */ int spi_nor_write_any_volatile_reg(struct spi_nor *nor, struct spi_mem_op *op, enum spi_nor_protocol proto) { int ret; if (!nor->spimem) return -EOPNOTSUPP; ret = spi_nor_write_enable(nor); if (ret) return ret; spi_nor_spimem_setup_op(nor, op, proto); return spi_nor_spimem_exec_op(nor, op); } /** * spi_nor_write_enable() - Set write enable latch with Write Enable command. * @nor: pointer to 'struct spi_nor'. * * Return: 0 on success, -errno otherwise. */ int spi_nor_write_enable(struct spi_nor *nor) { int ret; if (nor->spimem) { struct spi_mem_op op = SPI_NOR_WREN_OP; spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); ret = spi_mem_exec_op(nor->spimem, &op); } else { ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WREN, NULL, 0); } if (ret) dev_dbg(nor->dev, "error %d on Write Enable\n", ret); return ret; } /** * spi_nor_write_disable() - Send Write Disable instruction to the chip. * @nor: pointer to 'struct spi_nor'. * * Return: 0 on success, -errno otherwise. */ int spi_nor_write_disable(struct spi_nor *nor) { int ret; if (nor->spimem) { struct spi_mem_op op = SPI_NOR_WRDI_OP; spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); ret = spi_mem_exec_op(nor->spimem, &op); } else { ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRDI, NULL, 0); } if (ret) dev_dbg(nor->dev, "error %d on Write Disable\n", ret); return ret; } /** * spi_nor_read_id() - Read the JEDEC ID. * @nor: pointer to 'struct spi_nor'. * @naddr: number of address bytes to send. Can be zero if the operation * does not need to send an address. * @ndummy: number of dummy bytes to send after an opcode or address. Can * be zero if the operation does not require dummy bytes. * @id: pointer to a DMA-able buffer where the value of the JEDEC ID * will be written. * @proto: the SPI protocol for register operation. * * Return: 0 on success, -errno otherwise. */ int spi_nor_read_id(struct spi_nor *nor, u8 naddr, u8 ndummy, u8 *id, enum spi_nor_protocol proto) { int ret; if (nor->spimem) { struct spi_mem_op op = SPI_NOR_READID_OP(naddr, ndummy, id, SPI_NOR_MAX_ID_LEN); spi_nor_spimem_setup_op(nor, &op, proto); ret = spi_mem_exec_op(nor->spimem, &op); } else { ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN); } return ret; } /** * spi_nor_read_sr() - Read the Status Register. * @nor: pointer to 'struct spi_nor'. * @sr: pointer to a DMA-able buffer where the value of the * Status Register will be written. Should be at least 2 bytes. * * Return: 0 on success, -errno otherwise. */ int spi_nor_read_sr(struct spi_nor *nor, u8 *sr) { int ret; if (nor->spimem) { struct spi_mem_op op = SPI_NOR_RDSR_OP(sr); if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) { op.addr.nbytes = nor->params->rdsr_addr_nbytes; op.dummy.nbytes = nor->params->rdsr_dummy; /* * We don't want to read only one byte in DTR mode. So, * read 2 and then discard the second byte. */ op.data.nbytes = 2; } spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); ret = spi_mem_exec_op(nor->spimem, &op); } else { ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDSR, sr, 1); } if (ret) dev_dbg(nor->dev, "error %d reading SR\n", ret); return ret; } /** * spi_nor_read_cr() - Read the Configuration Register using the * SPINOR_OP_RDCR (35h) command. * @nor: pointer to 'struct spi_nor' * @cr: pointer to a DMA-able buffer where the value of the * Configuration Register will be written. * * Return: 0 on success, -errno otherwise. */ int spi_nor_read_cr(struct spi_nor *nor, u8 *cr) { int ret; if (nor->spimem) { struct spi_mem_op op = SPI_NOR_RDCR_OP(cr); spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); ret = spi_mem_exec_op(nor->spimem, &op); } else { ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDCR, cr, 1); } if (ret) dev_dbg(nor->dev, "error %d reading CR\n", ret); return ret; } /** * spi_nor_set_4byte_addr_mode_en4b_ex4b() - Enter/Exit 4-byte address mode * using SPINOR_OP_EN4B/SPINOR_OP_EX4B. Typically used by * Winbond and Macronix. * @nor: pointer to 'struct spi_nor'. * @enable: true to enter the 4-byte address mode, false to exit the 4-byte * address mode. * * Return: 0 on success, -errno otherwise. */ int spi_nor_set_4byte_addr_mode_en4b_ex4b(struct spi_nor *nor, bool enable) { int ret; if (nor->spimem) { struct spi_mem_op op = SPI_NOR_EN4B_EX4B_OP(enable); spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); ret = spi_mem_exec_op(nor->spimem, &op); } else { ret = spi_nor_controller_ops_write_reg(nor, enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B, NULL, 0); } if (ret) dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret); return ret; } /** * spi_nor_set_4byte_addr_mode_wren_en4b_ex4b() - Set 4-byte address mode using * SPINOR_OP_WREN followed by SPINOR_OP_EN4B or SPINOR_OP_EX4B. Typically used * by ST and Micron flashes. * @nor: pointer to 'struct spi_nor'. * @enable: true to enter the 4-byte address mode, false to exit the 4-byte * address mode. * * Return: 0 on success, -errno otherwise. */ int spi_nor_set_4byte_addr_mode_wren_en4b_ex4b(struct spi_nor *nor, bool enable) { int ret; ret = spi_nor_write_enable(nor); if (ret) return ret; ret = spi_nor_set_4byte_addr_mode_en4b_ex4b(nor, enable); if (ret) return ret; return spi_nor_write_disable(nor); } /** * spi_nor_set_4byte_addr_mode_brwr() - Set 4-byte address mode using * SPINOR_OP_BRWR. Typically used by Spansion flashes. * @nor: pointer to 'struct spi_nor'. * @enable: true to enter the 4-byte address mode, false to exit the 4-byte * address mode. * * 8-bit volatile bank register used to define A[30:A24] bits. MSB (bit[7]) is * used to enable/disable 4-byte address mode. When MSB is set to ‘1’, 4-byte * address mode is active and A[30:24] bits are don’t care. Write instruction is * SPINOR_OP_BRWR(17h) with 1 byte of data. * * Return: 0 on success, -errno otherwise. */ int spi_nor_set_4byte_addr_mode_brwr(struct spi_nor *nor, bool enable) { int ret; nor->bouncebuf[0] = enable << 7; if (nor->spimem) { struct spi_mem_op op = SPI_NOR_BRWR_OP(nor->bouncebuf); spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); ret = spi_mem_exec_op(nor->spimem, &op); } else { ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_BRWR, nor->bouncebuf, 1); } if (ret) dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret); return ret; } /** * spi_nor_sr_ready() - Query the Status Register to see if the flash is ready * for new commands. * @nor: pointer to 'struct spi_nor'. * * Return: 1 if ready, 0 if not ready, -errno on errors. */ int spi_nor_sr_ready(struct spi_nor *nor) { int ret; ret = spi_nor_read_sr(nor, nor->bouncebuf); if (ret) return ret; return !(nor->bouncebuf[0] & SR_WIP); } /** * spi_nor_use_parallel_locking() - Checks if RWW locking scheme shall be used * @nor: pointer to 'struct spi_nor'. * * Return: true if parallel locking is enabled, false otherwise. */ static bool spi_nor_use_parallel_locking(struct spi_nor *nor) { return nor->flags & SNOR_F_RWW; } /* Locking helpers for status read operations */ static int spi_nor_rww_start_rdst(struct spi_nor *nor) { struct spi_nor_rww *rww = &nor->rww; int ret = -EAGAIN; mutex_lock(&nor->lock); if (rww->ongoing_io || rww->ongoing_rd) goto busy; rww->ongoing_io = true; rww->ongoing_rd = true; ret = 0; busy: mutex_unlock(&nor->lock); return ret; } static void spi_nor_rww_end_rdst(struct spi_nor *nor) { struct spi_nor_rww *rww = &nor->rww; mutex_lock(&nor->lock); rww->ongoing_io = false; rww->ongoing_rd = false; mutex_unlock(&nor->lock); } static int spi_nor_lock_rdst(struct spi_nor *nor) { if (spi_nor_use_parallel_locking(nor)) return spi_nor_rww_start_rdst(nor); return 0; } static void spi_nor_unlock_rdst(struct spi_nor *nor) { if (spi_nor_use_parallel_locking(nor)) { spi_nor_rww_end_rdst(nor); wake_up(&nor->rww.wait); } } /** * spi_nor_ready() - Query the flash to see if it is ready for new commands. * @nor: pointer to 'struct spi_nor'. * * Return: 1 if ready, 0 if not ready, -errno on errors. */ static int spi_nor_ready(struct spi_nor *nor) { int ret; ret = spi_nor_lock_rdst(nor); if (ret) return 0; /* Flashes might override the standard routine. */ if (nor->params->ready) ret = nor->params->ready(nor); else ret = spi_nor_sr_ready(nor); spi_nor_unlock_rdst(nor); return ret; } /** * spi_nor_wait_till_ready_with_timeout() - Service routine to read the * Status Register until ready, or timeout occurs. * @nor: pointer to "struct spi_nor". * @timeout_jiffies: jiffies to wait until timeout. * * Return: 0 on success, -errno otherwise. */ static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor, unsigned long timeout_jiffies) { unsigned long deadline; int timeout = 0, ret; deadline = jiffies + timeout_jiffies; while (!timeout) { if (time_after_eq(jiffies, deadline)) timeout = 1; ret = spi_nor_ready(nor); if (ret < 0) return ret; if (ret) return 0; cond_resched(); } dev_dbg(nor->dev, "flash operation timed out\n"); return -ETIMEDOUT; } /** * spi_nor_wait_till_ready() - Wait for a predefined amount of time for the * flash to be ready, or timeout occurs. * @nor: pointer to "struct spi_nor". * * Return: 0 on success, -errno otherwise. */ int spi_nor_wait_till_ready(struct spi_nor *nor) { return spi_nor_wait_till_ready_with_timeout(nor, DEFAULT_READY_WAIT_JIFFIES); } /** * spi_nor_global_block_unlock() - Unlock Global Block Protection. * @nor: pointer to 'struct spi_nor'. * * Return: 0 on success, -errno otherwise. */ int spi_nor_global_block_unlock(struct spi_nor *nor) { int ret; ret = spi_nor_write_enable(nor); if (ret) return ret; if (nor->spimem) { struct spi_mem_op op = SPI_NOR_GBULK_OP; spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); ret = spi_mem_exec_op(nor->spimem, &op); } else { ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_GBULK, NULL, 0); } if (ret) { dev_dbg(nor->dev, "error %d on Global Block Unlock\n", ret); return ret; } return spi_nor_wait_till_ready(nor); } /** * spi_nor_write_sr() - Write the Status Register. * @nor: pointer to 'struct spi_nor'. * @sr: pointer to DMA-able buffer to write to the Status Register. * @len: number of bytes to write to the Status Register. * * Return: 0 on success, -errno otherwise. */ int spi_nor_write_sr(struct spi_nor *nor, const u8 *sr, size_t len) { int ret; ret = spi_nor_write_enable(nor); if (ret) return ret; if (nor->spimem) { struct spi_mem_op op = SPI_NOR_WRSR_OP(sr, len); spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); ret = spi_mem_exec_op(nor->spimem, &op); } else { ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRSR, sr, len); } if (ret) { dev_dbg(nor->dev, "error %d writing SR\n", ret); return ret; } return spi_nor_wait_till_ready(nor); } /** * spi_nor_write_sr1_and_check() - Write one byte to the Status Register 1 and * ensure that the byte written match the received value. * @nor: pointer to a 'struct spi_nor'. * @sr1: byte value to be written to the Status Register. * * Return: 0 on success, -errno otherwise. */ static int spi_nor_write_sr1_and_check(struct spi_nor *nor, u8 sr1) { int ret; nor->bouncebuf[0] = sr1; ret = spi_nor_write_sr(nor, nor->bouncebuf, 1); if (ret) return ret; ret = spi_nor_read_sr(nor, nor->bouncebuf); if (ret) return ret; if (nor->bouncebuf[0] != sr1) { dev_dbg(nor->dev, "SR1: read back test failed\n"); return -EIO; } return 0; } /** * spi_nor_write_16bit_sr_and_check() - Write the Status Register 1 and the * Status Register 2 in one shot. Ensure that the byte written in the Status * Register 1 match the received value, and that the 16-bit Write did not * affect what was already in the Status Register 2. * @nor: pointer to a 'struct spi_nor'. * @sr1: byte value to be written to the Status Register 1. * * Return: 0 on success, -errno otherwise. */ static int spi_nor_write_16bit_sr_and_check(struct spi_nor *nor, u8 sr1) { int ret; u8 *sr_cr = nor->bouncebuf; u8 cr_written; /* Make sure we don't overwrite the contents of Status Register 2. */ if (!(nor->flags & SNOR_F_NO_READ_CR)) { ret = spi_nor_read_cr(nor, &sr_cr[1]); if (ret) return ret; } else if (spi_nor_get_protocol_width(nor->read_proto) == 4 && spi_nor_get_protocol_width(nor->write_proto) == 4 && nor->params->quad_enable) { /* * If the Status Register 2 Read command (35h) is not * supported, we should at least be sure we don't * change the value of the SR2 Quad Enable bit. * * When the Quad Enable method is set and the buswidth is 4, we * can safely assume that the value of the QE bit is one, as a * consequence of the nor->params->quad_enable() call. * * According to the JESD216 revB standard, BFPT DWORDS[15], * bits 22:20, the 16-bit Write Status (01h) command is * available just for the cases in which the QE bit is * described in SR2 at BIT(1). */ sr_cr[1] = SR2_QUAD_EN_BIT1; } else { sr_cr[1] = 0; } sr_cr[0] = sr1; ret = spi_nor_write_sr(nor, sr_cr, 2); if (ret) return ret; ret = spi_nor_read_sr(nor, sr_cr); if (ret) return ret; if (sr1 != sr_cr[0]) { dev_dbg(nor->dev, "SR: Read back test failed\n"); return -EIO; } if (nor->flags & SNOR_F_NO_READ_CR) return 0; cr_written = sr_cr[1]; ret = spi_nor_read_cr(nor, &sr_cr[1]); if (ret) return ret; if (cr_written != sr_cr[1]) { dev_dbg(nor->dev, "CR: read back test failed\n"); return -EIO; } return 0; } /** * spi_nor_write_16bit_cr_and_check() - Write the Status Register 1 and the * Configuration Register in one shot. Ensure that the byte written in the * Configuration Register match the received value, and that the 16-bit Write * did not affect what was already in the Status Register 1. * @nor: pointer to a 'struct spi_nor'. * @cr: byte value to be written to the Configuration Register. * * Return: 0 on success, -errno otherwise. */ int spi_nor_write_16bit_cr_and_check(struct spi_nor *nor, u8 cr) { int ret; u8 *sr_cr = nor->bouncebuf; u8 sr_written; /* Keep the current value of the Status Register 1. */ ret = spi_nor_read_sr(nor, sr_cr); if (ret) return ret; sr_cr[1] = cr; ret = spi_nor_write_sr(nor, sr_cr, 2); if (ret) return ret; sr_written = sr_cr[0]; ret = spi_nor_read_sr(nor, sr_cr); if (ret) return ret; if (sr_written != sr_cr[0]) { dev_dbg(nor->dev, "SR: Read back test failed\n"); return -EIO; } if (nor->flags & SNOR_F_NO_READ_CR) return 0; ret = spi_nor_read_cr(nor, &sr_cr[1]); if (ret) return ret; if (cr != sr_cr[1]) { dev_dbg(nor->dev, "CR: read back test failed\n"); return -EIO; } return 0; } /** * spi_nor_write_sr_and_check() - Write the Status Register 1 and ensure that * the byte written match the received value without affecting other bits in the * Status Register 1 and 2. * @nor: pointer to a 'struct spi_nor'. * @sr1: byte value to be written to the Status Register. * * Return: 0 on success, -errno otherwise. */ int spi_nor_write_sr_and_check(struct spi_nor *nor, u8 sr1) { if (nor->flags & SNOR_F_HAS_16BIT_SR) return spi_nor_write_16bit_sr_and_check(nor, sr1); return spi_nor_write_sr1_and_check(nor, sr1); } /** * spi_nor_write_sr2() - Write the Status Register 2 using the * SPINOR_OP_WRSR2 (3eh) command. * @nor: pointer to 'struct spi_nor'. * @sr2: pointer to DMA-able buffer to write to the Status Register 2. * * Return: 0 on success, -errno otherwise. */ static int spi_nor_write_sr2(struct spi_nor *nor, const u8 *sr2) { int ret; ret = spi_nor_write_enable(nor); if (ret) return ret; if (nor->spimem) { struct spi_mem_op op = SPI_NOR_WRSR2_OP(sr2); spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); ret = spi_mem_exec_op(nor->spimem, &op); } else { ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRSR2, sr2, 1); } if (ret) { dev_dbg(nor->dev, "error %d writing SR2\n", ret); return ret; } return spi_nor_wait_till_ready(nor); } /** * spi_nor_read_sr2() - Read the Status Register 2 using the * SPINOR_OP_RDSR2 (3fh) command. * @nor: pointer to 'struct spi_nor'. * @sr2: pointer to DMA-able buffer where the value of the * Status Register 2 will be written. * * Return: 0 on success, -errno otherwise. */ static int spi_nor_read_sr2(struct spi_nor *nor, u8 *sr2) { int ret; if (nor->spimem) { struct spi_mem_op op = SPI_NOR_RDSR2_OP(sr2); spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); ret = spi_mem_exec_op(nor->spimem, &op); } else { ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDSR2, sr2, 1); } if (ret) dev_dbg(nor->dev, "error %d reading SR2\n", ret); return ret; } /** * spi_nor_erase_die() - Erase the entire die. * @nor: pointer to 'struct spi_nor'. * @addr: address of the die. * @die_size: size of the die. * * Return: 0 on success, -errno otherwise. */ static int spi_nor_erase_die(struct spi_nor *nor, loff_t addr, size_t die_size) { bool multi_die = nor->mtd.size != die_size; int ret; dev_dbg(nor->dev, " %lldKiB\n", (long long)(die_size >> 10)); if (nor->spimem) { struct spi_mem_op op = SPI_NOR_DIE_ERASE_OP(nor->params->die_erase_opcode, nor->addr_nbytes, addr, multi_die); spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); ret = spi_mem_exec_op(nor->spimem, &op); } else { if (multi_die) return -EOPNOTSUPP; ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0); } if (ret) dev_dbg(nor->dev, "error %d erasing chip\n", ret); return ret; } static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size) { size_t i; for (i = 0; i < size; i++) if (table[i][0] == opcode) return table[i][1]; /* No conversion found, keep input op code. */ return opcode; } u8 spi_nor_convert_3to4_read(u8 opcode) { static const u8 spi_nor_3to4_read[][2] = { { SPINOR_OP_READ, SPINOR_OP_READ_4B }, { SPINOR_OP_READ_FAST, SPINOR_OP_READ_FAST_4B }, { SPINOR_OP_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B }, { SPINOR_OP_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B }, { SPINOR_OP_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B }, { SPINOR_OP_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B }, { SPINOR_OP_READ_1_1_8, SPINOR_OP_READ_1_1_8_4B }, { SPINOR_OP_READ_1_8_8, SPINOR_OP_READ_1_8_8_4B }, { SPINOR_OP_READ_1_1_1_DTR, SPINOR_OP_READ_1_1_1_DTR_4B }, { SPINOR_OP_READ_1_2_2_DTR, SPINOR_OP_READ_1_2_2_DTR_4B }, { SPINOR_OP_READ_1_4_4_DTR, SPINOR_OP_READ_1_4_4_DTR_4B }, }; return spi_nor_convert_opcode(opcode, spi_nor_3to4_read, ARRAY_SIZE(spi_nor_3to4_read)); } static u8 spi_nor_convert_3to4_program(u8 opcode) { static const u8 spi_nor_3to4_program[][2] = { { SPINOR_OP_PP, SPINOR_OP_PP_4B }, { SPINOR_OP_PP_1_1_4, SPINOR_OP_PP_1_1_4_4B }, { SPINOR_OP_PP_1_4_4, SPINOR_OP_PP_1_4_4_4B }, { SPINOR_OP_PP_1_1_8, SPINOR_OP_PP_1_1_8_4B }, { SPINOR_OP_PP_1_8_8, SPINOR_OP_PP_1_8_8_4B }, }; return spi_nor_convert_opcode(opcode, spi_nor_3to4_program, ARRAY_SIZE(spi_nor_3to4_program)); } static u8 spi_nor_convert_3to4_erase(u8 opcode) { static const u8 spi_nor_3to4_erase[][2] = { { SPINOR_OP_BE_4K, SPINOR_OP_BE_4K_4B }, { SPINOR_OP_BE_32K, SPINOR_OP_BE_32K_4B }, { SPINOR_OP_SE, SPINOR_OP_SE_4B }, }; return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase, ARRAY_SIZE(spi_nor_3to4_erase)); } static bool spi_nor_has_uniform_erase(const struct spi_nor *nor) { return !!nor->params->erase_map.uniform_region.erase_mask; } static void spi_nor_set_4byte_opcodes(struct spi_nor *nor) { nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode); nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode); nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode); if (!spi_nor_has_uniform_erase(nor)) { struct spi_nor_erase_map *map = &nor->params->erase_map; struct spi_nor_erase_type *erase; int i; for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { erase = &map->erase_type[i]; erase->opcode = spi_nor_convert_3to4_erase(erase->opcode); } } } static int spi_nor_prep(struct spi_nor *nor) { int ret = 0; if (nor->controller_ops && nor->controller_ops->prepare) ret = nor->controller_ops->prepare(nor); return ret; } static void spi_nor_unprep(struct spi_nor *nor) { if (nor->controller_ops && nor->controller_ops->unprepare) nor->controller_ops->unprepare(nor); } static void spi_nor_offset_to_banks(u64 bank_size, loff_t start, size_t len, u8 *first, u8 *last) { /* This is currently safe, the number of banks being very small */ *first = DIV_ROUND_DOWN_ULL(start, bank_size); *last = DIV_ROUND_DOWN_ULL(start + len - 1, bank_size); } /* Generic helpers for internal locking and serialization */ static bool spi_nor_rww_start_io(struct spi_nor *nor) { struct spi_nor_rww *rww = &nor->rww; bool start = false; mutex_lock(&nor->lock); if (rww->ongoing_io) goto busy; rww->ongoing_io = true; start = true; busy: mutex_unlock(&nor->lock); return start; } static void spi_nor_rww_end_io(struct spi_nor *nor) { mutex_lock(&nor->lock); nor->rww.ongoing_io = false; mutex_unlock(&nor->lock); } static int spi_nor_lock_device(struct spi_nor *nor) { if (!spi_nor_use_parallel_locking(nor)) return 0; return wait_event_killable(nor->rww.wait, spi_nor_rww_start_io(nor)); } static void spi_nor_unlock_device(struct spi_nor *nor) { if (spi_nor_use_parallel_locking(nor)) { spi_nor_rww_end_io(nor); wake_up(&nor->rww.wait); } } /* Generic helpers for internal locking and serialization */ static bool spi_nor_rww_start_exclusive(struct spi_nor *nor) { struct spi_nor_rww *rww = &nor->rww; bool start = false; mutex_lock(&nor->lock); if (rww->ongoing_io || rww->ongoing_rd || rww->ongoing_pe) goto busy; rww->ongoing_io = true; rww->ongoing_rd = true; rww->ongoing_pe = true; start = true; busy: mutex_unlock(&nor->lock); return start; } static void spi_nor_rww_end_exclusive(struct spi_nor *nor) { struct spi_nor_rww *rww = &nor->rww; mutex_lock(&nor->lock); rww->ongoing_io = false; rww->ongoing_rd = false; rww->ongoing_pe = false; mutex_unlock(&nor->lock); } int spi_nor_prep_and_lock(struct spi_nor *nor) { int ret; ret = spi_nor_prep(nor); if (ret) return ret; if (!spi_nor_use_parallel_locking(nor)) mutex_lock(&nor->lock); else ret = wait_event_killable(nor->rww.wait, spi_nor_rww_start_exclusive(nor)); return ret; } void spi_nor_unlock_and_unprep(struct spi_nor *nor) { if (!spi_nor_use_parallel_locking(nor)) { mutex_unlock(&nor->lock); } else { spi_nor_rww_end_exclusive(nor); wake_up(&nor->rww.wait); } spi_nor_unprep(nor); } /* Internal locking helpers for program and erase operations */ static bool spi_nor_rww_start_pe(struct spi_nor *nor, loff_t start, size_t len) { struct spi_nor_rww *rww = &nor->rww; unsigned int used_banks = 0; bool started = false; u8 first, last; int bank; mutex_lock(&nor->lock); if (rww->ongoing_io || rww->ongoing_rd || rww->ongoing_pe) goto busy; spi_nor_offset_to_banks(nor->params->bank_size, start, len, &first, &last); for (bank = first; bank <= last; bank++) { if (rww->used_banks & BIT(bank)) goto busy; used_banks |= BIT(bank); } rww->used_banks |= used_banks; rww->ongoing_pe = true; started = true; busy: mutex_unlock(&nor->lock); return started; } static void spi_nor_rww_end_pe(struct spi_nor *nor, loff_t start, size_t len) { struct spi_nor_rww *rww = &nor->rww; u8 first, last; int bank; mutex_lock(&nor->lock); spi_nor_offset_to_banks(nor->params->bank_size, start, len, &first, &last); for (bank = first; bank <= last; bank++) rww->used_banks &= ~BIT(bank); rww->ongoing_pe = false; mutex_unlock(&nor->lock); } static int spi_nor_prep_and_lock_pe(struct spi_nor *nor, loff_t start, size_t len) { int ret; ret = spi_nor_prep(nor); if (ret) return ret; if (!spi_nor_use_parallel_locking(nor)) mutex_lock(&nor->lock); else ret = wait_event_killable(nor->rww.wait, spi_nor_rww_start_pe(nor, start, len)); return ret; } static void spi_nor_unlock_and_unprep_pe(struct spi_nor *nor, loff_t start, size_t len) { if (!spi_nor_use_parallel_locking(nor)) { mutex_unlock(&nor->lock); } else { spi_nor_rww_end_pe(nor, start, len); wake_up(&nor->rww.wait); } spi_nor_unprep(nor); } /* Internal locking helpers for read operations */ static bool spi_nor_rww_start_rd(struct spi_nor *nor, loff_t start, size_t len) { struct spi_nor_rww *rww = &nor->rww; unsigned int used_banks = 0; bool started = false; u8 first, last; int bank; mutex_lock(&nor->lock); if (rww->ongoing_io || rww->ongoing_rd) goto busy; spi_nor_offset_to_banks(nor->params->bank_size, start, len, &first, &last); for (bank = first; bank <= last; bank++) { if (rww->used_banks & BIT(bank)) goto busy; used_banks |= BIT(bank); } rww->used_banks |= used_banks; rww->ongoing_io = true; rww->ongoing_rd = true; started = true; busy: mutex_unlock(&nor->lock); return started; } static void spi_nor_rww_end_rd(struct spi_nor *nor, loff_t start, size_t len) { struct spi_nor_rww *rww = &nor->rww; u8 first, last; int bank; mutex_lock(&nor->lock); spi_nor_offset_to_banks(nor->params->bank_size, start, len, &first, &last); for (bank = first; bank <= last; bank++) nor->rww.used_banks &= ~BIT(bank); rww->ongoing_io = false; rww->ongoing_rd = false; mutex_unlock(&nor->lock); } static int spi_nor_prep_and_lock_rd(struct spi_nor *nor, loff_t start, size_t len) { int ret; ret = spi_nor_prep(nor); if (ret) return ret; if (!spi_nor_use_parallel_locking(nor)) mutex_lock(&nor->lock); else ret = wait_event_killable(nor->rww.wait, spi_nor_rww_start_rd(nor, start, len)); return ret; } static void spi_nor_unlock_and_unprep_rd(struct spi_nor *nor, loff_t start, size_t len) { if (!spi_nor_use_parallel_locking(nor)) { mutex_unlock(&nor->lock); } else { spi_nor_rww_end_rd(nor, start, len); wake_up(&nor->rww.wait); } spi_nor_unprep(nor); } /* * Initiate the erasure of a single sector */ int spi_nor_erase_sector(struct spi_nor *nor, u32 addr) { int i; if (nor->spimem) { struct spi_mem_op op = SPI_NOR_SECTOR_ERASE_OP(nor->erase_opcode, nor->addr_nbytes, addr); spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); return spi_mem_exec_op(nor->spimem, &op); } else if (nor->controller_ops->erase) { return spi_nor_controller_ops_erase(nor, addr); } /* * Default implementation, if driver doesn't have a specialized HW * control */ for (i = nor->addr_nbytes - 1; i >= 0; i--) { nor->bouncebuf[i] = addr & 0xff; addr >>= 8; } return spi_nor_controller_ops_write_reg(nor, nor->erase_opcode, nor->bouncebuf, nor->addr_nbytes); } /** * spi_nor_div_by_erase_size() - calculate remainder and update new dividend * @erase: pointer to a structure that describes a SPI NOR erase type * @dividend: dividend value * @remainder: pointer to u32 remainder (will be updated) * * Return: the result of the division */ static u64 spi_nor_div_by_erase_size(const struct spi_nor_erase_type *erase, u64 dividend, u32 *remainder) { /* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */ *remainder = (u32)dividend & erase->size_mask; return dividend >> erase->size_shift; } /** * spi_nor_find_best_erase_type() - find the best erase type for the given * offset in the serial flash memory and the * number of bytes to erase. The region in * which the address fits is expected to be * provided. * @map: the erase map of the SPI NOR * @region: pointer to a structure that describes a SPI NOR erase region * @addr: offset in the serial flash memory * @len: number of bytes to erase * * Return: a pointer to the best fitted erase type, NULL otherwise. */ static const struct spi_nor_erase_type * spi_nor_find_best_erase_type(const struct spi_nor_erase_map *map, const struct spi_nor_erase_region *region, u64 addr, u32 len) { const struct spi_nor_erase_type *erase; u32 rem; int i; /* * Erase types are ordered by size, with the smallest erase type at * index 0. */ for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) { /* Does the erase region support the tested erase type? */ if (!(region->erase_mask & BIT(i))) continue; erase = &map->erase_type[i]; if (!erase->size) continue; /* Alignment is not mandatory for overlaid regions */ if (region->overlaid && region->size <= len) return erase; /* Don't erase more than what the user has asked for. */ if (erase->size > len) continue; spi_nor_div_by_erase_size(erase, addr, &rem); if (!rem) return erase; } return NULL; } /** * spi_nor_init_erase_cmd() - initialize an erase command * @region: pointer to a structure that describes a SPI NOR erase region * @erase: pointer to a structure that describes a SPI NOR erase type * * Return: the pointer to the allocated erase command, ERR_PTR(-errno) * otherwise. */ static struct spi_nor_erase_command * spi_nor_init_erase_cmd(const struct spi_nor_erase_region *region, const struct spi_nor_erase_type *erase) { struct spi_nor_erase_command *cmd; cmd = kmalloc(sizeof(*cmd), GFP_KERNEL); if (!cmd) return ERR_PTR(-ENOMEM); INIT_LIST_HEAD(&cmd->list); cmd->opcode = erase->opcode; cmd->count = 1; if (region->overlaid) cmd->size = region->size; else cmd->size = erase->size; return cmd; } /** * spi_nor_destroy_erase_cmd_list() - destroy erase command list * @erase_list: list of erase commands */ static void spi_nor_destroy_erase_cmd_list(struct list_head *erase_list) { struct spi_nor_erase_command *cmd, *next; list_for_each_entry_safe(cmd, next, erase_list, list) { list_del(&cmd->list); kfree(cmd); } } /** * spi_nor_init_erase_cmd_list() - initialize erase command list * @nor: pointer to a 'struct spi_nor' * @erase_list: list of erase commands to be executed once we validate that the * erase can be performed * @addr: offset in the serial flash memory * @len: number of bytes to erase * * Builds the list of best fitted erase commands and verifies if the erase can * be performed. * * Return: 0 on success, -errno otherwise. */ static int spi_nor_init_erase_cmd_list(struct spi_nor *nor, struct list_head *erase_list, u64 addr, u32 len) { const struct spi_nor_erase_map *map = &nor->params->erase_map; const struct spi_nor_erase_type *erase, *prev_erase = NULL; struct spi_nor_erase_region *region; struct spi_nor_erase_command *cmd = NULL; u64 region_end; unsigned int i; int ret = -EINVAL; for (i = 0; i < map->n_regions && len; i++) { region = &map->regions[i]; region_end = region->offset + region->size; while (len && addr >= region->offset && addr < region_end) { erase = spi_nor_find_best_erase_type(map, region, addr, len); if (!erase) goto destroy_erase_cmd_list; if (prev_erase != erase || erase->size != cmd->size || region->overlaid) { cmd = spi_nor_init_erase_cmd(region, erase); if (IS_ERR(cmd)) { ret = PTR_ERR(cmd); goto destroy_erase_cmd_list; } list_add_tail(&cmd->list, erase_list); } else { cmd->count++; } len -= cmd->size; addr += cmd->size; prev_erase = erase; } } return 0; destroy_erase_cmd_list: spi_nor_destroy_erase_cmd_list(erase_list); return ret; } /** * spi_nor_erase_multi_sectors() - perform a non-uniform erase * @nor: pointer to a 'struct spi_nor' * @addr: offset in the serial flash memory * @len: number of bytes to erase * * Build a list of best fitted erase commands and execute it once we validate * that the erase can be performed. * * Return: 0 on success, -errno otherwise. */ static int spi_nor_erase_multi_sectors(struct spi_nor *nor, u64 addr, u32 len) { LIST_HEAD(erase_list); struct spi_nor_erase_command *cmd, *next; int ret; ret = spi_nor_init_erase_cmd_list(nor, &erase_list, addr, len); if (ret) return ret; list_for_each_entry_safe(cmd, next, &erase_list, list) { nor->erase_opcode = cmd->opcode; while (cmd->count) { dev_vdbg(nor->dev, "erase_cmd->size = 0x%08x, erase_cmd->opcode = 0x%02x, erase_cmd->count = %u\n", cmd->size, cmd->opcode, cmd->count); ret = spi_nor_lock_device(nor); if (ret) goto destroy_erase_cmd_list; ret = spi_nor_write_enable(nor); if (ret) { spi_nor_unlock_device(nor); goto destroy_erase_cmd_list; } ret = spi_nor_erase_sector(nor, addr); spi_nor_unlock_device(nor); if (ret) goto destroy_erase_cmd_list; ret = spi_nor_wait_till_ready(nor); if (ret) goto destroy_erase_cmd_list; addr += cmd->size; cmd->count--; } list_del(&cmd->list); kfree(cmd); } return 0; destroy_erase_cmd_list: spi_nor_destroy_erase_cmd_list(&erase_list); return ret; } static int spi_nor_erase_dice(struct spi_nor *nor, loff_t addr, size_t len, size_t die_size) { unsigned long timeout; int ret; /* * Scale the timeout linearly with the size of the flash, with * a minimum calibrated to an old 2MB flash. We could try to * pull these from CFI/SFDP, but these values should be good * enough for now. */ timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES, CHIP_ERASE_2MB_READY_WAIT_JIFFIES * (unsigned long)(nor->mtd.size / SZ_2M)); do { ret = spi_nor_lock_device(nor); if (ret) return ret; ret = spi_nor_write_enable(nor); if (ret) { spi_nor_unlock_device(nor); return ret; } ret = spi_nor_erase_die(nor, addr, die_size); spi_nor_unlock_device(nor); if (ret) return ret; ret = spi_nor_wait_till_ready_with_timeout(nor, timeout); if (ret) return ret; addr += die_size; len -= die_size; } while (len); return 0; } /* * Erase an address range on the nor chip. The address range may extend * one or more erase sectors. Return an error if there is a problem erasing. */ static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr) { struct spi_nor *nor = mtd_to_spi_nor(mtd); u8 n_dice = nor->params->n_dice; bool multi_die_erase = false; u32 addr, len, rem; size_t die_size; int ret; dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr, (long long)instr->len); if (spi_nor_has_uniform_erase(nor)) { div_u64_rem(instr->len, mtd->erasesize, &rem); if (rem) return -EINVAL; } addr = instr->addr; len = instr->len; if (n_dice) { die_size = div_u64(mtd->size, n_dice); if (!(len & (die_size - 1)) && !(addr & (die_size - 1))) multi_die_erase = true; } else { die_size = mtd->size; } ret = spi_nor_prep_and_lock_pe(nor, instr->addr, instr->len); if (ret) return ret; /* chip (die) erase? */ if ((len == mtd->size && !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) || multi_die_erase) { ret = spi_nor_erase_dice(nor, addr, len, die_size); if (ret) goto erase_err; /* REVISIT in some cases we could speed up erasing large regions * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up * to use "small sector erase", but that's not always optimal. */ /* "sector"-at-a-time erase */ } else if (spi_nor_has_uniform_erase(nor)) { while (len) { ret = spi_nor_lock_device(nor); if (ret) goto erase_err; ret = spi_nor_write_enable(nor); if (ret) { spi_nor_unlock_device(nor); goto erase_err; } ret = spi_nor_erase_sector(nor, addr); spi_nor_unlock_device(nor); if (ret) goto erase_err; ret = spi_nor_wait_till_ready(nor); if (ret) goto erase_err; addr += mtd->erasesize; len -= mtd->erasesize; } /* erase multiple sectors */ } else { ret = spi_nor_erase_multi_sectors(nor, addr, len); if (ret) goto erase_err; } ret = spi_nor_write_disable(nor); erase_err: spi_nor_unlock_and_unprep_pe(nor, instr->addr, instr->len); return ret; } /** * spi_nor_sr1_bit6_quad_enable() - Set the Quad Enable BIT(6) in the Status * Register 1. * @nor: pointer to a 'struct spi_nor' * * Bit 6 of the Status Register 1 is the QE bit for Macronix like QSPI memories. * * Return: 0 on success, -errno otherwise. */ int spi_nor_sr1_bit6_quad_enable(struct spi_nor *nor) { int ret; ret = spi_nor_read_sr(nor, nor->bouncebuf); if (ret) return ret; if (nor->bouncebuf[0] & SR1_QUAD_EN_BIT6) return 0; nor->bouncebuf[0] |= SR1_QUAD_EN_BIT6; return spi_nor_write_sr1_and_check(nor, nor->bouncebuf[0]); } /** * spi_nor_sr2_bit1_quad_enable() - set the Quad Enable BIT(1) in the Status * Register 2. * @nor: pointer to a 'struct spi_nor'. * * Bit 1 of the Status Register 2 is the QE bit for Spansion like QSPI memories. * * Return: 0 on success, -errno otherwise. */ int spi_nor_sr2_bit1_quad_enable(struct spi_nor *nor) { int ret; if (nor->flags & SNOR_F_NO_READ_CR) return spi_nor_write_16bit_cr_and_check(nor, SR2_QUAD_EN_BIT1); ret = spi_nor_read_cr(nor, nor->bouncebuf); if (ret) return ret; if (nor->bouncebuf[0] & SR2_QUAD_EN_BIT1) return 0; nor->bouncebuf[0] |= SR2_QUAD_EN_BIT1; return spi_nor_write_16bit_cr_and_check(nor, nor->bouncebuf[0]); } /** * spi_nor_sr2_bit7_quad_enable() - set QE bit in Status Register 2. * @nor: pointer to a 'struct spi_nor' * * Set the Quad Enable (QE) bit in the Status Register 2. * * This is one of the procedures to set the QE bit described in the SFDP * (JESD216 rev B) specification but no manufacturer using this procedure has * been identified yet, hence the name of the function. * * Return: 0 on success, -errno otherwise. */ int spi_nor_sr2_bit7_quad_enable(struct spi_nor *nor) { u8 *sr2 = nor->bouncebuf; int ret; u8 sr2_written; /* Check current Quad Enable bit value. */ ret = spi_nor_read_sr2(nor, sr2); if (ret) return ret; if (*sr2 & SR2_QUAD_EN_BIT7) return 0; /* Update the Quad Enable bit. */ *sr2 |= SR2_QUAD_EN_BIT7; ret = spi_nor_write_sr2(nor, sr2); if (ret) return ret; sr2_written = *sr2; /* Read back and check it. */ ret = spi_nor_read_sr2(nor, sr2); if (ret) return ret; if (*sr2 != sr2_written) { dev_dbg(nor->dev, "SR2: Read back test failed\n"); return -EIO; } return 0; } static const struct spi_nor_manufacturer *manufacturers[] = { &spi_nor_atmel, &spi_nor_eon, &spi_nor_esmt, &spi_nor_everspin, &spi_nor_gigadevice, &spi_nor_intel, &spi_nor_issi, &spi_nor_macronix, &spi_nor_micron, &spi_nor_st, &spi_nor_spansion, &spi_nor_sst, &spi_nor_winbond, &spi_nor_xmc, }; static const struct flash_info spi_nor_generic_flash = { .name = "spi-nor-generic", }; static const struct flash_info *spi_nor_match_id(struct spi_nor *nor, const u8 *id) { const struct flash_info *part; unsigned int i, j; for (i = 0; i < ARRAY_SIZE(manufacturers); i++) { for (j = 0; j < manufacturers[i]->nparts; j++) { part = &manufacturers[i]->parts[j]; if (part->id && !memcmp(part->id->bytes, id, part->id->len)) { nor->manufacturer = manufacturers[i]; return part; } } } return NULL; } static const struct flash_info *spi_nor_detect(struct spi_nor *nor) { const struct flash_info *info; u8 *id = nor->bouncebuf; int ret; ret = spi_nor_read_id(nor, 0, 0, id, nor->reg_proto); if (ret) { dev_dbg(nor->dev, "error %d reading JEDEC ID\n", ret); return ERR_PTR(ret); } /* Cache the complete flash ID. */ nor->id = devm_kmemdup(nor->dev, id, SPI_NOR_MAX_ID_LEN, GFP_KERNEL); if (!nor->id) return ERR_PTR(-ENOMEM); info = spi_nor_match_id(nor, id); /* Fallback to a generic flash described only by its SFDP data. */ if (!info) { ret = spi_nor_check_sfdp_signature(nor); if (!ret) info = &spi_nor_generic_flash; } if (!info) { dev_err(nor->dev, "unrecognized JEDEC id bytes: %*ph\n", SPI_NOR_MAX_ID_LEN, id); return ERR_PTR(-ENODEV); } return info; } static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { struct spi_nor *nor = mtd_to_spi_nor(mtd); loff_t from_lock = from; size_t len_lock = len; ssize_t ret; dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len); ret = spi_nor_prep_and_lock_rd(nor, from_lock, len_lock); if (ret) return ret; while (len) { loff_t addr = from; ret = spi_nor_read_data(nor, addr, len, buf); if (ret == 0) { /* We shouldn't see 0-length reads */ ret = -EIO; goto read_err; } if (ret < 0) goto read_err; WARN_ON(ret > len); *retlen += ret; buf += ret; from += ret; len -= ret; } ret = 0; read_err: spi_nor_unlock_and_unprep_rd(nor, from_lock, len_lock); return ret; } /* * Write an address range to the nor chip. Data must be written in * FLASH_PAGESIZE chunks. The address range may be any size provided * it is within the physical boundaries. */ static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf) { struct spi_nor *nor = mtd_to_spi_nor(mtd); size_t i; ssize_t ret; u32 page_size = nor->params->page_size; dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len); ret = spi_nor_prep_and_lock_pe(nor, to, len); if (ret) return ret; for (i = 0; i < len; ) { ssize_t written; loff_t addr = to + i; size_t page_offset = addr & (page_size - 1); /* the size of data remaining on the first page */ size_t page_remain = min_t(size_t, page_size - page_offset, len - i); ret = spi_nor_lock_device(nor); if (ret) goto write_err; ret = spi_nor_write_enable(nor); if (ret) { spi_nor_unlock_device(nor); goto write_err; } ret = spi_nor_write_data(nor, addr, page_remain, buf + i); spi_nor_unlock_device(nor); if (ret < 0) goto write_err; written = ret; ret = spi_nor_wait_till_ready(nor); if (ret) goto write_err; *retlen += written; i += written; } write_err: spi_nor_unlock_and_unprep_pe(nor, to, len); return ret; } static int spi_nor_check(struct spi_nor *nor) { if (!nor->dev || (!nor->spimem && !nor->controller_ops) || (!nor->spimem && nor->controller_ops && (!nor->controller_ops->read || !nor->controller_ops->write || !nor->controller_ops->read_reg || !nor->controller_ops->write_reg))) { pr_err("spi-nor: please fill all the necessary fields!\n"); return -EINVAL; } if (nor->spimem && nor->controller_ops) { dev_err(nor->dev, "nor->spimem and nor->controller_ops are mutually exclusive, please set just one of them.\n"); return -EINVAL; } return 0; } void spi_nor_set_read_settings(struct spi_nor_read_command *read, u8 num_mode_clocks, u8 num_wait_states, u8 opcode, enum spi_nor_protocol proto) { read->num_mode_clocks = num_mode_clocks; read->num_wait_states = num_wait_states; read->opcode = opcode; read->proto = proto; } void spi_nor_set_pp_settings(struct spi_nor_pp_command *pp, u8 opcode, enum spi_nor_protocol proto) { pp->opcode = opcode; pp->proto = proto; } static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size) { size_t i; for (i = 0; i < size; i++) if (table[i][0] == (int)hwcaps) return table[i][1]; return -EINVAL; } int spi_nor_hwcaps_read2cmd(u32 hwcaps) { static const int hwcaps_read2cmd[][2] = { { SNOR_HWCAPS_READ, SNOR_CMD_READ }, { SNOR_HWCAPS_READ_FAST, SNOR_CMD_READ_FAST }, { SNOR_HWCAPS_READ_1_1_1_DTR, SNOR_CMD_READ_1_1_1_DTR }, { SNOR_HWCAPS_READ_1_1_2, SNOR_CMD_READ_1_1_2 }, { SNOR_HWCAPS_READ_1_2_2, SNOR_CMD_READ_1_2_2 }, { SNOR_HWCAPS_READ_2_2_2, SNOR_CMD_READ_2_2_2 }, { SNOR_HWCAPS_READ_1_2_2_DTR, SNOR_CMD_READ_1_2_2_DTR }, { SNOR_HWCAPS_READ_1_1_4, SNOR_CMD_READ_1_1_4 }, { SNOR_HWCAPS_READ_1_4_4, SNOR_CMD_READ_1_4_4 }, { SNOR_HWCAPS_READ_4_4_4, SNOR_CMD_READ_4_4_4 }, { SNOR_HWCAPS_READ_1_4_4_DTR, SNOR_CMD_READ_1_4_4_DTR }, { SNOR_HWCAPS_READ_1_1_8, SNOR_CMD_READ_1_1_8 }, { SNOR_HWCAPS_READ_1_8_8, SNOR_CMD_READ_1_8_8 }, { SNOR_HWCAPS_READ_8_8_8, SNOR_CMD_READ_8_8_8 }, { SNOR_HWCAPS_READ_1_8_8_DTR, SNOR_CMD_READ_1_8_8_DTR }, { SNOR_HWCAPS_READ_8_8_8_DTR, SNOR_CMD_READ_8_8_8_DTR }, }; return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd, ARRAY_SIZE(hwcaps_read2cmd)); } int spi_nor_hwcaps_pp2cmd(u32 hwcaps) { static const int hwcaps_pp2cmd[][2] = { { SNOR_HWCAPS_PP, SNOR_CMD_PP }, { SNOR_HWCAPS_PP_1_1_4, SNOR_CMD_PP_1_1_4 }, { SNOR_HWCAPS_PP_1_4_4, SNOR_CMD_PP_1_4_4 }, { SNOR_HWCAPS_PP_4_4_4, SNOR_CMD_PP_4_4_4 }, { SNOR_HWCAPS_PP_1_1_8, SNOR_CMD_PP_1_1_8 }, { SNOR_HWCAPS_PP_1_8_8, SNOR_CMD_PP_1_8_8 }, { SNOR_HWCAPS_PP_8_8_8, SNOR_CMD_PP_8_8_8 }, { SNOR_HWCAPS_PP_8_8_8_DTR, SNOR_CMD_PP_8_8_8_DTR }, }; return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd, ARRAY_SIZE(hwcaps_pp2cmd)); } /** * spi_nor_spimem_check_op - check if the operation is supported * by controller *@nor: pointer to a 'struct spi_nor' *@op: pointer to op template to be checked * * Returns 0 if operation is supported, -EOPNOTSUPP otherwise. */ static int spi_nor_spimem_check_op(struct spi_nor *nor, struct spi_mem_op *op) { /* * First test with 4 address bytes. The opcode itself might * be a 3B addressing opcode but we don't care, because * SPI controller implementation should not check the opcode, * but just the sequence. */ op->addr.nbytes = 4; if (!spi_mem_supports_op(nor->spimem, op)) { if (nor->params->size > SZ_16M) return -EOPNOTSUPP; /* If flash size <= 16MB, 3 address bytes are sufficient */ op->addr.nbytes = 3; if (!spi_mem_supports_op(nor->spimem, op)) return -EOPNOTSUPP; } return 0; } /** * spi_nor_spimem_check_readop - check if the read op is supported * by controller *@nor: pointer to a 'struct spi_nor' *@read: pointer to op template to be checked * * Returns 0 if operation is supported, -EOPNOTSUPP otherwise. */ static int spi_nor_spimem_check_readop(struct spi_nor *nor, const struct spi_nor_read_command *read) { struct spi_mem_op op = SPI_NOR_READ_OP(read->opcode); spi_nor_spimem_setup_op(nor, &op, read->proto); /* convert the dummy cycles to the number of bytes */ op.dummy.nbytes = (read->num_mode_clocks + read->num_wait_states) * op.dummy.buswidth / 8; if (spi_nor_protocol_is_dtr(nor->read_proto)) op.dummy.nbytes *= 2; return spi_nor_spimem_check_op(nor, &op); } /** * spi_nor_spimem_check_pp - check if the page program op is supported * by controller *@nor: pointer to a 'struct spi_nor' *@pp: pointer to op template to be checked * * Returns 0 if operation is supported, -EOPNOTSUPP otherwise. */ static int spi_nor_spimem_check_pp(struct spi_nor *nor, const struct spi_nor_pp_command *pp) { struct spi_mem_op op = SPI_NOR_PP_OP(pp->opcode); spi_nor_spimem_setup_op(nor, &op, pp->proto); return spi_nor_spimem_check_op(nor, &op); } /** * spi_nor_spimem_adjust_hwcaps - Find optimal Read/Write protocol * based on SPI controller capabilities * @nor: pointer to a 'struct spi_nor' * @hwcaps: pointer to resulting capabilities after adjusting * according to controller and flash's capability */ static void spi_nor_spimem_adjust_hwcaps(struct spi_nor *nor, u32 *hwcaps) { struct spi_nor_flash_parameter *params = nor->params; unsigned int cap; /* X-X-X modes are not supported yet, mask them all. */ *hwcaps &= ~SNOR_HWCAPS_X_X_X; /* * If the reset line is broken, we do not want to enter a stateful * mode. */ if (nor->flags & SNOR_F_BROKEN_RESET) *hwcaps &= ~(SNOR_HWCAPS_X_X_X | SNOR_HWCAPS_X_X_X_DTR); for (cap = 0; cap < sizeof(*hwcaps) * BITS_PER_BYTE; cap++) { int rdidx, ppidx; if (!(*hwcaps & BIT(cap))) continue; rdidx = spi_nor_hwcaps_read2cmd(BIT(cap)); if (rdidx >= 0 && spi_nor_spimem_check_readop(nor, ¶ms->reads[rdidx])) *hwcaps &= ~BIT(cap); ppidx = spi_nor_hwcaps_pp2cmd(BIT(cap)); if (ppidx < 0) continue; if (spi_nor_spimem_check_pp(nor, ¶ms->page_programs[ppidx])) *hwcaps &= ~BIT(cap); } } /** * spi_nor_set_erase_type() - set a SPI NOR erase type * @erase: pointer to a structure that describes a SPI NOR erase type * @size: the size of the sector/block erased by the erase type * @opcode: the SPI command op code to erase the sector/block */ void spi_nor_set_erase_type(struct spi_nor_erase_type *erase, u32 size, u8 opcode) { erase->size = size; erase->opcode = opcode; /* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */ erase->size_shift = ffs(erase->size) - 1; erase->size_mask = (1 << erase->size_shift) - 1; } /** * spi_nor_mask_erase_type() - mask out a SPI NOR erase type * @erase: pointer to a structure that describes a SPI NOR erase type */ void spi_nor_mask_erase_type(struct spi_nor_erase_type *erase) { erase->size = 0; } /** * spi_nor_init_uniform_erase_map() - Initialize uniform erase map * @map: the erase map of the SPI NOR * @erase_mask: bitmask encoding erase types that can erase the entire * flash memory * @flash_size: the spi nor flash memory size */ void spi_nor_init_uniform_erase_map(struct spi_nor_erase_map *map, u8 erase_mask, u64 flash_size) { map->uniform_region.offset = 0; map->uniform_region.size = flash_size; map->uniform_region.erase_mask = erase_mask; map->regions = &map->uniform_region; map->n_regions = 1; } int spi_nor_post_bfpt_fixups(struct spi_nor *nor, const struct sfdp_parameter_header *bfpt_header, const struct sfdp_bfpt *bfpt) { int ret; if (nor->manufacturer && nor->manufacturer->fixups && nor->manufacturer->fixups->post_bfpt) { ret = nor->manufacturer->fixups->post_bfpt(nor, bfpt_header, bfpt); if (ret) return ret; } if (nor->info->fixups && nor->info->fixups->post_bfpt) return nor->info->fixups->post_bfpt(nor, bfpt_header, bfpt); return 0; } static int spi_nor_select_read(struct spi_nor *nor, u32 shared_hwcaps) { int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1; const struct spi_nor_read_command *read; if (best_match < 0) return -EINVAL; cmd = spi_nor_hwcaps_read2cmd(BIT(best_match)); if (cmd < 0) return -EINVAL; read = &nor->params->reads[cmd]; nor->read_opcode = read->opcode; nor->read_proto = read->proto; /* * In the SPI NOR framework, we don't need to make the difference * between mode clock cycles and wait state clock cycles. * Indeed, the value of the mode clock cycles is used by a QSPI * flash memory to know whether it should enter or leave its 0-4-4 * (Continuous Read / XIP) mode. * eXecution In Place is out of the scope of the mtd sub-system. * Hence we choose to merge both mode and wait state clock cycles * into the so called dummy clock cycles. */ nor->read_dummy = read->num_mode_clocks + read->num_wait_states; return 0; } static int spi_nor_select_pp(struct spi_nor *nor, u32 shared_hwcaps) { int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1; const struct spi_nor_pp_command *pp; if (best_match < 0) return -EINVAL; cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match)); if (cmd < 0) return -EINVAL; pp = &nor->params->page_programs[cmd]; nor->program_opcode = pp->opcode; nor->write_proto = pp->proto; return 0; } /** * spi_nor_select_uniform_erase() - select optimum uniform erase type * @map: the erase map of the SPI NOR * * Once the optimum uniform sector erase command is found, disable all the * other. * * Return: pointer to erase type on success, NULL otherwise. */ static const struct spi_nor_erase_type * spi_nor_select_uniform_erase(struct spi_nor_erase_map *map) { const struct spi_nor_erase_type *tested_erase, *erase = NULL; int i; u8 uniform_erase_type = map->uniform_region.erase_mask; /* * Search for the biggest erase size, except for when compiled * to use 4k erases. */ for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) { if (!(uniform_erase_type & BIT(i))) continue; tested_erase = &map->erase_type[i]; /* Skip masked erase types. */ if (!tested_erase->size) continue; /* * If the current erase size is the 4k one, stop here, * we have found the right uniform Sector Erase command. */ if (IS_ENABLED(CONFIG_MTD_SPI_NOR_USE_4K_SECTORS) && tested_erase->size == SZ_4K) { erase = tested_erase; break; } /* * Otherwise, the current erase size is still a valid candidate. * Select the biggest valid candidate. */ if (!erase && tested_erase->size) erase = tested_erase; /* keep iterating to find the wanted_size */ } if (!erase) return NULL; /* Disable all other Sector Erase commands. */ map->uniform_region.erase_mask = BIT(erase - map->erase_type); return erase; } static int spi_nor_select_erase(struct spi_nor *nor) { struct spi_nor_erase_map *map = &nor->params->erase_map; const struct spi_nor_erase_type *erase = NULL; struct mtd_info *mtd = &nor->mtd; int i; /* * The previous implementation handling Sector Erase commands assumed * that the SPI flash memory has an uniform layout then used only one * of the supported erase sizes for all Sector Erase commands. * So to be backward compatible, the new implementation also tries to * manage the SPI flash memory as uniform with a single erase sector * size, when possible. */ if (spi_nor_has_uniform_erase(nor)) { erase = spi_nor_select_uniform_erase(map); if (!erase) return -EINVAL; nor->erase_opcode = erase->opcode; mtd->erasesize = erase->size; return 0; } /* * For non-uniform SPI flash memory, set mtd->erasesize to the * maximum erase sector size. No need to set nor->erase_opcode. */ for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) { if (map->erase_type[i].size) { erase = &map->erase_type[i]; break; } } if (!erase) return -EINVAL; mtd->erasesize = erase->size; return 0; } static int spi_nor_set_addr_nbytes(struct spi_nor *nor) { if (nor->params->addr_nbytes) { nor->addr_nbytes = nor->params->addr_nbytes; } else if (nor->read_proto == SNOR_PROTO_8_8_8_DTR) { /* * In 8D-8D-8D mode, one byte takes half a cycle to transfer. So * in this protocol an odd addr_nbytes cannot be used because * then the address phase would only span a cycle and a half. * Half a cycle would be left over. We would then have to start * the dummy phase in the middle of a cycle and so too the data * phase, and we will end the transaction with half a cycle left * over. * * Force all 8D-8D-8D flashes to use an addr_nbytes of 4 to * avoid this situation. */ nor->addr_nbytes = 4; } else if (nor->info->addr_nbytes) { nor->addr_nbytes = nor->info->addr_nbytes; } else { nor->addr_nbytes = 3; } if (nor->addr_nbytes == 3 && nor->params->size > 0x1000000) { /* enable 4-byte addressing if the device exceeds 16MiB */ nor->addr_nbytes = 4; } if (nor->addr_nbytes > SPI_NOR_MAX_ADDR_NBYTES) { dev_dbg(nor->dev, "The number of address bytes is too large: %u\n", nor->addr_nbytes); return -EINVAL; } /* Set 4byte opcodes when possible. */ if (nor->addr_nbytes == 4 && nor->flags & SNOR_F_4B_OPCODES && !(nor->flags & SNOR_F_HAS_4BAIT)) spi_nor_set_4byte_opcodes(nor); return 0; } static int spi_nor_setup(struct spi_nor *nor, const struct spi_nor_hwcaps *hwcaps) { struct spi_nor_flash_parameter *params = nor->params; u32 ignored_mask, shared_mask; int err; /* * Keep only the hardware capabilities supported by both the SPI * controller and the SPI flash memory. */ shared_mask = hwcaps->mask & params->hwcaps.mask; if (nor->spimem) { /* * When called from spi_nor_probe(), all caps are set and we * need to discard some of them based on what the SPI * controller actually supports (using spi_mem_supports_op()). */ spi_nor_spimem_adjust_hwcaps(nor, &shared_mask); } else { /* * SPI n-n-n protocols are not supported when the SPI * controller directly implements the spi_nor interface. * Yet another reason to switch to spi-mem. */ ignored_mask = SNOR_HWCAPS_X_X_X | SNOR_HWCAPS_X_X_X_DTR; if (shared_mask & ignored_mask) { dev_dbg(nor->dev, "SPI n-n-n protocols are not supported.\n"); shared_mask &= ~ignored_mask; } } /* Select the (Fast) Read command. */ err = spi_nor_select_read(nor, shared_mask); if (err) { dev_dbg(nor->dev, "can't select read settings supported by both the SPI controller and memory.\n"); return err; } /* Select the Page Program command. */ err = spi_nor_select_pp(nor, shared_mask); if (err) { dev_dbg(nor->dev, "can't select write settings supported by both the SPI controller and memory.\n"); return err; } /* Select the Sector Erase command. */ err = spi_nor_select_erase(nor); if (err) { dev_dbg(nor->dev, "can't select erase settings supported by both the SPI controller and memory.\n"); return err; } return spi_nor_set_addr_nbytes(nor); } /** * spi_nor_manufacturer_init_params() - Initialize the flash's parameters and * settings based on MFR register and ->default_init() hook. * @nor: pointer to a 'struct spi_nor'. */ static void spi_nor_manufacturer_init_params(struct spi_nor *nor) { if (nor->manufacturer && nor->manufacturer->fixups && nor->manufacturer->fixups->default_init) nor->manufacturer->fixups->default_init(nor); if (nor->info->fixups && nor->info->fixups->default_init) nor->info->fixups->default_init(nor); } /** * spi_nor_no_sfdp_init_params() - Initialize the flash's parameters and * settings based on nor->info->sfdp_flags. This method should be called only by * flashes that do not define SFDP tables. If the flash supports SFDP but the * information is wrong and the settings from this function can not be retrieved * by parsing SFDP, one should instead use the fixup hooks and update the wrong * bits. * @nor: pointer to a 'struct spi_nor'. */ static void spi_nor_no_sfdp_init_params(struct spi_nor *nor) { struct spi_nor_flash_parameter *params = nor->params; struct spi_nor_erase_map *map = ¶ms->erase_map; const struct flash_info *info = nor->info; const u8 no_sfdp_flags = info->no_sfdp_flags; u8 i, erase_mask; if (no_sfdp_flags & SPI_NOR_DUAL_READ) { params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2; spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_2], 0, 8, SPINOR_OP_READ_1_1_2, SNOR_PROTO_1_1_2); } if (no_sfdp_flags & SPI_NOR_QUAD_READ) { params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4; spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_4], 0, 8, SPINOR_OP_READ_1_1_4, SNOR_PROTO_1_1_4); } if (no_sfdp_flags & SPI_NOR_OCTAL_READ) { params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8; spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_8], 0, 8, SPINOR_OP_READ_1_1_8, SNOR_PROTO_1_1_8); } if (no_sfdp_flags & SPI_NOR_OCTAL_DTR_READ) { params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR; spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_8_8_8_DTR], 0, 20, SPINOR_OP_READ_FAST, SNOR_PROTO_8_8_8_DTR); } if (no_sfdp_flags & SPI_NOR_OCTAL_DTR_PP) { params->hwcaps.mask |= SNOR_HWCAPS_PP_8_8_8_DTR; /* * Since xSPI Page Program opcode is backward compatible with * Legacy SPI, use Legacy SPI opcode there as well. */ spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP_8_8_8_DTR], SPINOR_OP_PP, SNOR_PROTO_8_8_8_DTR); } /* * Sector Erase settings. Sort Erase Types in ascending order, with the * smallest erase size starting at BIT(0). */ erase_mask = 0; i = 0; if (no_sfdp_flags & SECT_4K) { erase_mask |= BIT(i); spi_nor_set_erase_type(&map->erase_type[i], 4096u, SPINOR_OP_BE_4K); i++; } erase_mask |= BIT(i); spi_nor_set_erase_type(&map->erase_type[i], info->sector_size ?: SPI_NOR_DEFAULT_SECTOR_SIZE, SPINOR_OP_SE); spi_nor_init_uniform_erase_map(map, erase_mask, params->size); } /** * spi_nor_init_flags() - Initialize NOR flags for settings that are not defined * in the JESD216 SFDP standard, thus can not be retrieved when parsing SFDP. * @nor: pointer to a 'struct spi_nor' */ static void spi_nor_init_flags(struct spi_nor *nor) { struct device_node *np = spi_nor_get_flash_node(nor); const u16 flags = nor->info->flags; if (of_property_read_bool(np, "broken-flash-reset")) nor->flags |= SNOR_F_BROKEN_RESET; if (of_property_read_bool(np, "no-wp")) nor->flags |= SNOR_F_NO_WP; if (flags & SPI_NOR_SWP_IS_VOLATILE) nor->flags |= SNOR_F_SWP_IS_VOLATILE; if (flags & SPI_NOR_HAS_LOCK) nor->flags |= SNOR_F_HAS_LOCK; if (flags & SPI_NOR_HAS_TB) { nor->flags |= SNOR_F_HAS_SR_TB; if (flags & SPI_NOR_TB_SR_BIT6) nor->flags |= SNOR_F_HAS_SR_TB_BIT6; } if (flags & SPI_NOR_4BIT_BP) { nor->flags |= SNOR_F_HAS_4BIT_BP; if (flags & SPI_NOR_BP3_SR_BIT6) nor->flags |= SNOR_F_HAS_SR_BP3_BIT6; } if (flags & SPI_NOR_RWW && nor->params->n_banks > 1 && !nor->controller_ops) nor->flags |= SNOR_F_RWW; } /** * spi_nor_init_fixup_flags() - Initialize NOR flags for settings that can not * be discovered by SFDP for this particular flash because the SFDP table that * indicates this support is not defined in the flash. In case the table for * this support is defined but has wrong values, one should instead use a * post_sfdp() hook to set the SNOR_F equivalent flag. * @nor: pointer to a 'struct spi_nor' */ static void spi_nor_init_fixup_flags(struct spi_nor *nor) { const u8 fixup_flags = nor->info->fixup_flags; if (fixup_flags & SPI_NOR_4B_OPCODES) nor->flags |= SNOR_F_4B_OPCODES; if (fixup_flags & SPI_NOR_IO_MODE_EN_VOLATILE) nor->flags |= SNOR_F_IO_MODE_EN_VOLATILE; } /** * spi_nor_late_init_params() - Late initialization of default flash parameters. * @nor: pointer to a 'struct spi_nor' * * Used to initialize flash parameters that are not declared in the JESD216 * SFDP standard, or where SFDP tables are not defined at all. * Will replace the spi_nor_manufacturer_init_params() method. */ static int spi_nor_late_init_params(struct spi_nor *nor) { struct spi_nor_flash_parameter *params = nor->params; int ret; if (nor->manufacturer && nor->manufacturer->fixups && nor->manufacturer->fixups->late_init) { ret = nor->manufacturer->fixups->late_init(nor); if (ret) return ret; } /* Needed by some flashes late_init hooks. */ spi_nor_init_flags(nor); if (nor->info->fixups && nor->info->fixups->late_init) { ret = nor->info->fixups->late_init(nor); if (ret) return ret; } if (!nor->params->die_erase_opcode) nor->params->die_erase_opcode = SPINOR_OP_CHIP_ERASE; /* Default method kept for backward compatibility. */ if (!params->set_4byte_addr_mode) params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_brwr; spi_nor_init_fixup_flags(nor); /* * NOR protection support. When locking_ops are not provided, we pick * the default ones. */ if (nor->flags & SNOR_F_HAS_LOCK && !nor->params->locking_ops) spi_nor_init_default_locking_ops(nor); if (params->n_banks > 1) params->bank_size = div_u64(params->size, params->n_banks); return 0; } /** * spi_nor_sfdp_init_params_deprecated() - Deprecated way of initializing flash * parameters and settings based on JESD216 SFDP standard. * @nor: pointer to a 'struct spi_nor'. * * The method has a roll-back mechanism: in case the SFDP parsing fails, the * legacy flash parameters and settings will be restored. */ static void spi_nor_sfdp_init_params_deprecated(struct spi_nor *nor) { struct spi_nor_flash_parameter sfdp_params; memcpy(&sfdp_params, nor->params, sizeof(sfdp_params)); if (spi_nor_parse_sfdp(nor)) { memcpy(nor->params, &sfdp_params, sizeof(*nor->params)); nor->flags &= ~SNOR_F_4B_OPCODES; } } /** * spi_nor_init_params_deprecated() - Deprecated way of initializing flash * parameters and settings. * @nor: pointer to a 'struct spi_nor'. * * The method assumes that flash doesn't support SFDP so it initializes flash * parameters in spi_nor_no_sfdp_init_params() which later on can be overwritten * when parsing SFDP, if supported. */ static void spi_nor_init_params_deprecated(struct spi_nor *nor) { spi_nor_no_sfdp_init_params(nor); spi_nor_manufacturer_init_params(nor); if (nor->info->no_sfdp_flags & (SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_OCTAL_READ | SPI_NOR_OCTAL_DTR_READ)) spi_nor_sfdp_init_params_deprecated(nor); } /** * spi_nor_init_default_params() - Default initialization of flash parameters * and settings. Done for all flashes, regardless is they define SFDP tables * or not. * @nor: pointer to a 'struct spi_nor'. */ static void spi_nor_init_default_params(struct spi_nor *nor) { struct spi_nor_flash_parameter *params = nor->params; const struct flash_info *info = nor->info; struct device_node *np = spi_nor_get_flash_node(nor); params->quad_enable = spi_nor_sr2_bit1_quad_enable; params->otp.org = info->otp; /* Default to 16-bit Write Status (01h) Command */ nor->flags |= SNOR_F_HAS_16BIT_SR; /* Set SPI NOR sizes. */ params->writesize = 1; params->size = info->size; params->bank_size = params->size; params->page_size = info->page_size ?: SPI_NOR_DEFAULT_PAGE_SIZE; params->n_banks = info->n_banks ?: SPI_NOR_DEFAULT_N_BANKS; /* Default to Fast Read for non-DT and enable it if requested by DT. */ if (!np || of_property_read_bool(np, "m25p,fast-read")) params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST; /* (Fast) Read settings. */ params->hwcaps.mask |= SNOR_HWCAPS_READ; spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ], 0, 0, SPINOR_OP_READ, SNOR_PROTO_1_1_1); if (params->hwcaps.mask & SNOR_HWCAPS_READ_FAST) spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_FAST], 0, 8, SPINOR_OP_READ_FAST, SNOR_PROTO_1_1_1); /* Page Program settings. */ params->hwcaps.mask |= SNOR_HWCAPS_PP; spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP], SPINOR_OP_PP, SNOR_PROTO_1_1_1); if (info->flags & SPI_NOR_QUAD_PP) { params->hwcaps.mask |= SNOR_HWCAPS_PP_1_1_4; spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP_1_1_4], SPINOR_OP_PP_1_1_4, SNOR_PROTO_1_1_4); } } /** * spi_nor_init_params() - Initialize the flash's parameters and settings. * @nor: pointer to a 'struct spi_nor'. * * The flash parameters and settings are initialized based on a sequence of * calls that are ordered by priority: * * 1/ Default flash parameters initialization. The initializations are done * based on nor->info data: * spi_nor_info_init_params() * * which can be overwritten by: * 2/ Manufacturer flash parameters initialization. The initializations are * done based on MFR register, or when the decisions can not be done solely * based on MFR, by using specific flash_info tweeks, ->default_init(): * spi_nor_manufacturer_init_params() * * which can be overwritten by: * 3/ SFDP flash parameters initialization. JESD216 SFDP is a standard and * should be more accurate that the above. * spi_nor_parse_sfdp() or spi_nor_no_sfdp_init_params() * * Please note that there is a ->post_bfpt() fixup hook that can overwrite * the flash parameters and settings immediately after parsing the Basic * Flash Parameter Table. * spi_nor_post_sfdp_fixups() is called after the SFDP tables are parsed. * It is used to tweak various flash parameters when information provided * by the SFDP tables are wrong. * * which can be overwritten by: * 4/ Late flash parameters initialization, used to initialize flash * parameters that are not declared in the JESD216 SFDP standard, or where SFDP * tables are not defined at all. * spi_nor_late_init_params() * * Return: 0 on success, -errno otherwise. */ static int spi_nor_init_params(struct spi_nor *nor) { int ret; nor->params = devm_kzalloc(nor->dev, sizeof(*nor->params), GFP_KERNEL); if (!nor->params) return -ENOMEM; spi_nor_init_default_params(nor); if (spi_nor_needs_sfdp(nor)) { ret = spi_nor_parse_sfdp(nor); if (ret) { dev_err(nor->dev, "BFPT parsing failed. Please consider using SPI_NOR_SKIP_SFDP when declaring the flash\n"); return ret; } } else if (nor->info->no_sfdp_flags & SPI_NOR_SKIP_SFDP) { spi_nor_no_sfdp_init_params(nor); } else { spi_nor_init_params_deprecated(nor); } ret = spi_nor_late_init_params(nor); if (ret) return ret; if (WARN_ON(!is_power_of_2(nor->params->page_size))) return -EINVAL; return 0; } /** spi_nor_set_octal_dtr() - enable or disable Octal DTR I/O. * @nor: pointer to a 'struct spi_nor' * @enable: whether to enable or disable Octal DTR * * Return: 0 on success, -errno otherwise. */ static int spi_nor_set_octal_dtr(struct spi_nor *nor, bool enable) { int ret; if (!nor->params->set_octal_dtr) return 0; if (!(nor->read_proto == SNOR_PROTO_8_8_8_DTR && nor->write_proto == SNOR_PROTO_8_8_8_DTR)) return 0; if (!(nor->flags & SNOR_F_IO_MODE_EN_VOLATILE)) return 0; ret = nor->params->set_octal_dtr(nor, enable); if (ret) return ret; if (enable) nor->reg_proto = SNOR_PROTO_8_8_8_DTR; else nor->reg_proto = SNOR_PROTO_1_1_1; return 0; } /** * spi_nor_quad_enable() - enable Quad I/O if needed. * @nor: pointer to a 'struct spi_nor' * * Return: 0 on success, -errno otherwise. */ static int spi_nor_quad_enable(struct spi_nor *nor) { if (!nor->params->quad_enable) return 0; if (!(spi_nor_get_protocol_width(nor->read_proto) == 4 || spi_nor_get_protocol_width(nor->write_proto) == 4)) return 0; return nor->params->quad_enable(nor); } /** * spi_nor_set_4byte_addr_mode() - Set address mode. * @nor: pointer to a 'struct spi_nor'. * @enable: enable/disable 4 byte address mode. * * Return: 0 on success, -errno otherwise. */ int spi_nor_set_4byte_addr_mode(struct spi_nor *nor, bool enable) { struct spi_nor_flash_parameter *params = nor->params; int ret; if (enable) { /* * If the RESET# pin isn't hooked up properly, or the system * otherwise doesn't perform a reset command in the boot * sequence, it's impossible to 100% protect against unexpected * reboots (e.g., crashes). Warn the user (or hopefully, system * designer) that this is bad. */ WARN_ONCE(nor->flags & SNOR_F_BROKEN_RESET, "enabling reset hack; may not recover from unexpected reboots\n"); } ret = params->set_4byte_addr_mode(nor, enable); if (ret && ret != -EOPNOTSUPP) return ret; if (enable) { params->addr_nbytes = 4; params->addr_mode_nbytes = 4; } else { params->addr_nbytes = 3; params->addr_mode_nbytes = 3; } return 0; } static int spi_nor_init(struct spi_nor *nor) { int err; err = spi_nor_set_octal_dtr(nor, true); if (err) { dev_dbg(nor->dev, "octal mode not supported\n"); return err; } err = spi_nor_quad_enable(nor); if (err) { dev_dbg(nor->dev, "quad mode not supported\n"); return err; } /* * Some SPI NOR flashes are write protected by default after a power-on * reset cycle, in order to avoid inadvertent writes during power-up. * Backward compatibility imposes to unlock the entire flash memory * array at power-up by default. Depending on the kernel configuration * (1) do nothing, (2) always unlock the entire flash array or (3) * unlock the entire flash array only when the software write * protection bits are volatile. The latter is indicated by * SNOR_F_SWP_IS_VOLATILE. */ if (IS_ENABLED(CONFIG_MTD_SPI_NOR_SWP_DISABLE) || (IS_ENABLED(CONFIG_MTD_SPI_NOR_SWP_DISABLE_ON_VOLATILE) && nor->flags & SNOR_F_SWP_IS_VOLATILE)) spi_nor_try_unlock_all(nor); if (nor->addr_nbytes == 4 && nor->read_proto != SNOR_PROTO_8_8_8_DTR && !(nor->flags & SNOR_F_4B_OPCODES)) return spi_nor_set_4byte_addr_mode(nor, true); return 0; } /** * spi_nor_soft_reset() - Perform a software reset * @nor: pointer to 'struct spi_nor' * * Performs a "Soft Reset and Enter Default Protocol Mode" sequence which resets * the device to its power-on-reset state. This is useful when the software has * made some changes to device (volatile) registers and needs to reset it before * shutting down, for example. * * Not every flash supports this sequence. The same set of opcodes might be used * for some other operation on a flash that does not support this. Support for * this sequence can be discovered via SFDP in the BFPT table. * * Return: 0 on success, -errno otherwise. */ static void spi_nor_soft_reset(struct spi_nor *nor) { struct spi_mem_op op; int ret; op = (struct spi_mem_op)SPINOR_SRSTEN_OP; spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); ret = spi_mem_exec_op(nor->spimem, &op); if (ret) { if (ret != -EOPNOTSUPP) dev_warn(nor->dev, "Software reset failed: %d\n", ret); return; } op = (struct spi_mem_op)SPINOR_SRST_OP; spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); ret = spi_mem_exec_op(nor->spimem, &op); if (ret) { dev_warn(nor->dev, "Software reset failed: %d\n", ret); return; } /* * Software Reset is not instant, and the delay varies from flash to * flash. Looking at a few flashes, most range somewhere below 100 * microseconds. So, sleep for a range of 200-400 us. */ usleep_range(SPI_NOR_SRST_SLEEP_MIN, SPI_NOR_SRST_SLEEP_MAX); } /* mtd suspend handler */ static int spi_nor_suspend(struct mtd_info *mtd) { struct spi_nor *nor = mtd_to_spi_nor(mtd); int ret; /* Disable octal DTR mode if we enabled it. */ ret = spi_nor_set_octal_dtr(nor, false); if (ret) dev_err(nor->dev, "suspend() failed\n"); return ret; } /* mtd resume handler */ static void spi_nor_resume(struct mtd_info *mtd) { struct spi_nor *nor = mtd_to_spi_nor(mtd); struct device *dev = nor->dev; int ret; /* re-initialize the nor chip */ ret = spi_nor_init(nor); if (ret) dev_err(dev, "resume() failed\n"); } static int spi_nor_get_device(struct mtd_info *mtd) { struct mtd_info *master = mtd_get_master(mtd); struct spi_nor *nor = mtd_to_spi_nor(master); struct device *dev; if (nor->spimem) dev = nor->spimem->spi->controller->dev.parent; else dev = nor->dev; if (!try_module_get(dev->driver->owner)) return -ENODEV; return 0; } static void spi_nor_put_device(struct mtd_info *mtd) { struct mtd_info *master = mtd_get_master(mtd); struct spi_nor *nor = mtd_to_spi_nor(master); struct device *dev; if (nor->spimem) dev = nor->spimem->spi->controller->dev.parent; else dev = nor->dev; module_put(dev->driver->owner); } static void spi_nor_restore(struct spi_nor *nor) { int ret; /* restore the addressing mode */ if (nor->addr_nbytes == 4 && !(nor->flags & SNOR_F_4B_OPCODES) && nor->flags & SNOR_F_BROKEN_RESET) { ret = spi_nor_set_4byte_addr_mode(nor, false); if (ret) /* * Do not stop the execution in the hope that the flash * will default to the 3-byte address mode after the * software reset. */ dev_err(nor->dev, "Failed to exit 4-byte address mode, err = %d\n", ret); } if (nor->flags & SNOR_F_SOFT_RESET) spi_nor_soft_reset(nor); } static const struct flash_info *spi_nor_match_name(struct spi_nor *nor, const char *name) { unsigned int i, j; for (i = 0; i < ARRAY_SIZE(manufacturers); i++) { for (j = 0; j < manufacturers[i]->nparts; j++) { if (manufacturers[i]->parts[j].name && !strcmp(name, manufacturers[i]->parts[j].name)) { nor->manufacturer = manufacturers[i]; return &manufacturers[i]->parts[j]; } } } return NULL; } static const struct flash_info *spi_nor_get_flash_info(struct spi_nor *nor, const char *name) { const struct flash_info *info = NULL; if (name) info = spi_nor_match_name(nor, name); /* * Auto-detect if chip name wasn't specified or not found, or the chip * has an ID. If the chip supposedly has an ID, we also do an * auto-detection to compare it later. */ if (!info || info->id) { const struct flash_info *jinfo; jinfo = spi_nor_detect(nor); if (IS_ERR(jinfo)) return jinfo; /* * If caller has specified name of flash model that can normally * be detected using JEDEC, let's verify it. */ if (info && jinfo != info) dev_warn(nor->dev, "found %s, expected %s\n", jinfo->name, info->name); /* If info was set before, JEDEC knows better. */ info = jinfo; } return info; } static u32 spi_nor_get_region_erasesize(const struct spi_nor_erase_region *region, const struct spi_nor_erase_type *erase_type) { int i; if (region->overlaid) return region->size; for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) { if (region->erase_mask & BIT(i)) return erase_type[i].size; } return 0; } static int spi_nor_set_mtd_eraseregions(struct spi_nor *nor) { const struct spi_nor_erase_map *map = &nor->params->erase_map; const struct spi_nor_erase_region *region = map->regions; struct mtd_erase_region_info *mtd_region; struct mtd_info *mtd = &nor->mtd; u32 erasesize, i; mtd_region = devm_kcalloc(nor->dev, map->n_regions, sizeof(*mtd_region), GFP_KERNEL); if (!mtd_region) return -ENOMEM; for (i = 0; i < map->n_regions; i++) { erasesize = spi_nor_get_region_erasesize(®ion[i], map->erase_type); if (!erasesize) return -EINVAL; mtd_region[i].erasesize = erasesize; mtd_region[i].numblocks = div_u64(region[i].size, erasesize); mtd_region[i].offset = region[i].offset; } mtd->numeraseregions = map->n_regions; mtd->eraseregions = mtd_region; return 0; } static int spi_nor_set_mtd_info(struct spi_nor *nor) { struct mtd_info *mtd = &nor->mtd; struct device *dev = nor->dev; spi_nor_set_mtd_locking_ops(nor); spi_nor_set_mtd_otp_ops(nor); mtd->dev.parent = dev; if (!mtd->name) mtd->name = dev_name(dev); mtd->type = MTD_NORFLASH; mtd->flags = MTD_CAP_NORFLASH; /* Unset BIT_WRITEABLE to enable JFFS2 write buffer for ECC'd NOR */ if (nor->flags & SNOR_F_ECC) mtd->flags &= ~MTD_BIT_WRITEABLE; if (nor->info->flags & SPI_NOR_NO_ERASE) mtd->flags |= MTD_NO_ERASE; else mtd->_erase = spi_nor_erase; mtd->writesize = nor->params->writesize; mtd->writebufsize = nor->params->page_size; mtd->size = nor->params->size; mtd->_read = spi_nor_read; /* Might be already set by some SST flashes. */ if (!mtd->_write) mtd->_write = spi_nor_write; mtd->_suspend = spi_nor_suspend; mtd->_resume = spi_nor_resume; mtd->_get_device = spi_nor_get_device; mtd->_put_device = spi_nor_put_device; if (!spi_nor_has_uniform_erase(nor)) return spi_nor_set_mtd_eraseregions(nor); return 0; } static int spi_nor_hw_reset(struct spi_nor *nor) { struct gpio_desc *reset; reset = devm_gpiod_get_optional(nor->dev, "reset", GPIOD_OUT_LOW); if (IS_ERR_OR_NULL(reset)) return PTR_ERR_OR_ZERO(reset); /* * Experimental delay values by looking at different flash device * vendors datasheets. */ usleep_range(1, 5); gpiod_set_value_cansleep(reset, 1); usleep_range(100, 150); gpiod_set_value_cansleep(reset, 0); usleep_range(1000, 1200); return 0; } int spi_nor_scan(struct spi_nor *nor, const char *name, const struct spi_nor_hwcaps *hwcaps) { const struct flash_info *info; struct device *dev = nor->dev; int ret; ret = spi_nor_check(nor); if (ret) return ret; /* Reset SPI protocol for all commands. */ nor->reg_proto = SNOR_PROTO_1_1_1; nor->read_proto = SNOR_PROTO_1_1_1; nor->write_proto = SNOR_PROTO_1_1_1; /* * We need the bounce buffer early to read/write registers when going * through the spi-mem layer (buffers have to be DMA-able). * For spi-mem drivers, we'll reallocate a new buffer if * nor->params->page_size turns out to be greater than PAGE_SIZE (which * shouldn't happen before long since NOR pages are usually less * than 1KB) after spi_nor_scan() returns. */ nor->bouncebuf_size = PAGE_SIZE; nor->bouncebuf = devm_kmalloc(dev, nor->bouncebuf_size, GFP_KERNEL); if (!nor->bouncebuf) return -ENOMEM; ret = spi_nor_hw_reset(nor); if (ret) return ret; info = spi_nor_get_flash_info(nor, name); if (IS_ERR(info)) return PTR_ERR(info); nor->info = info; mutex_init(&nor->lock); /* Init flash parameters based on flash_info struct and SFDP */ ret = spi_nor_init_params(nor); if (ret) return ret; if (spi_nor_use_parallel_locking(nor)) init_waitqueue_head(&nor->rww.wait); /* * Configure the SPI memory: * - select op codes for (Fast) Read, Page Program and Sector Erase. * - set the number of dummy cycles (mode cycles + wait states). * - set the SPI protocols for register and memory accesses. * - set the number of address bytes. */ ret = spi_nor_setup(nor, hwcaps); if (ret) return ret; /* Send all the required SPI flash commands to initialize device */ ret = spi_nor_init(nor); if (ret) return ret; /* No mtd_info fields should be used up to this point. */ ret = spi_nor_set_mtd_info(nor); if (ret) return ret; dev_dbg(dev, "Manufacturer and device ID: %*phN\n", SPI_NOR_MAX_ID_LEN, nor->id); return 0; } EXPORT_SYMBOL_GPL(spi_nor_scan); static int spi_nor_create_read_dirmap(struct spi_nor *nor) { struct spi_mem_dirmap_info info = { .op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 0), SPI_MEM_OP_ADDR(nor->addr_nbytes, 0, 0), SPI_MEM_OP_DUMMY(nor->read_dummy, 0), SPI_MEM_OP_DATA_IN(0, NULL, 0)), .offset = 0, .length = nor->params->size, }; struct spi_mem_op *op = &info.op_tmpl; spi_nor_spimem_setup_op(nor, op, nor->read_proto); /* convert the dummy cycles to the number of bytes */ op->dummy.nbytes = (nor->read_dummy * op->dummy.buswidth) / 8; if (spi_nor_protocol_is_dtr(nor->read_proto)) op->dummy.nbytes *= 2; /* * Since spi_nor_spimem_setup_op() only sets buswidth when the number * of data bytes is non-zero, the data buswidth won't be set here. So, * do it explicitly. */ op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto); nor->dirmap.rdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem, &info); return PTR_ERR_OR_ZERO(nor->dirmap.rdesc); } static int spi_nor_create_write_dirmap(struct spi_nor *nor) { struct spi_mem_dirmap_info info = { .op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 0), SPI_MEM_OP_ADDR(nor->addr_nbytes, 0, 0), SPI_MEM_OP_NO_DUMMY, SPI_MEM_OP_DATA_OUT(0, NULL, 0)), .offset = 0, .length = nor->params->size, }; struct spi_mem_op *op = &info.op_tmpl; if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second) op->addr.nbytes = 0; spi_nor_spimem_setup_op(nor, op, nor->write_proto); /* * Since spi_nor_spimem_setup_op() only sets buswidth when the number * of data bytes is non-zero, the data buswidth won't be set here. So, * do it explicitly. */ op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto); nor->dirmap.wdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem, &info); return PTR_ERR_OR_ZERO(nor->dirmap.wdesc); } static int spi_nor_probe(struct spi_mem *spimem) { struct spi_device *spi = spimem->spi; struct flash_platform_data *data = dev_get_platdata(&spi->dev); struct spi_nor *nor; /* * Enable all caps by default. The core will mask them after * checking what's really supported using spi_mem_supports_op(). */ const struct spi_nor_hwcaps hwcaps = { .mask = SNOR_HWCAPS_ALL }; char *flash_name; int ret; nor = devm_kzalloc(&spi->dev, sizeof(*nor), GFP_KERNEL); if (!nor) return -ENOMEM; nor->spimem = spimem; nor->dev = &spi->dev; spi_nor_set_flash_node(nor, spi->dev.of_node); spi_mem_set_drvdata(spimem, nor); if (data && data->name) nor->mtd.name = data->name; if (!nor->mtd.name) nor->mtd.name = spi_mem_get_name(spimem); /* * For some (historical?) reason many platforms provide two different * names in flash_platform_data: "name" and "type". Quite often name is * set to "m25p80" and then "type" provides a real chip name. * If that's the case, respect "type" and ignore a "name". */ if (data && data->type) flash_name = data->type; else if (!strcmp(spi->modalias, "spi-nor")) flash_name = NULL; /* auto-detect */ else flash_name = spi->modalias; ret = spi_nor_scan(nor, flash_name, &hwcaps); if (ret) return ret; spi_nor_debugfs_register(nor); /* * None of the existing parts have > 512B pages, but let's play safe * and add this logic so that if anyone ever adds support for such * a NOR we don't end up with buffer overflows. */ if (nor->params->page_size > PAGE_SIZE) { nor->bouncebuf_size = nor->params->page_size; devm_kfree(nor->dev, nor->bouncebuf); nor->bouncebuf = devm_kmalloc(nor->dev, nor->bouncebuf_size, GFP_KERNEL); if (!nor->bouncebuf) return -ENOMEM; } ret = spi_nor_create_read_dirmap(nor); if (ret) return ret; ret = spi_nor_create_write_dirmap(nor); if (ret) return ret; return mtd_device_register(&nor->mtd, data ? data->parts : NULL, data ? data->nr_parts : 0); } static int spi_nor_remove(struct spi_mem *spimem) { struct spi_nor *nor = spi_mem_get_drvdata(spimem); spi_nor_restore(nor); /* Clean up MTD stuff. */ return mtd_device_unregister(&nor->mtd); } static void spi_nor_shutdown(struct spi_mem *spimem) { struct spi_nor *nor = spi_mem_get_drvdata(spimem); spi_nor_restore(nor); } /* * Do NOT add to this array without reading the following: * * Historically, many flash devices are bound to this driver by their name. But * since most of these flash are compatible to some extent, and their * differences can often be differentiated by the JEDEC read-ID command, we * encourage new users to add support to the spi-nor library, and simply bind * against a generic string here (e.g., "jedec,spi-nor"). * * Many flash names are kept here in this list to keep them available * as module aliases for existing platforms. */ static const struct spi_device_id spi_nor_dev_ids[] = { /* * Allow non-DT platform devices to bind to the "spi-nor" modalias, and * hack around the fact that the SPI core does not provide uevent * matching for .of_match_table */ {"spi-nor"}, /* * Entries not used in DTs that should be safe to drop after replacing * them with "spi-nor" in platform data. */ {"s25sl064a"}, {"w25x16"}, {"m25p10"}, {"m25px64"}, /* * Entries that were used in DTs without "jedec,spi-nor" fallback and * should be kept for backward compatibility. */ {"at25df321a"}, {"at25df641"}, {"at26df081a"}, {"mx25l4005a"}, {"mx25l1606e"}, {"mx25l6405d"}, {"mx25l12805d"}, {"mx25l25635e"},{"mx66l51235l"}, {"n25q064"}, {"n25q128a11"}, {"n25q128a13"}, {"n25q512a"}, {"s25fl256s1"}, {"s25fl512s"}, {"s25sl12801"}, {"s25fl008k"}, {"s25fl064k"}, {"sst25vf040b"},{"sst25vf016b"},{"sst25vf032b"},{"sst25wf040"}, {"m25p40"}, {"m25p80"}, {"m25p16"}, {"m25p32"}, {"m25p64"}, {"m25p128"}, {"w25x80"}, {"w25x32"}, {"w25q32"}, {"w25q32dw"}, {"w25q80bl"}, {"w25q128"}, {"w25q256"}, /* Flashes that can't be detected using JEDEC */ {"m25p05-nonjedec"}, {"m25p10-nonjedec"}, {"m25p20-nonjedec"}, {"m25p40-nonjedec"}, {"m25p80-nonjedec"}, {"m25p16-nonjedec"}, {"m25p32-nonjedec"}, {"m25p64-nonjedec"}, {"m25p128-nonjedec"}, /* Everspin MRAMs (non-JEDEC) */ { "mr25h128" }, /* 128 Kib, 40 MHz */ { "mr25h256" }, /* 256 Kib, 40 MHz */ { "mr25h10" }, /* 1 Mib, 40 MHz */ { "mr25h40" }, /* 4 Mib, 40 MHz */ { }, }; MODULE_DEVICE_TABLE(spi, spi_nor_dev_ids); static const struct of_device_id spi_nor_of_table[] = { /* * Generic compatibility for SPI NOR that can be identified by the * JEDEC READ ID opcode (0x9F). Use this, if possible. */ { .compatible = "jedec,spi-nor" }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, spi_nor_of_table); /* * REVISIT: many of these chips have deep power-down modes, which * should clearly be entered on suspend() to minimize power use. * And also when they're otherwise idle... */ static struct spi_mem_driver spi_nor_driver = { .spidrv = { .driver = { .name = "spi-nor", .of_match_table = spi_nor_of_table, .dev_groups = spi_nor_sysfs_groups, }, .id_table = spi_nor_dev_ids, }, .probe = spi_nor_probe, .remove = spi_nor_remove, .shutdown = spi_nor_shutdown, }; static int __init spi_nor_module_init(void) { return spi_mem_driver_register(&spi_nor_driver); } module_init(spi_nor_module_init); static void __exit spi_nor_module_exit(void) { spi_mem_driver_unregister(&spi_nor_driver); spi_nor_debugfs_shutdown(); } module_exit(spi_nor_module_exit); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Huang Shijie "); MODULE_AUTHOR("Mike Lavender"); MODULE_DESCRIPTION("framework for SPI NOR");