// SPDX-License-Identifier: GPL-2.0 /* Marvell Octeon EP (EndPoint) Ethernet Driver * * Copyright (C) 2020 Marvell. * */ #include #include #include #include "octep_config.h" #include "octep_main.h" static void octep_oq_reset_indices(struct octep_oq *oq) { oq->host_read_idx = 0; oq->host_refill_idx = 0; oq->refill_count = 0; oq->last_pkt_count = 0; oq->pkts_pending = 0; } /** * octep_oq_fill_ring_buffers() - fill initial receive buffers for Rx ring. * * @oq: Octeon Rx queue data structure. * * Return: 0, if successfully filled receive buffers for all descriptors. * -1, if failed to allocate a buffer or failed to map for DMA. */ static int octep_oq_fill_ring_buffers(struct octep_oq *oq) { struct octep_oq_desc_hw *desc_ring = oq->desc_ring; struct page *page; u32 i; for (i = 0; i < oq->max_count; i++) { page = dev_alloc_page(); if (unlikely(!page)) { dev_err(oq->dev, "Rx buffer alloc failed\n"); goto rx_buf_alloc_err; } desc_ring[i].buffer_ptr = dma_map_page(oq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE); if (dma_mapping_error(oq->dev, desc_ring[i].buffer_ptr)) { dev_err(oq->dev, "OQ-%d buffer alloc: DMA mapping error!\n", oq->q_no); put_page(page); goto dma_map_err; } oq->buff_info[i].page = page; } return 0; dma_map_err: rx_buf_alloc_err: while (i) { i--; dma_unmap_page(oq->dev, desc_ring[i].buffer_ptr, PAGE_SIZE, DMA_FROM_DEVICE); put_page(oq->buff_info[i].page); oq->buff_info[i].page = NULL; } return -1; } /** * octep_oq_refill() - refill buffers for used Rx ring descriptors. * * @oct: Octeon device private data structure. * @oq: Octeon Rx queue data structure. * * Return: number of descriptors successfully refilled with receive buffers. */ static int octep_oq_refill(struct octep_device *oct, struct octep_oq *oq) { struct octep_oq_desc_hw *desc_ring = oq->desc_ring; struct page *page; u32 refill_idx, i; refill_idx = oq->host_refill_idx; for (i = 0; i < oq->refill_count; i++) { page = dev_alloc_page(); if (unlikely(!page)) { dev_err(oq->dev, "refill: rx buffer alloc failed\n"); oq->stats->alloc_failures++; break; } desc_ring[refill_idx].buffer_ptr = dma_map_page(oq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE); if (dma_mapping_error(oq->dev, desc_ring[refill_idx].buffer_ptr)) { dev_err(oq->dev, "OQ-%d buffer refill: DMA mapping error!\n", oq->q_no); put_page(page); oq->stats->alloc_failures++; break; } oq->buff_info[refill_idx].page = page; refill_idx++; if (refill_idx == oq->max_count) refill_idx = 0; } oq->host_refill_idx = refill_idx; oq->refill_count -= i; return i; } /** * octep_setup_oq() - Setup a Rx queue. * * @oct: Octeon device private data structure. * @q_no: Rx queue number to be setup. * * Allocate resources for a Rx queue. */ static int octep_setup_oq(struct octep_device *oct, int q_no) { struct octep_oq *oq; u32 desc_ring_size; oq = vzalloc(sizeof(*oq)); if (!oq) goto create_oq_fail; oct->oq[q_no] = oq; oq->octep_dev = oct; oq->netdev = oct->netdev; oq->dev = &oct->pdev->dev; oq->q_no = q_no; oq->stats = &oct->stats_oq[q_no]; oq->max_count = CFG_GET_OQ_NUM_DESC(oct->conf); oq->ring_size_mask = oq->max_count - 1; oq->buffer_size = CFG_GET_OQ_BUF_SIZE(oct->conf); oq->max_single_buffer_size = oq->buffer_size - OCTEP_OQ_RESP_HW_SIZE; /* When the hardware/firmware supports additional capabilities, * additional header is filled-in by Octeon after length field in * Rx packets. this header contains additional packet information. */ if (oct->conf->fw_info.rx_ol_flags) oq->max_single_buffer_size -= OCTEP_OQ_RESP_HW_EXT_SIZE; oq->refill_threshold = CFG_GET_OQ_REFILL_THRESHOLD(oct->conf); desc_ring_size = oq->max_count * OCTEP_OQ_DESC_SIZE; oq->desc_ring = dma_alloc_coherent(oq->dev, desc_ring_size, &oq->desc_ring_dma, GFP_KERNEL); if (unlikely(!oq->desc_ring)) { dev_err(oq->dev, "Failed to allocate DMA memory for OQ-%d !!\n", q_no); goto desc_dma_alloc_err; } oq->buff_info = vcalloc(oq->max_count, OCTEP_OQ_RECVBUF_SIZE); if (unlikely(!oq->buff_info)) { dev_err(&oct->pdev->dev, "Failed to allocate buffer info for OQ-%d\n", q_no); goto buf_list_err; } if (octep_oq_fill_ring_buffers(oq)) goto oq_fill_buff_err; octep_oq_reset_indices(oq); oct->hw_ops.setup_oq_regs(oct, q_no); oct->num_oqs++; return 0; oq_fill_buff_err: vfree(oq->buff_info); oq->buff_info = NULL; buf_list_err: dma_free_coherent(oq->dev, desc_ring_size, oq->desc_ring, oq->desc_ring_dma); oq->desc_ring = NULL; desc_dma_alloc_err: vfree(oq); oct->oq[q_no] = NULL; create_oq_fail: return -1; } /** * octep_oq_free_ring_buffers() - Free ring buffers. * * @oq: Octeon Rx queue data structure. * * Free receive buffers in unused Rx queue descriptors. */ static void octep_oq_free_ring_buffers(struct octep_oq *oq) { struct octep_oq_desc_hw *desc_ring = oq->desc_ring; int i; if (!oq->desc_ring || !oq->buff_info) return; for (i = 0; i < oq->max_count; i++) { if (oq->buff_info[i].page) { dma_unmap_page(oq->dev, desc_ring[i].buffer_ptr, PAGE_SIZE, DMA_FROM_DEVICE); put_page(oq->buff_info[i].page); oq->buff_info[i].page = NULL; desc_ring[i].buffer_ptr = 0; } } octep_oq_reset_indices(oq); } /** * octep_free_oq() - Free Rx queue resources. * * @oq: Octeon Rx queue data structure. * * Free all resources of a Rx queue. */ static int octep_free_oq(struct octep_oq *oq) { struct octep_device *oct = oq->octep_dev; int q_no = oq->q_no; octep_oq_free_ring_buffers(oq); vfree(oq->buff_info); if (oq->desc_ring) dma_free_coherent(oq->dev, oq->max_count * OCTEP_OQ_DESC_SIZE, oq->desc_ring, oq->desc_ring_dma); vfree(oq); oct->oq[q_no] = NULL; oct->num_oqs--; return 0; } /** * octep_setup_oqs() - setup resources for all Rx queues. * * @oct: Octeon device private data structure. */ int octep_setup_oqs(struct octep_device *oct) { int i, retval = 0; oct->num_oqs = 0; for (i = 0; i < CFG_GET_PORTS_ACTIVE_IO_RINGS(oct->conf); i++) { retval = octep_setup_oq(oct, i); if (retval) { dev_err(&oct->pdev->dev, "Failed to setup OQ(RxQ)-%d.\n", i); goto oq_setup_err; } dev_dbg(&oct->pdev->dev, "Successfully setup OQ(RxQ)-%d.\n", i); } return 0; oq_setup_err: while (i) { i--; octep_free_oq(oct->oq[i]); } return -1; } /** * octep_oq_dbell_init() - Initialize Rx queue doorbell. * * @oct: Octeon device private data structure. * * Write number of descriptors to Rx queue doorbell register. */ void octep_oq_dbell_init(struct octep_device *oct) { int i; for (i = 0; i < oct->num_oqs; i++) writel(oct->oq[i]->max_count, oct->oq[i]->pkts_credit_reg); } /** * octep_free_oqs() - Free resources of all Rx queues. * * @oct: Octeon device private data structure. */ void octep_free_oqs(struct octep_device *oct) { int i; for (i = 0; i < CFG_GET_PORTS_ACTIVE_IO_RINGS(oct->conf); i++) { if (!oct->oq[i]) continue; octep_free_oq(oct->oq[i]); dev_dbg(&oct->pdev->dev, "Successfully freed OQ(RxQ)-%d.\n", i); } } /** * octep_oq_check_hw_for_pkts() - Check for new Rx packets. * * @oct: Octeon device private data structure. * @oq: Octeon Rx queue data structure. * * Return: packets received after previous check. */ static int octep_oq_check_hw_for_pkts(struct octep_device *oct, struct octep_oq *oq) { u32 pkt_count, new_pkts; pkt_count = readl(oq->pkts_sent_reg); new_pkts = pkt_count - oq->last_pkt_count; /* Clear the hardware packets counter register if the rx queue is * being processed continuously with-in a single interrupt and * reached half its max value. * this counter is not cleared every time read, to save write cycles. */ if (unlikely(pkt_count > 0xF0000000U)) { writel(pkt_count, oq->pkts_sent_reg); pkt_count = readl(oq->pkts_sent_reg); new_pkts += pkt_count; } oq->last_pkt_count = pkt_count; oq->pkts_pending += new_pkts; return new_pkts; } /** * octep_oq_next_pkt() - Move to the next packet in Rx queue. * * @oq: Octeon Rx queue data structure. * @buff_info: Current packet buffer info. * @read_idx: Current packet index in the ring. * @desc_used: Current packet descriptor number. * * Free the resources associated with a packet. * Increment packet index in the ring and packet descriptor number. */ static void octep_oq_next_pkt(struct octep_oq *oq, struct octep_rx_buffer *buff_info, u32 *read_idx, u32 *desc_used) { dma_unmap_page(oq->dev, oq->desc_ring[*read_idx].buffer_ptr, PAGE_SIZE, DMA_FROM_DEVICE); buff_info->page = NULL; (*read_idx)++; (*desc_used)++; if (*read_idx == oq->max_count) *read_idx = 0; } /** * octep_oq_drop_rx() - Free the resources associated with a packet. * * @oq: Octeon Rx queue data structure. * @buff_info: Current packet buffer info. * @read_idx: Current packet index in the ring. * @desc_used: Current packet descriptor number. * */ static void octep_oq_drop_rx(struct octep_oq *oq, struct octep_rx_buffer *buff_info, u32 *read_idx, u32 *desc_used) { int data_len = buff_info->len - oq->max_single_buffer_size; while (data_len > 0) { octep_oq_next_pkt(oq, buff_info, read_idx, desc_used); data_len -= oq->buffer_size; }; } /** * __octep_oq_process_rx() - Process hardware Rx queue and push to stack. * * @oct: Octeon device private data structure. * @oq: Octeon Rx queue data structure. * @pkts_to_process: number of packets to be processed. * * Process the new packets in Rx queue. * Packets larger than single Rx buffer arrive in consecutive descriptors. * But, count returned by the API only accounts full packets, not fragments. * * Return: number of packets processed and pushed to stack. */ static int __octep_oq_process_rx(struct octep_device *oct, struct octep_oq *oq, u16 pkts_to_process) { struct octep_oq_resp_hw_ext *resp_hw_ext = NULL; netdev_features_t feat = oq->netdev->features; struct octep_rx_buffer *buff_info; struct octep_oq_resp_hw *resp_hw; u32 pkt, rx_bytes, desc_used; struct sk_buff *skb; u16 data_offset; u16 rx_ol_flags; u32 read_idx; read_idx = oq->host_read_idx; rx_bytes = 0; desc_used = 0; for (pkt = 0; pkt < pkts_to_process; pkt++) { buff_info = (struct octep_rx_buffer *)&oq->buff_info[read_idx]; resp_hw = page_address(buff_info->page); /* Swap the length field that is in Big-Endian to CPU */ buff_info->len = be64_to_cpu(resp_hw->length); if (oct->conf->fw_info.rx_ol_flags) { /* Extended response header is immediately after * response header (resp_hw) */ resp_hw_ext = (struct octep_oq_resp_hw_ext *) (resp_hw + 1); buff_info->len -= OCTEP_OQ_RESP_HW_EXT_SIZE; /* Packet Data is immediately after * extended response header. */ data_offset = OCTEP_OQ_RESP_HW_SIZE + OCTEP_OQ_RESP_HW_EXT_SIZE; rx_ol_flags = resp_hw_ext->rx_ol_flags; } else { /* Data is immediately after * Hardware Rx response header. */ data_offset = OCTEP_OQ_RESP_HW_SIZE; rx_ol_flags = 0; } octep_oq_next_pkt(oq, buff_info, &read_idx, &desc_used); skb = build_skb((void *)resp_hw, PAGE_SIZE); if (!skb) { octep_oq_drop_rx(oq, buff_info, &read_idx, &desc_used); oq->stats->alloc_failures++; continue; } skb_reserve(skb, data_offset); rx_bytes += buff_info->len; if (buff_info->len <= oq->max_single_buffer_size) { skb_put(skb, buff_info->len); } else { struct skb_shared_info *shinfo; u16 data_len; /* Head fragment includes response header(s); * subsequent fragments contains only data. */ skb_put(skb, oq->max_single_buffer_size); shinfo = skb_shinfo(skb); data_len = buff_info->len - oq->max_single_buffer_size; while (data_len) { buff_info = (struct octep_rx_buffer *) &oq->buff_info[read_idx]; if (data_len < oq->buffer_size) { buff_info->len = data_len; data_len = 0; } else { buff_info->len = oq->buffer_size; data_len -= oq->buffer_size; } skb_add_rx_frag(skb, shinfo->nr_frags, buff_info->page, 0, buff_info->len, buff_info->len); octep_oq_next_pkt(oq, buff_info, &read_idx, &desc_used); } } skb->dev = oq->netdev; skb->protocol = eth_type_trans(skb, skb->dev); if (feat & NETIF_F_RXCSUM && OCTEP_RX_CSUM_VERIFIED(rx_ol_flags)) skb->ip_summed = CHECKSUM_UNNECESSARY; else skb->ip_summed = CHECKSUM_NONE; napi_gro_receive(oq->napi, skb); } oq->host_read_idx = read_idx; oq->refill_count += desc_used; oq->stats->packets += pkt; oq->stats->bytes += rx_bytes; return pkt; } /** * octep_oq_process_rx() - Process Rx queue. * * @oq: Octeon Rx queue data structure. * @budget: max number of packets can be processed in one invocation. * * Check for newly received packets and process them. * Keeps checking for new packets until budget is used or no new packets seen. * * Return: number of packets processed. */ int octep_oq_process_rx(struct octep_oq *oq, int budget) { u32 pkts_available, pkts_processed, total_pkts_processed; struct octep_device *oct = oq->octep_dev; pkts_available = 0; pkts_processed = 0; total_pkts_processed = 0; while (total_pkts_processed < budget) { /* update pending count only when current one exhausted */ if (oq->pkts_pending == 0) octep_oq_check_hw_for_pkts(oct, oq); pkts_available = min(budget - total_pkts_processed, oq->pkts_pending); if (!pkts_available) break; pkts_processed = __octep_oq_process_rx(oct, oq, pkts_available); oq->pkts_pending -= pkts_processed; total_pkts_processed += pkts_processed; } if (oq->refill_count >= oq->refill_threshold) { u32 desc_refilled = octep_oq_refill(oct, oq); /* flush pending writes before updating credits */ wmb(); writel(desc_refilled, oq->pkts_credit_reg); } return total_pkts_processed; }