// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2024 AIROHA Inc * Author: Lorenzo Bianconi */ #include #include #include #include #include #include #include #include #include #include #include #include #include #define AIROHA_MAX_NUM_GDM_PORTS 1 #define AIROHA_MAX_NUM_QDMA 2 #define AIROHA_MAX_NUM_RSTS 3 #define AIROHA_MAX_NUM_XSI_RSTS 5 #define AIROHA_MAX_MTU 2000 #define AIROHA_MAX_PACKET_SIZE 2048 #define AIROHA_NUM_TX_RING 32 #define AIROHA_NUM_RX_RING 32 #define AIROHA_FE_MC_MAX_VLAN_TABLE 64 #define AIROHA_FE_MC_MAX_VLAN_PORT 16 #define AIROHA_NUM_TX_IRQ 2 #define HW_DSCP_NUM 2048 #define IRQ_QUEUE_LEN(_n) ((_n) ? 1024 : 2048) #define TX_DSCP_NUM 1024 #define RX_DSCP_NUM(_n) \ ((_n) == 2 ? 128 : \ (_n) == 11 ? 128 : \ (_n) == 15 ? 128 : \ (_n) == 0 ? 1024 : 16) #define PSE_RSV_PAGES 128 #define PSE_QUEUE_RSV_PAGES 64 /* FE */ #define PSE_BASE 0x0100 #define CSR_IFC_BASE 0x0200 #define CDM1_BASE 0x0400 #define GDM1_BASE 0x0500 #define PPE1_BASE 0x0c00 #define CDM2_BASE 0x1400 #define GDM2_BASE 0x1500 #define GDM3_BASE 0x1100 #define GDM4_BASE 0x2500 #define GDM_BASE(_n) \ ((_n) == 4 ? GDM4_BASE : \ (_n) == 3 ? GDM3_BASE : \ (_n) == 2 ? GDM2_BASE : GDM1_BASE) #define REG_FE_DMA_GLO_CFG 0x0000 #define FE_DMA_GLO_L2_SPACE_MASK GENMASK(7, 4) #define FE_DMA_GLO_PG_SZ_MASK BIT(3) #define REG_FE_RST_GLO_CFG 0x0004 #define FE_RST_GDM4_MBI_ARB_MASK BIT(3) #define FE_RST_GDM3_MBI_ARB_MASK BIT(2) #define FE_RST_CORE_MASK BIT(0) #define REG_FE_WAN_MAC_H 0x0030 #define REG_FE_LAN_MAC_H 0x0040 #define REG_FE_MAC_LMIN(_n) ((_n) + 0x04) #define REG_FE_MAC_LMAX(_n) ((_n) + 0x08) #define REG_FE_CDM1_OQ_MAP0 0x0050 #define REG_FE_CDM1_OQ_MAP1 0x0054 #define REG_FE_CDM1_OQ_MAP2 0x0058 #define REG_FE_CDM1_OQ_MAP3 0x005c #define REG_FE_PCE_CFG 0x0070 #define PCE_DPI_EN_MASK BIT(2) #define PCE_KA_EN_MASK BIT(1) #define PCE_MC_EN_MASK BIT(0) #define REG_FE_PSE_QUEUE_CFG_WR 0x0080 #define PSE_CFG_PORT_ID_MASK GENMASK(27, 24) #define PSE_CFG_QUEUE_ID_MASK GENMASK(20, 16) #define PSE_CFG_WR_EN_MASK BIT(8) #define PSE_CFG_OQRSV_SEL_MASK BIT(0) #define REG_FE_PSE_QUEUE_CFG_VAL 0x0084 #define PSE_CFG_OQ_RSV_MASK GENMASK(13, 0) #define PSE_FQ_CFG 0x008c #define PSE_FQ_LIMIT_MASK GENMASK(14, 0) #define REG_FE_PSE_BUF_SET 0x0090 #define PSE_SHARE_USED_LTHD_MASK GENMASK(31, 16) #define PSE_ALLRSV_MASK GENMASK(14, 0) #define REG_PSE_SHARE_USED_THD 0x0094 #define PSE_SHARE_USED_MTHD_MASK GENMASK(31, 16) #define PSE_SHARE_USED_HTHD_MASK GENMASK(15, 0) #define REG_GDM_MISC_CFG 0x0148 #define GDM2_RDM_ACK_WAIT_PREF_MASK BIT(9) #define GDM2_CHN_VLD_MODE_MASK BIT(5) #define REG_FE_CSR_IFC_CFG CSR_IFC_BASE #define FE_IFC_EN_MASK BIT(0) #define REG_FE_VIP_PORT_EN 0x01f0 #define REG_FE_IFC_PORT_EN 0x01f4 #define REG_PSE_IQ_REV1 (PSE_BASE + 0x08) #define PSE_IQ_RES1_P2_MASK GENMASK(23, 16) #define REG_PSE_IQ_REV2 (PSE_BASE + 0x0c) #define PSE_IQ_RES2_P5_MASK GENMASK(15, 8) #define PSE_IQ_RES2_P4_MASK GENMASK(7, 0) #define REG_FE_VIP_EN(_n) (0x0300 + ((_n) << 3)) #define PATN_FCPU_EN_MASK BIT(7) #define PATN_SWP_EN_MASK BIT(6) #define PATN_DP_EN_MASK BIT(5) #define PATN_SP_EN_MASK BIT(4) #define PATN_TYPE_MASK GENMASK(3, 1) #define PATN_EN_MASK BIT(0) #define REG_FE_VIP_PATN(_n) (0x0304 + ((_n) << 3)) #define PATN_DP_MASK GENMASK(31, 16) #define PATN_SP_MASK GENMASK(15, 0) #define REG_CDM1_VLAN_CTRL CDM1_BASE #define CDM1_VLAN_MASK GENMASK(31, 16) #define REG_CDM1_FWD_CFG (CDM1_BASE + 0x08) #define CDM1_VIP_QSEL_MASK GENMASK(24, 20) #define REG_CDM1_CRSN_QSEL(_n) (CDM1_BASE + 0x10 + ((_n) << 2)) #define CDM1_CRSN_QSEL_REASON_MASK(_n) \ GENMASK(4 + (((_n) % 4) << 3), (((_n) % 4) << 3)) #define REG_CDM2_FWD_CFG (CDM2_BASE + 0x08) #define CDM2_OAM_QSEL_MASK GENMASK(31, 27) #define CDM2_VIP_QSEL_MASK GENMASK(24, 20) #define REG_CDM2_CRSN_QSEL(_n) (CDM2_BASE + 0x10 + ((_n) << 2)) #define CDM2_CRSN_QSEL_REASON_MASK(_n) \ GENMASK(4 + (((_n) % 4) << 3), (((_n) % 4) << 3)) #define REG_GDM_FWD_CFG(_n) GDM_BASE(_n) #define GDM_DROP_CRC_ERR BIT(23) #define GDM_IP4_CKSUM BIT(22) #define GDM_TCP_CKSUM BIT(21) #define GDM_UDP_CKSUM BIT(20) #define GDM_UCFQ_MASK GENMASK(15, 12) #define GDM_BCFQ_MASK GENMASK(11, 8) #define GDM_MCFQ_MASK GENMASK(7, 4) #define GDM_OCFQ_MASK GENMASK(3, 0) #define REG_GDM_INGRESS_CFG(_n) (GDM_BASE(_n) + 0x10) #define GDM_INGRESS_FC_EN_MASK BIT(1) #define GDM_STAG_EN_MASK BIT(0) #define REG_GDM_LEN_CFG(_n) (GDM_BASE(_n) + 0x14) #define GDM_SHORT_LEN_MASK GENMASK(13, 0) #define GDM_LONG_LEN_MASK GENMASK(29, 16) #define REG_FE_CPORT_CFG (GDM1_BASE + 0x40) #define FE_CPORT_PAD BIT(26) #define FE_CPORT_PORT_XFC_MASK BIT(25) #define FE_CPORT_QUEUE_XFC_MASK BIT(24) #define REG_FE_GDM_MIB_CLEAR(_n) (GDM_BASE(_n) + 0xf0) #define FE_GDM_MIB_RX_CLEAR_MASK BIT(1) #define FE_GDM_MIB_TX_CLEAR_MASK BIT(0) #define REG_FE_GDM1_MIB_CFG (GDM1_BASE + 0xf4) #define FE_STRICT_RFC2819_MODE_MASK BIT(31) #define FE_GDM1_TX_MIB_SPLIT_EN_MASK BIT(17) #define FE_GDM1_RX_MIB_SPLIT_EN_MASK BIT(16) #define FE_TX_MIB_ID_MASK GENMASK(15, 8) #define FE_RX_MIB_ID_MASK GENMASK(7, 0) #define REG_FE_GDM_TX_OK_PKT_CNT_L(_n) (GDM_BASE(_n) + 0x104) #define REG_FE_GDM_TX_OK_BYTE_CNT_L(_n) (GDM_BASE(_n) + 0x10c) #define REG_FE_GDM_TX_ETH_PKT_CNT_L(_n) (GDM_BASE(_n) + 0x110) #define REG_FE_GDM_TX_ETH_BYTE_CNT_L(_n) (GDM_BASE(_n) + 0x114) #define REG_FE_GDM_TX_ETH_DROP_CNT(_n) (GDM_BASE(_n) + 0x118) #define REG_FE_GDM_TX_ETH_BC_CNT(_n) (GDM_BASE(_n) + 0x11c) #define REG_FE_GDM_TX_ETH_MC_CNT(_n) (GDM_BASE(_n) + 0x120) #define REG_FE_GDM_TX_ETH_RUNT_CNT(_n) (GDM_BASE(_n) + 0x124) #define REG_FE_GDM_TX_ETH_LONG_CNT(_n) (GDM_BASE(_n) + 0x128) #define REG_FE_GDM_TX_ETH_E64_CNT_L(_n) (GDM_BASE(_n) + 0x12c) #define REG_FE_GDM_TX_ETH_L64_CNT_L(_n) (GDM_BASE(_n) + 0x130) #define REG_FE_GDM_TX_ETH_L127_CNT_L(_n) (GDM_BASE(_n) + 0x134) #define REG_FE_GDM_TX_ETH_L255_CNT_L(_n) (GDM_BASE(_n) + 0x138) #define REG_FE_GDM_TX_ETH_L511_CNT_L(_n) (GDM_BASE(_n) + 0x13c) #define REG_FE_GDM_TX_ETH_L1023_CNT_L(_n) (GDM_BASE(_n) + 0x140) #define REG_FE_GDM_RX_OK_PKT_CNT_L(_n) (GDM_BASE(_n) + 0x148) #define REG_FE_GDM_RX_FC_DROP_CNT(_n) (GDM_BASE(_n) + 0x14c) #define REG_FE_GDM_RX_RC_DROP_CNT(_n) (GDM_BASE(_n) + 0x150) #define REG_FE_GDM_RX_OVERFLOW_DROP_CNT(_n) (GDM_BASE(_n) + 0x154) #define REG_FE_GDM_RX_ERROR_DROP_CNT(_n) (GDM_BASE(_n) + 0x158) #define REG_FE_GDM_RX_OK_BYTE_CNT_L(_n) (GDM_BASE(_n) + 0x15c) #define REG_FE_GDM_RX_ETH_PKT_CNT_L(_n) (GDM_BASE(_n) + 0x160) #define REG_FE_GDM_RX_ETH_BYTE_CNT_L(_n) (GDM_BASE(_n) + 0x164) #define REG_FE_GDM_RX_ETH_DROP_CNT(_n) (GDM_BASE(_n) + 0x168) #define REG_FE_GDM_RX_ETH_BC_CNT(_n) (GDM_BASE(_n) + 0x16c) #define REG_FE_GDM_RX_ETH_MC_CNT(_n) (GDM_BASE(_n) + 0x170) #define REG_FE_GDM_RX_ETH_CRC_ERR_CNT(_n) (GDM_BASE(_n) + 0x174) #define REG_FE_GDM_RX_ETH_FRAG_CNT(_n) (GDM_BASE(_n) + 0x178) #define REG_FE_GDM_RX_ETH_JABBER_CNT(_n) (GDM_BASE(_n) + 0x17c) #define REG_FE_GDM_RX_ETH_RUNT_CNT(_n) (GDM_BASE(_n) + 0x180) #define REG_FE_GDM_RX_ETH_LONG_CNT(_n) (GDM_BASE(_n) + 0x184) #define REG_FE_GDM_RX_ETH_E64_CNT_L(_n) (GDM_BASE(_n) + 0x188) #define REG_FE_GDM_RX_ETH_L64_CNT_L(_n) (GDM_BASE(_n) + 0x18c) #define REG_FE_GDM_RX_ETH_L127_CNT_L(_n) (GDM_BASE(_n) + 0x190) #define REG_FE_GDM_RX_ETH_L255_CNT_L(_n) (GDM_BASE(_n) + 0x194) #define REG_FE_GDM_RX_ETH_L511_CNT_L(_n) (GDM_BASE(_n) + 0x198) #define REG_FE_GDM_RX_ETH_L1023_CNT_L(_n) (GDM_BASE(_n) + 0x19c) #define REG_PPE1_TB_HASH_CFG (PPE1_BASE + 0x250) #define PPE1_SRAM_TABLE_EN_MASK BIT(0) #define PPE1_SRAM_HASH1_EN_MASK BIT(8) #define PPE1_DRAM_TABLE_EN_MASK BIT(16) #define PPE1_DRAM_HASH1_EN_MASK BIT(24) #define REG_FE_GDM_TX_OK_PKT_CNT_H(_n) (GDM_BASE(_n) + 0x280) #define REG_FE_GDM_TX_OK_BYTE_CNT_H(_n) (GDM_BASE(_n) + 0x284) #define REG_FE_GDM_TX_ETH_PKT_CNT_H(_n) (GDM_BASE(_n) + 0x288) #define REG_FE_GDM_TX_ETH_BYTE_CNT_H(_n) (GDM_BASE(_n) + 0x28c) #define REG_FE_GDM_RX_OK_PKT_CNT_H(_n) (GDM_BASE(_n) + 0x290) #define REG_FE_GDM_RX_OK_BYTE_CNT_H(_n) (GDM_BASE(_n) + 0x294) #define REG_FE_GDM_RX_ETH_PKT_CNT_H(_n) (GDM_BASE(_n) + 0x298) #define REG_FE_GDM_RX_ETH_BYTE_CNT_H(_n) (GDM_BASE(_n) + 0x29c) #define REG_FE_GDM_TX_ETH_E64_CNT_H(_n) (GDM_BASE(_n) + 0x2b8) #define REG_FE_GDM_TX_ETH_L64_CNT_H(_n) (GDM_BASE(_n) + 0x2bc) #define REG_FE_GDM_TX_ETH_L127_CNT_H(_n) (GDM_BASE(_n) + 0x2c0) #define REG_FE_GDM_TX_ETH_L255_CNT_H(_n) (GDM_BASE(_n) + 0x2c4) #define REG_FE_GDM_TX_ETH_L511_CNT_H(_n) (GDM_BASE(_n) + 0x2c8) #define REG_FE_GDM_TX_ETH_L1023_CNT_H(_n) (GDM_BASE(_n) + 0x2cc) #define REG_FE_GDM_RX_ETH_E64_CNT_H(_n) (GDM_BASE(_n) + 0x2e8) #define REG_FE_GDM_RX_ETH_L64_CNT_H(_n) (GDM_BASE(_n) + 0x2ec) #define REG_FE_GDM_RX_ETH_L127_CNT_H(_n) (GDM_BASE(_n) + 0x2f0) #define REG_FE_GDM_RX_ETH_L255_CNT_H(_n) (GDM_BASE(_n) + 0x2f4) #define REG_FE_GDM_RX_ETH_L511_CNT_H(_n) (GDM_BASE(_n) + 0x2f8) #define REG_FE_GDM_RX_ETH_L1023_CNT_H(_n) (GDM_BASE(_n) + 0x2fc) #define REG_GDM2_CHN_RLS (GDM2_BASE + 0x20) #define MBI_RX_AGE_SEL_MASK GENMASK(26, 25) #define MBI_TX_AGE_SEL_MASK GENMASK(18, 17) #define REG_GDM3_FWD_CFG GDM3_BASE #define GDM3_PAD_EN_MASK BIT(28) #define REG_GDM4_FWD_CFG (GDM4_BASE + 0x100) #define GDM4_PAD_EN_MASK BIT(28) #define GDM4_SPORT_OFFSET0_MASK GENMASK(11, 8) #define REG_GDM4_SRC_PORT_SET (GDM4_BASE + 0x33c) #define GDM4_SPORT_OFF2_MASK GENMASK(19, 16) #define GDM4_SPORT_OFF1_MASK GENMASK(15, 12) #define GDM4_SPORT_OFF0_MASK GENMASK(11, 8) #define REG_IP_FRAG_FP 0x2010 #define IP_ASSEMBLE_PORT_MASK GENMASK(24, 21) #define IP_ASSEMBLE_NBQ_MASK GENMASK(20, 16) #define IP_FRAGMENT_PORT_MASK GENMASK(8, 5) #define IP_FRAGMENT_NBQ_MASK GENMASK(4, 0) #define REG_MC_VLAN_EN 0x2100 #define MC_VLAN_EN_MASK BIT(0) #define REG_MC_VLAN_CFG 0x2104 #define MC_VLAN_CFG_CMD_DONE_MASK BIT(31) #define MC_VLAN_CFG_TABLE_ID_MASK GENMASK(21, 16) #define MC_VLAN_CFG_PORT_ID_MASK GENMASK(11, 8) #define MC_VLAN_CFG_TABLE_SEL_MASK BIT(4) #define MC_VLAN_CFG_RW_MASK BIT(0) #define REG_MC_VLAN_DATA 0x2108 #define REG_CDM5_RX_OQ1_DROP_CNT 0x29d4 /* QDMA */ #define REG_QDMA_GLOBAL_CFG 0x0004 #define GLOBAL_CFG_RX_2B_OFFSET_MASK BIT(31) #define GLOBAL_CFG_DMA_PREFERENCE_MASK GENMASK(30, 29) #define GLOBAL_CFG_CPU_TXR_RR_MASK BIT(28) #define GLOBAL_CFG_DSCP_BYTE_SWAP_MASK BIT(27) #define GLOBAL_CFG_PAYLOAD_BYTE_SWAP_MASK BIT(26) #define GLOBAL_CFG_MULTICAST_MODIFY_FP_MASK BIT(25) #define GLOBAL_CFG_OAM_MODIFY_MASK BIT(24) #define GLOBAL_CFG_RESET_MASK BIT(23) #define GLOBAL_CFG_RESET_DONE_MASK BIT(22) #define GLOBAL_CFG_MULTICAST_EN_MASK BIT(21) #define GLOBAL_CFG_IRQ1_EN_MASK BIT(20) #define GLOBAL_CFG_IRQ0_EN_MASK BIT(19) #define GLOBAL_CFG_LOOPCNT_EN_MASK BIT(18) #define GLOBAL_CFG_RD_BYPASS_WR_MASK BIT(17) #define GLOBAL_CFG_QDMA_LOOPBACK_MASK BIT(16) #define GLOBAL_CFG_LPBK_RXQ_SEL_MASK GENMASK(13, 8) #define GLOBAL_CFG_CHECK_DONE_MASK BIT(7) #define GLOBAL_CFG_TX_WB_DONE_MASK BIT(6) #define GLOBAL_CFG_MAX_ISSUE_NUM_MASK GENMASK(5, 4) #define GLOBAL_CFG_RX_DMA_BUSY_MASK BIT(3) #define GLOBAL_CFG_RX_DMA_EN_MASK BIT(2) #define GLOBAL_CFG_TX_DMA_BUSY_MASK BIT(1) #define GLOBAL_CFG_TX_DMA_EN_MASK BIT(0) #define REG_FWD_DSCP_BASE 0x0010 #define REG_FWD_BUF_BASE 0x0014 #define REG_HW_FWD_DSCP_CFG 0x0018 #define HW_FWD_DSCP_PAYLOAD_SIZE_MASK GENMASK(29, 28) #define HW_FWD_DSCP_SCATTER_LEN_MASK GENMASK(17, 16) #define HW_FWD_DSCP_MIN_SCATTER_LEN_MASK GENMASK(15, 0) #define REG_INT_STATUS(_n) \ (((_n) == 4) ? 0x0730 : \ ((_n) == 3) ? 0x0724 : \ ((_n) == 2) ? 0x0720 : \ ((_n) == 1) ? 0x0024 : 0x0020) #define REG_INT_ENABLE(_n) \ (((_n) == 4) ? 0x0750 : \ ((_n) == 3) ? 0x0744 : \ ((_n) == 2) ? 0x0740 : \ ((_n) == 1) ? 0x002c : 0x0028) /* QDMA_CSR_INT_ENABLE1 */ #define RX15_COHERENT_INT_MASK BIT(31) #define RX14_COHERENT_INT_MASK BIT(30) #define RX13_COHERENT_INT_MASK BIT(29) #define RX12_COHERENT_INT_MASK BIT(28) #define RX11_COHERENT_INT_MASK BIT(27) #define RX10_COHERENT_INT_MASK BIT(26) #define RX9_COHERENT_INT_MASK BIT(25) #define RX8_COHERENT_INT_MASK BIT(24) #define RX7_COHERENT_INT_MASK BIT(23) #define RX6_COHERENT_INT_MASK BIT(22) #define RX5_COHERENT_INT_MASK BIT(21) #define RX4_COHERENT_INT_MASK BIT(20) #define RX3_COHERENT_INT_MASK BIT(19) #define RX2_COHERENT_INT_MASK BIT(18) #define RX1_COHERENT_INT_MASK BIT(17) #define RX0_COHERENT_INT_MASK BIT(16) #define TX7_COHERENT_INT_MASK BIT(15) #define TX6_COHERENT_INT_MASK BIT(14) #define TX5_COHERENT_INT_MASK BIT(13) #define TX4_COHERENT_INT_MASK BIT(12) #define TX3_COHERENT_INT_MASK BIT(11) #define TX2_COHERENT_INT_MASK BIT(10) #define TX1_COHERENT_INT_MASK BIT(9) #define TX0_COHERENT_INT_MASK BIT(8) #define CNT_OVER_FLOW_INT_MASK BIT(7) #define IRQ1_FULL_INT_MASK BIT(5) #define IRQ1_INT_MASK BIT(4) #define HWFWD_DSCP_LOW_INT_MASK BIT(3) #define HWFWD_DSCP_EMPTY_INT_MASK BIT(2) #define IRQ0_FULL_INT_MASK BIT(1) #define IRQ0_INT_MASK BIT(0) #define TX_DONE_INT_MASK(_n) \ ((_n) ? IRQ1_INT_MASK | IRQ1_FULL_INT_MASK \ : IRQ0_INT_MASK | IRQ0_FULL_INT_MASK) #define INT_TX_MASK \ (IRQ1_INT_MASK | IRQ1_FULL_INT_MASK | \ IRQ0_INT_MASK | IRQ0_FULL_INT_MASK) #define INT_IDX0_MASK \ (TX0_COHERENT_INT_MASK | TX1_COHERENT_INT_MASK | \ TX2_COHERENT_INT_MASK | TX3_COHERENT_INT_MASK | \ TX4_COHERENT_INT_MASK | TX5_COHERENT_INT_MASK | \ TX6_COHERENT_INT_MASK | TX7_COHERENT_INT_MASK | \ RX0_COHERENT_INT_MASK | RX1_COHERENT_INT_MASK | \ RX2_COHERENT_INT_MASK | RX3_COHERENT_INT_MASK | \ RX4_COHERENT_INT_MASK | RX7_COHERENT_INT_MASK | \ RX8_COHERENT_INT_MASK | RX9_COHERENT_INT_MASK | \ RX15_COHERENT_INT_MASK | INT_TX_MASK) /* QDMA_CSR_INT_ENABLE2 */ #define RX15_NO_CPU_DSCP_INT_MASK BIT(31) #define RX14_NO_CPU_DSCP_INT_MASK BIT(30) #define RX13_NO_CPU_DSCP_INT_MASK BIT(29) #define RX12_NO_CPU_DSCP_INT_MASK BIT(28) #define RX11_NO_CPU_DSCP_INT_MASK BIT(27) #define RX10_NO_CPU_DSCP_INT_MASK BIT(26) #define RX9_NO_CPU_DSCP_INT_MASK BIT(25) #define RX8_NO_CPU_DSCP_INT_MASK BIT(24) #define RX7_NO_CPU_DSCP_INT_MASK BIT(23) #define RX6_NO_CPU_DSCP_INT_MASK BIT(22) #define RX5_NO_CPU_DSCP_INT_MASK BIT(21) #define RX4_NO_CPU_DSCP_INT_MASK BIT(20) #define RX3_NO_CPU_DSCP_INT_MASK BIT(19) #define RX2_NO_CPU_DSCP_INT_MASK BIT(18) #define RX1_NO_CPU_DSCP_INT_MASK BIT(17) #define RX0_NO_CPU_DSCP_INT_MASK BIT(16) #define RX15_DONE_INT_MASK BIT(15) #define RX14_DONE_INT_MASK BIT(14) #define RX13_DONE_INT_MASK BIT(13) #define RX12_DONE_INT_MASK BIT(12) #define RX11_DONE_INT_MASK BIT(11) #define RX10_DONE_INT_MASK BIT(10) #define RX9_DONE_INT_MASK BIT(9) #define RX8_DONE_INT_MASK BIT(8) #define RX7_DONE_INT_MASK BIT(7) #define RX6_DONE_INT_MASK BIT(6) #define RX5_DONE_INT_MASK BIT(5) #define RX4_DONE_INT_MASK BIT(4) #define RX3_DONE_INT_MASK BIT(3) #define RX2_DONE_INT_MASK BIT(2) #define RX1_DONE_INT_MASK BIT(1) #define RX0_DONE_INT_MASK BIT(0) #define RX_DONE_INT_MASK \ (RX0_DONE_INT_MASK | RX1_DONE_INT_MASK | \ RX2_DONE_INT_MASK | RX3_DONE_INT_MASK | \ RX4_DONE_INT_MASK | RX7_DONE_INT_MASK | \ RX8_DONE_INT_MASK | RX9_DONE_INT_MASK | \ RX15_DONE_INT_MASK) #define INT_IDX1_MASK \ (RX_DONE_INT_MASK | \ RX0_NO_CPU_DSCP_INT_MASK | RX1_NO_CPU_DSCP_INT_MASK | \ RX2_NO_CPU_DSCP_INT_MASK | RX3_NO_CPU_DSCP_INT_MASK | \ RX4_NO_CPU_DSCP_INT_MASK | RX7_NO_CPU_DSCP_INT_MASK | \ RX8_NO_CPU_DSCP_INT_MASK | RX9_NO_CPU_DSCP_INT_MASK | \ RX15_NO_CPU_DSCP_INT_MASK) /* QDMA_CSR_INT_ENABLE5 */ #define TX31_COHERENT_INT_MASK BIT(31) #define TX30_COHERENT_INT_MASK BIT(30) #define TX29_COHERENT_INT_MASK BIT(29) #define TX28_COHERENT_INT_MASK BIT(28) #define TX27_COHERENT_INT_MASK BIT(27) #define TX26_COHERENT_INT_MASK BIT(26) #define TX25_COHERENT_INT_MASK BIT(25) #define TX24_COHERENT_INT_MASK BIT(24) #define TX23_COHERENT_INT_MASK BIT(23) #define TX22_COHERENT_INT_MASK BIT(22) #define TX21_COHERENT_INT_MASK BIT(21) #define TX20_COHERENT_INT_MASK BIT(20) #define TX19_COHERENT_INT_MASK BIT(19) #define TX18_COHERENT_INT_MASK BIT(18) #define TX17_COHERENT_INT_MASK BIT(17) #define TX16_COHERENT_INT_MASK BIT(16) #define TX15_COHERENT_INT_MASK BIT(15) #define TX14_COHERENT_INT_MASK BIT(14) #define TX13_COHERENT_INT_MASK BIT(13) #define TX12_COHERENT_INT_MASK BIT(12) #define TX11_COHERENT_INT_MASK BIT(11) #define TX10_COHERENT_INT_MASK BIT(10) #define TX9_COHERENT_INT_MASK BIT(9) #define TX8_COHERENT_INT_MASK BIT(8) #define INT_IDX4_MASK \ (TX8_COHERENT_INT_MASK | TX9_COHERENT_INT_MASK | \ TX10_COHERENT_INT_MASK | TX11_COHERENT_INT_MASK | \ TX12_COHERENT_INT_MASK | TX13_COHERENT_INT_MASK | \ TX14_COHERENT_INT_MASK | TX15_COHERENT_INT_MASK | \ TX16_COHERENT_INT_MASK | TX17_COHERENT_INT_MASK | \ TX18_COHERENT_INT_MASK | TX19_COHERENT_INT_MASK | \ TX20_COHERENT_INT_MASK | TX21_COHERENT_INT_MASK | \ TX22_COHERENT_INT_MASK | TX23_COHERENT_INT_MASK | \ TX24_COHERENT_INT_MASK | TX25_COHERENT_INT_MASK | \ TX26_COHERENT_INT_MASK | TX27_COHERENT_INT_MASK | \ TX28_COHERENT_INT_MASK | TX29_COHERENT_INT_MASK | \ TX30_COHERENT_INT_MASK | TX31_COHERENT_INT_MASK) #define REG_TX_IRQ_BASE(_n) ((_n) ? 0x0048 : 0x0050) #define REG_TX_IRQ_CFG(_n) ((_n) ? 0x004c : 0x0054) #define TX_IRQ_THR_MASK GENMASK(27, 16) #define TX_IRQ_DEPTH_MASK GENMASK(11, 0) #define REG_IRQ_CLEAR_LEN(_n) ((_n) ? 0x0064 : 0x0058) #define IRQ_CLEAR_LEN_MASK GENMASK(7, 0) #define REG_IRQ_STATUS(_n) ((_n) ? 0x0068 : 0x005c) #define IRQ_ENTRY_LEN_MASK GENMASK(27, 16) #define IRQ_HEAD_IDX_MASK GENMASK(11, 0) #define REG_TX_RING_BASE(_n) \ (((_n) < 8) ? 0x0100 + ((_n) << 5) : 0x0b00 + (((_n) - 8) << 5)) #define REG_TX_RING_BLOCKING(_n) \ (((_n) < 8) ? 0x0104 + ((_n) << 5) : 0x0b04 + (((_n) - 8) << 5)) #define TX_RING_IRQ_BLOCKING_MAP_MASK BIT(6) #define TX_RING_IRQ_BLOCKING_CFG_MASK BIT(4) #define TX_RING_IRQ_BLOCKING_TX_DROP_EN_MASK BIT(2) #define TX_RING_IRQ_BLOCKING_MAX_TH_TXRING_EN_MASK BIT(1) #define TX_RING_IRQ_BLOCKING_MIN_TH_TXRING_EN_MASK BIT(0) #define REG_TX_CPU_IDX(_n) \ (((_n) < 8) ? 0x0108 + ((_n) << 5) : 0x0b08 + (((_n) - 8) << 5)) #define TX_RING_CPU_IDX_MASK GENMASK(15, 0) #define REG_TX_DMA_IDX(_n) \ (((_n) < 8) ? 0x010c + ((_n) << 5) : 0x0b0c + (((_n) - 8) << 5)) #define TX_RING_DMA_IDX_MASK GENMASK(15, 0) #define IRQ_RING_IDX_MASK GENMASK(20, 16) #define IRQ_DESC_IDX_MASK GENMASK(15, 0) #define REG_RX_RING_BASE(_n) \ (((_n) < 16) ? 0x0200 + ((_n) << 5) : 0x0e00 + (((_n) - 16) << 5)) #define REG_RX_RING_SIZE(_n) \ (((_n) < 16) ? 0x0204 + ((_n) << 5) : 0x0e04 + (((_n) - 16) << 5)) #define RX_RING_THR_MASK GENMASK(31, 16) #define RX_RING_SIZE_MASK GENMASK(15, 0) #define REG_RX_CPU_IDX(_n) \ (((_n) < 16) ? 0x0208 + ((_n) << 5) : 0x0e08 + (((_n) - 16) << 5)) #define RX_RING_CPU_IDX_MASK GENMASK(15, 0) #define REG_RX_DMA_IDX(_n) \ (((_n) < 16) ? 0x020c + ((_n) << 5) : 0x0e0c + (((_n) - 16) << 5)) #define REG_RX_DELAY_INT_IDX(_n) \ (((_n) < 16) ? 0x0210 + ((_n) << 5) : 0x0e10 + (((_n) - 16) << 5)) #define RX_DELAY_INT_MASK GENMASK(15, 0) #define RX_RING_DMA_IDX_MASK GENMASK(15, 0) #define REG_INGRESS_TRTCM_CFG 0x0070 #define INGRESS_TRTCM_EN_MASK BIT(31) #define INGRESS_TRTCM_MODE_MASK BIT(30) #define INGRESS_SLOW_TICK_RATIO_MASK GENMASK(29, 16) #define INGRESS_FAST_TICK_MASK GENMASK(15, 0) #define REG_TXQ_DIS_CFG_BASE(_n) ((_n) ? 0x20a0 : 0x00a0) #define REG_TXQ_DIS_CFG(_n, _m) (REG_TXQ_DIS_CFG_BASE((_n)) + (_m) << 2) #define REG_LMGR_INIT_CFG 0x1000 #define LMGR_INIT_START BIT(31) #define LMGR_SRAM_MODE_MASK BIT(30) #define HW_FWD_PKTSIZE_OVERHEAD_MASK GENMASK(27, 20) #define HW_FWD_DESC_NUM_MASK GENMASK(16, 0) #define REG_FWD_DSCP_LOW_THR 0x1004 #define FWD_DSCP_LOW_THR_MASK GENMASK(17, 0) #define REG_EGRESS_RATE_METER_CFG 0x100c #define EGRESS_RATE_METER_EN_MASK BIT(31) #define EGRESS_RATE_METER_EQ_RATE_EN_MASK BIT(17) #define EGRESS_RATE_METER_WINDOW_SZ_MASK GENMASK(16, 12) #define EGRESS_RATE_METER_TIMESLICE_MASK GENMASK(10, 0) #define REG_EGRESS_TRTCM_CFG 0x1010 #define EGRESS_TRTCM_EN_MASK BIT(31) #define EGRESS_TRTCM_MODE_MASK BIT(30) #define EGRESS_SLOW_TICK_RATIO_MASK GENMASK(29, 16) #define EGRESS_FAST_TICK_MASK GENMASK(15, 0) #define REG_TXWRR_MODE_CFG 0x1020 #define TWRR_WEIGHT_SCALE_MASK BIT(31) #define TWRR_WEIGHT_BASE_MASK BIT(3) #define REG_PSE_BUF_USAGE_CFG 0x1028 #define PSE_BUF_ESTIMATE_EN_MASK BIT(29) #define REG_GLB_TRTCM_CFG 0x1080 #define GLB_TRTCM_EN_MASK BIT(31) #define GLB_TRTCM_MODE_MASK BIT(30) #define GLB_SLOW_TICK_RATIO_MASK GENMASK(29, 16) #define GLB_FAST_TICK_MASK GENMASK(15, 0) #define REG_TXQ_CNGST_CFG 0x10a0 #define TXQ_CNGST_DROP_EN BIT(31) #define TXQ_CNGST_DEI_DROP_EN BIT(30) #define REG_SLA_TRTCM_CFG 0x1150 #define SLA_TRTCM_EN_MASK BIT(31) #define SLA_TRTCM_MODE_MASK BIT(30) #define SLA_SLOW_TICK_RATIO_MASK GENMASK(29, 16) #define SLA_FAST_TICK_MASK GENMASK(15, 0) /* CTRL */ #define QDMA_DESC_DONE_MASK BIT(31) #define QDMA_DESC_DROP_MASK BIT(30) /* tx: drop - rx: overflow */ #define QDMA_DESC_MORE_MASK BIT(29) /* more SG elements */ #define QDMA_DESC_DEI_MASK BIT(25) #define QDMA_DESC_NO_DROP_MASK BIT(24) #define QDMA_DESC_LEN_MASK GENMASK(15, 0) /* DATA */ #define QDMA_DESC_NEXT_ID_MASK GENMASK(15, 0) /* TX MSG0 */ #define QDMA_ETH_TXMSG_MIC_IDX_MASK BIT(30) #define QDMA_ETH_TXMSG_SP_TAG_MASK GENMASK(29, 14) #define QDMA_ETH_TXMSG_ICO_MASK BIT(13) #define QDMA_ETH_TXMSG_UCO_MASK BIT(12) #define QDMA_ETH_TXMSG_TCO_MASK BIT(11) #define QDMA_ETH_TXMSG_TSO_MASK BIT(10) #define QDMA_ETH_TXMSG_FAST_MASK BIT(9) #define QDMA_ETH_TXMSG_OAM_MASK BIT(8) #define QDMA_ETH_TXMSG_CHAN_MASK GENMASK(7, 3) #define QDMA_ETH_TXMSG_QUEUE_MASK GENMASK(2, 0) /* TX MSG1 */ #define QDMA_ETH_TXMSG_NO_DROP BIT(31) #define QDMA_ETH_TXMSG_METER_MASK GENMASK(30, 24) /* 0x7f no meters */ #define QDMA_ETH_TXMSG_FPORT_MASK GENMASK(23, 20) #define QDMA_ETH_TXMSG_NBOQ_MASK GENMASK(19, 15) #define QDMA_ETH_TXMSG_HWF_MASK BIT(14) #define QDMA_ETH_TXMSG_HOP_MASK BIT(13) #define QDMA_ETH_TXMSG_PTP_MASK BIT(12) #define QDMA_ETH_TXMSG_ACNT_G1_MASK GENMASK(10, 6) /* 0x1f do not count */ #define QDMA_ETH_TXMSG_ACNT_G0_MASK GENMASK(5, 0) /* 0x3f do not count */ /* RX MSG1 */ #define QDMA_ETH_RXMSG_DEI_MASK BIT(31) #define QDMA_ETH_RXMSG_IP6_MASK BIT(30) #define QDMA_ETH_RXMSG_IP4_MASK BIT(29) #define QDMA_ETH_RXMSG_IP4F_MASK BIT(28) #define QDMA_ETH_RXMSG_L4_VALID_MASK BIT(27) #define QDMA_ETH_RXMSG_L4F_MASK BIT(26) #define QDMA_ETH_RXMSG_SPORT_MASK GENMASK(25, 21) #define QDMA_ETH_RXMSG_CRSN_MASK GENMASK(20, 16) #define QDMA_ETH_RXMSG_PPE_ENTRY_MASK GENMASK(15, 0) struct airoha_qdma_desc { __le32 rsv; __le32 ctrl; __le32 addr; __le32 data; __le32 msg0; __le32 msg1; __le32 msg2; __le32 msg3; }; /* CTRL0 */ #define QDMA_FWD_DESC_CTX_MASK BIT(31) #define QDMA_FWD_DESC_RING_MASK GENMASK(30, 28) #define QDMA_FWD_DESC_IDX_MASK GENMASK(27, 16) #define QDMA_FWD_DESC_LEN_MASK GENMASK(15, 0) /* CTRL1 */ #define QDMA_FWD_DESC_FIRST_IDX_MASK GENMASK(15, 0) /* CTRL2 */ #define QDMA_FWD_DESC_MORE_PKT_NUM_MASK GENMASK(2, 0) struct airoha_qdma_fwd_desc { __le32 addr; __le32 ctrl0; __le32 ctrl1; __le32 ctrl2; __le32 msg0; __le32 msg1; __le32 rsv0; __le32 rsv1; }; enum { QDMA_INT_REG_IDX0, QDMA_INT_REG_IDX1, QDMA_INT_REG_IDX2, QDMA_INT_REG_IDX3, QDMA_INT_REG_IDX4, QDMA_INT_REG_MAX }; enum { XSI_PCIE0_PORT, XSI_PCIE1_PORT, XSI_USB_PORT, XSI_AE_PORT, XSI_ETH_PORT, }; enum { XSI_PCIE0_VIP_PORT_MASK = BIT(22), XSI_PCIE1_VIP_PORT_MASK = BIT(23), XSI_USB_VIP_PORT_MASK = BIT(25), XSI_ETH_VIP_PORT_MASK = BIT(24), }; enum { DEV_STATE_INITIALIZED, }; enum { CDM_CRSN_QSEL_Q1 = 1, CDM_CRSN_QSEL_Q5 = 5, CDM_CRSN_QSEL_Q6 = 6, CDM_CRSN_QSEL_Q15 = 15, }; enum { CRSN_08 = 0x8, CRSN_21 = 0x15, /* KA */ CRSN_22 = 0x16, /* hit bind and force route to CPU */ CRSN_24 = 0x18, CRSN_25 = 0x19, }; enum { FE_PSE_PORT_CDM1, FE_PSE_PORT_GDM1, FE_PSE_PORT_GDM2, FE_PSE_PORT_GDM3, FE_PSE_PORT_PPE1, FE_PSE_PORT_CDM2, FE_PSE_PORT_CDM3, FE_PSE_PORT_CDM4, FE_PSE_PORT_PPE2, FE_PSE_PORT_GDM4, FE_PSE_PORT_CDM5, FE_PSE_PORT_DROP = 0xf, }; struct airoha_queue_entry { union { void *buf; struct sk_buff *skb; }; dma_addr_t dma_addr; u16 dma_len; }; struct airoha_queue { struct airoha_qdma *qdma; /* protect concurrent queue accesses */ spinlock_t lock; struct airoha_queue_entry *entry; struct airoha_qdma_desc *desc; u16 head; u16 tail; int queued; int ndesc; int free_thr; int buf_size; struct napi_struct napi; struct page_pool *page_pool; }; struct airoha_tx_irq_queue { struct airoha_qdma *qdma; struct napi_struct napi; int size; u32 *q; }; struct airoha_hw_stats { /* protect concurrent hw_stats accesses */ spinlock_t lock; struct u64_stats_sync syncp; /* get_stats64 */ u64 rx_ok_pkts; u64 tx_ok_pkts; u64 rx_ok_bytes; u64 tx_ok_bytes; u64 rx_multicast; u64 rx_errors; u64 rx_drops; u64 tx_drops; u64 rx_crc_error; u64 rx_over_errors; /* ethtool stats */ u64 tx_broadcast; u64 tx_multicast; u64 tx_len[7]; u64 rx_broadcast; u64 rx_fragment; u64 rx_jabber; u64 rx_len[7]; }; struct airoha_qdma { struct airoha_eth *eth; void __iomem *regs; /* protect concurrent irqmask accesses */ spinlock_t irq_lock; u32 irqmask[QDMA_INT_REG_MAX]; int irq; struct airoha_tx_irq_queue q_tx_irq[AIROHA_NUM_TX_IRQ]; struct airoha_queue q_tx[AIROHA_NUM_TX_RING]; struct airoha_queue q_rx[AIROHA_NUM_RX_RING]; /* descriptor and packet buffers for qdma hw forward */ struct { void *desc; void *q; } hfwd; }; struct airoha_gdm_port { struct airoha_qdma *qdma; struct net_device *dev; int id; struct airoha_hw_stats stats; }; struct airoha_eth { struct device *dev; unsigned long state; void __iomem *fe_regs; struct reset_control_bulk_data rsts[AIROHA_MAX_NUM_RSTS]; struct reset_control_bulk_data xsi_rsts[AIROHA_MAX_NUM_XSI_RSTS]; struct net_device *napi_dev; struct airoha_qdma qdma[AIROHA_MAX_NUM_QDMA]; struct airoha_gdm_port *ports[AIROHA_MAX_NUM_GDM_PORTS]; }; static u32 airoha_rr(void __iomem *base, u32 offset) { return readl(base + offset); } static void airoha_wr(void __iomem *base, u32 offset, u32 val) { writel(val, base + offset); } static u32 airoha_rmw(void __iomem *base, u32 offset, u32 mask, u32 val) { val |= (airoha_rr(base, offset) & ~mask); airoha_wr(base, offset, val); return val; } #define airoha_fe_rr(eth, offset) \ airoha_rr((eth)->fe_regs, (offset)) #define airoha_fe_wr(eth, offset, val) \ airoha_wr((eth)->fe_regs, (offset), (val)) #define airoha_fe_rmw(eth, offset, mask, val) \ airoha_rmw((eth)->fe_regs, (offset), (mask), (val)) #define airoha_fe_set(eth, offset, val) \ airoha_rmw((eth)->fe_regs, (offset), 0, (val)) #define airoha_fe_clear(eth, offset, val) \ airoha_rmw((eth)->fe_regs, (offset), (val), 0) #define airoha_qdma_rr(qdma, offset) \ airoha_rr((qdma)->regs, (offset)) #define airoha_qdma_wr(qdma, offset, val) \ airoha_wr((qdma)->regs, (offset), (val)) #define airoha_qdma_rmw(qdma, offset, mask, val) \ airoha_rmw((qdma)->regs, (offset), (mask), (val)) #define airoha_qdma_set(qdma, offset, val) \ airoha_rmw((qdma)->regs, (offset), 0, (val)) #define airoha_qdma_clear(qdma, offset, val) \ airoha_rmw((qdma)->regs, (offset), (val), 0) static void airoha_qdma_set_irqmask(struct airoha_qdma *qdma, int index, u32 clear, u32 set) { unsigned long flags; if (WARN_ON_ONCE(index >= ARRAY_SIZE(qdma->irqmask))) return; spin_lock_irqsave(&qdma->irq_lock, flags); qdma->irqmask[index] &= ~clear; qdma->irqmask[index] |= set; airoha_qdma_wr(qdma, REG_INT_ENABLE(index), qdma->irqmask[index]); /* Read irq_enable register in order to guarantee the update above * completes in the spinlock critical section. */ airoha_qdma_rr(qdma, REG_INT_ENABLE(index)); spin_unlock_irqrestore(&qdma->irq_lock, flags); } static void airoha_qdma_irq_enable(struct airoha_qdma *qdma, int index, u32 mask) { airoha_qdma_set_irqmask(qdma, index, 0, mask); } static void airoha_qdma_irq_disable(struct airoha_qdma *qdma, int index, u32 mask) { airoha_qdma_set_irqmask(qdma, index, mask, 0); } static bool airhoa_is_lan_gdm_port(struct airoha_gdm_port *port) { /* GDM1 port on EN7581 SoC is connected to the lan dsa switch. * GDM{2,3,4} can be used as wan port connected to an external * phy module. */ return port->id == 1; } static void airoha_set_macaddr(struct airoha_gdm_port *port, const u8 *addr) { struct airoha_eth *eth = port->qdma->eth; u32 val, reg; reg = airhoa_is_lan_gdm_port(port) ? REG_FE_LAN_MAC_H : REG_FE_WAN_MAC_H; val = (addr[0] << 16) | (addr[1] << 8) | addr[2]; airoha_fe_wr(eth, reg, val); val = (addr[3] << 16) | (addr[4] << 8) | addr[5]; airoha_fe_wr(eth, REG_FE_MAC_LMIN(reg), val); airoha_fe_wr(eth, REG_FE_MAC_LMAX(reg), val); } static void airoha_set_gdm_port_fwd_cfg(struct airoha_eth *eth, u32 addr, u32 val) { airoha_fe_rmw(eth, addr, GDM_OCFQ_MASK, FIELD_PREP(GDM_OCFQ_MASK, val)); airoha_fe_rmw(eth, addr, GDM_MCFQ_MASK, FIELD_PREP(GDM_MCFQ_MASK, val)); airoha_fe_rmw(eth, addr, GDM_BCFQ_MASK, FIELD_PREP(GDM_BCFQ_MASK, val)); airoha_fe_rmw(eth, addr, GDM_UCFQ_MASK, FIELD_PREP(GDM_UCFQ_MASK, val)); } static int airoha_set_gdm_port(struct airoha_eth *eth, int port, bool enable) { u32 val = enable ? FE_PSE_PORT_PPE1 : FE_PSE_PORT_DROP; u32 vip_port, cfg_addr; switch (port) { case XSI_PCIE0_PORT: vip_port = XSI_PCIE0_VIP_PORT_MASK; cfg_addr = REG_GDM_FWD_CFG(3); break; case XSI_PCIE1_PORT: vip_port = XSI_PCIE1_VIP_PORT_MASK; cfg_addr = REG_GDM_FWD_CFG(3); break; case XSI_USB_PORT: vip_port = XSI_USB_VIP_PORT_MASK; cfg_addr = REG_GDM_FWD_CFG(4); break; case XSI_ETH_PORT: vip_port = XSI_ETH_VIP_PORT_MASK; cfg_addr = REG_GDM_FWD_CFG(4); break; default: return -EINVAL; } if (enable) { airoha_fe_set(eth, REG_FE_VIP_PORT_EN, vip_port); airoha_fe_set(eth, REG_FE_IFC_PORT_EN, vip_port); } else { airoha_fe_clear(eth, REG_FE_VIP_PORT_EN, vip_port); airoha_fe_clear(eth, REG_FE_IFC_PORT_EN, vip_port); } airoha_set_gdm_port_fwd_cfg(eth, cfg_addr, val); return 0; } static int airoha_set_gdm_ports(struct airoha_eth *eth, bool enable) { const int port_list[] = { XSI_PCIE0_PORT, XSI_PCIE1_PORT, XSI_USB_PORT, XSI_ETH_PORT }; int i, err; for (i = 0; i < ARRAY_SIZE(port_list); i++) { err = airoha_set_gdm_port(eth, port_list[i], enable); if (err) goto error; } return 0; error: for (i--; i >= 0; i--) airoha_set_gdm_port(eth, port_list[i], false); return err; } static void airoha_fe_maccr_init(struct airoha_eth *eth) { int p; for (p = 1; p <= ARRAY_SIZE(eth->ports); p++) { airoha_fe_set(eth, REG_GDM_FWD_CFG(p), GDM_TCP_CKSUM | GDM_UDP_CKSUM | GDM_IP4_CKSUM | GDM_DROP_CRC_ERR); airoha_set_gdm_port_fwd_cfg(eth, REG_GDM_FWD_CFG(p), FE_PSE_PORT_CDM1); airoha_fe_rmw(eth, REG_GDM_LEN_CFG(p), GDM_SHORT_LEN_MASK | GDM_LONG_LEN_MASK, FIELD_PREP(GDM_SHORT_LEN_MASK, 60) | FIELD_PREP(GDM_LONG_LEN_MASK, 4004)); } airoha_fe_rmw(eth, REG_CDM1_VLAN_CTRL, CDM1_VLAN_MASK, FIELD_PREP(CDM1_VLAN_MASK, 0x8100)); airoha_fe_set(eth, REG_FE_CPORT_CFG, FE_CPORT_PAD); } static void airoha_fe_vip_setup(struct airoha_eth *eth) { airoha_fe_wr(eth, REG_FE_VIP_PATN(3), ETH_P_PPP_DISC); airoha_fe_wr(eth, REG_FE_VIP_EN(3), PATN_FCPU_EN_MASK | PATN_EN_MASK); airoha_fe_wr(eth, REG_FE_VIP_PATN(4), PPP_LCP); airoha_fe_wr(eth, REG_FE_VIP_EN(4), PATN_FCPU_EN_MASK | FIELD_PREP(PATN_TYPE_MASK, 1) | PATN_EN_MASK); airoha_fe_wr(eth, REG_FE_VIP_PATN(6), PPP_IPCP); airoha_fe_wr(eth, REG_FE_VIP_EN(6), PATN_FCPU_EN_MASK | FIELD_PREP(PATN_TYPE_MASK, 1) | PATN_EN_MASK); airoha_fe_wr(eth, REG_FE_VIP_PATN(7), PPP_CHAP); airoha_fe_wr(eth, REG_FE_VIP_EN(7), PATN_FCPU_EN_MASK | FIELD_PREP(PATN_TYPE_MASK, 1) | PATN_EN_MASK); /* BOOTP (0x43) */ airoha_fe_wr(eth, REG_FE_VIP_PATN(8), 0x43); airoha_fe_wr(eth, REG_FE_VIP_EN(8), PATN_FCPU_EN_MASK | PATN_SP_EN_MASK | FIELD_PREP(PATN_TYPE_MASK, 4) | PATN_EN_MASK); /* BOOTP (0x44) */ airoha_fe_wr(eth, REG_FE_VIP_PATN(9), 0x44); airoha_fe_wr(eth, REG_FE_VIP_EN(9), PATN_FCPU_EN_MASK | PATN_SP_EN_MASK | FIELD_PREP(PATN_TYPE_MASK, 4) | PATN_EN_MASK); /* ISAKMP */ airoha_fe_wr(eth, REG_FE_VIP_PATN(10), 0x1f401f4); airoha_fe_wr(eth, REG_FE_VIP_EN(10), PATN_FCPU_EN_MASK | PATN_DP_EN_MASK | PATN_SP_EN_MASK | FIELD_PREP(PATN_TYPE_MASK, 4) | PATN_EN_MASK); airoha_fe_wr(eth, REG_FE_VIP_PATN(11), PPP_IPV6CP); airoha_fe_wr(eth, REG_FE_VIP_EN(11), PATN_FCPU_EN_MASK | FIELD_PREP(PATN_TYPE_MASK, 1) | PATN_EN_MASK); /* DHCPv6 */ airoha_fe_wr(eth, REG_FE_VIP_PATN(12), 0x2220223); airoha_fe_wr(eth, REG_FE_VIP_EN(12), PATN_FCPU_EN_MASK | PATN_DP_EN_MASK | PATN_SP_EN_MASK | FIELD_PREP(PATN_TYPE_MASK, 4) | PATN_EN_MASK); airoha_fe_wr(eth, REG_FE_VIP_PATN(19), PPP_PAP); airoha_fe_wr(eth, REG_FE_VIP_EN(19), PATN_FCPU_EN_MASK | FIELD_PREP(PATN_TYPE_MASK, 1) | PATN_EN_MASK); /* ETH->ETH_P_1905 (0x893a) */ airoha_fe_wr(eth, REG_FE_VIP_PATN(20), 0x893a); airoha_fe_wr(eth, REG_FE_VIP_EN(20), PATN_FCPU_EN_MASK | PATN_EN_MASK); airoha_fe_wr(eth, REG_FE_VIP_PATN(21), ETH_P_LLDP); airoha_fe_wr(eth, REG_FE_VIP_EN(21), PATN_FCPU_EN_MASK | PATN_EN_MASK); } static u32 airoha_fe_get_pse_queue_rsv_pages(struct airoha_eth *eth, u32 port, u32 queue) { u32 val; airoha_fe_rmw(eth, REG_FE_PSE_QUEUE_CFG_WR, PSE_CFG_PORT_ID_MASK | PSE_CFG_QUEUE_ID_MASK, FIELD_PREP(PSE_CFG_PORT_ID_MASK, port) | FIELD_PREP(PSE_CFG_QUEUE_ID_MASK, queue)); val = airoha_fe_rr(eth, REG_FE_PSE_QUEUE_CFG_VAL); return FIELD_GET(PSE_CFG_OQ_RSV_MASK, val); } static void airoha_fe_set_pse_queue_rsv_pages(struct airoha_eth *eth, u32 port, u32 queue, u32 val) { airoha_fe_rmw(eth, REG_FE_PSE_QUEUE_CFG_VAL, PSE_CFG_OQ_RSV_MASK, FIELD_PREP(PSE_CFG_OQ_RSV_MASK, val)); airoha_fe_rmw(eth, REG_FE_PSE_QUEUE_CFG_WR, PSE_CFG_PORT_ID_MASK | PSE_CFG_QUEUE_ID_MASK | PSE_CFG_WR_EN_MASK | PSE_CFG_OQRSV_SEL_MASK, FIELD_PREP(PSE_CFG_PORT_ID_MASK, port) | FIELD_PREP(PSE_CFG_QUEUE_ID_MASK, queue) | PSE_CFG_WR_EN_MASK | PSE_CFG_OQRSV_SEL_MASK); } static u32 airoha_fe_get_pse_all_rsv(struct airoha_eth *eth) { u32 val = airoha_fe_rr(eth, REG_FE_PSE_BUF_SET); return FIELD_GET(PSE_ALLRSV_MASK, val); } static int airoha_fe_set_pse_oq_rsv(struct airoha_eth *eth, u32 port, u32 queue, u32 val) { u32 orig_val = airoha_fe_get_pse_queue_rsv_pages(eth, port, queue); u32 tmp, all_rsv, fq_limit; airoha_fe_set_pse_queue_rsv_pages(eth, port, queue, val); /* modify all rsv */ all_rsv = airoha_fe_get_pse_all_rsv(eth); all_rsv += (val - orig_val); airoha_fe_rmw(eth, REG_FE_PSE_BUF_SET, PSE_ALLRSV_MASK, FIELD_PREP(PSE_ALLRSV_MASK, all_rsv)); /* modify hthd */ tmp = airoha_fe_rr(eth, PSE_FQ_CFG); fq_limit = FIELD_GET(PSE_FQ_LIMIT_MASK, tmp); tmp = fq_limit - all_rsv - 0x20; airoha_fe_rmw(eth, REG_PSE_SHARE_USED_THD, PSE_SHARE_USED_HTHD_MASK, FIELD_PREP(PSE_SHARE_USED_HTHD_MASK, tmp)); tmp = fq_limit - all_rsv - 0x100; airoha_fe_rmw(eth, REG_PSE_SHARE_USED_THD, PSE_SHARE_USED_MTHD_MASK, FIELD_PREP(PSE_SHARE_USED_MTHD_MASK, tmp)); tmp = (3 * tmp) >> 2; airoha_fe_rmw(eth, REG_FE_PSE_BUF_SET, PSE_SHARE_USED_LTHD_MASK, FIELD_PREP(PSE_SHARE_USED_LTHD_MASK, tmp)); return 0; } static void airoha_fe_pse_ports_init(struct airoha_eth *eth) { const u32 pse_port_num_queues[] = { [FE_PSE_PORT_CDM1] = 6, [FE_PSE_PORT_GDM1] = 6, [FE_PSE_PORT_GDM2] = 32, [FE_PSE_PORT_GDM3] = 6, [FE_PSE_PORT_PPE1] = 4, [FE_PSE_PORT_CDM2] = 6, [FE_PSE_PORT_CDM3] = 8, [FE_PSE_PORT_CDM4] = 10, [FE_PSE_PORT_PPE2] = 4, [FE_PSE_PORT_GDM4] = 2, [FE_PSE_PORT_CDM5] = 2, }; u32 all_rsv; int q; all_rsv = airoha_fe_get_pse_all_rsv(eth); /* hw misses PPE2 oq rsv */ all_rsv += PSE_RSV_PAGES * pse_port_num_queues[FE_PSE_PORT_PPE2]; airoha_fe_set(eth, REG_FE_PSE_BUF_SET, all_rsv); /* CMD1 */ for (q = 0; q < pse_port_num_queues[FE_PSE_PORT_CDM1]; q++) airoha_fe_set_pse_oq_rsv(eth, FE_PSE_PORT_CDM1, q, PSE_QUEUE_RSV_PAGES); /* GMD1 */ for (q = 0; q < pse_port_num_queues[FE_PSE_PORT_GDM1]; q++) airoha_fe_set_pse_oq_rsv(eth, FE_PSE_PORT_GDM1, q, PSE_QUEUE_RSV_PAGES); /* GMD2 */ for (q = 6; q < pse_port_num_queues[FE_PSE_PORT_GDM2]; q++) airoha_fe_set_pse_oq_rsv(eth, FE_PSE_PORT_GDM2, q, 0); /* GMD3 */ for (q = 0; q < pse_port_num_queues[FE_PSE_PORT_GDM3]; q++) airoha_fe_set_pse_oq_rsv(eth, FE_PSE_PORT_GDM3, q, PSE_QUEUE_RSV_PAGES); /* PPE1 */ for (q = 0; q < pse_port_num_queues[FE_PSE_PORT_PPE1]; q++) { if (q < pse_port_num_queues[FE_PSE_PORT_PPE1]) airoha_fe_set_pse_oq_rsv(eth, FE_PSE_PORT_PPE1, q, PSE_QUEUE_RSV_PAGES); else airoha_fe_set_pse_oq_rsv(eth, FE_PSE_PORT_PPE1, q, 0); } /* CDM2 */ for (q = 0; q < pse_port_num_queues[FE_PSE_PORT_CDM2]; q++) airoha_fe_set_pse_oq_rsv(eth, FE_PSE_PORT_CDM2, q, PSE_QUEUE_RSV_PAGES); /* CDM3 */ for (q = 0; q < pse_port_num_queues[FE_PSE_PORT_CDM3] - 1; q++) airoha_fe_set_pse_oq_rsv(eth, FE_PSE_PORT_CDM3, q, 0); /* CDM4 */ for (q = 4; q < pse_port_num_queues[FE_PSE_PORT_CDM4]; q++) airoha_fe_set_pse_oq_rsv(eth, FE_PSE_PORT_CDM4, q, PSE_QUEUE_RSV_PAGES); /* PPE2 */ for (q = 0; q < pse_port_num_queues[FE_PSE_PORT_PPE2]; q++) { if (q < pse_port_num_queues[FE_PSE_PORT_PPE2] / 2) airoha_fe_set_pse_oq_rsv(eth, FE_PSE_PORT_PPE2, q, PSE_QUEUE_RSV_PAGES); else airoha_fe_set_pse_oq_rsv(eth, FE_PSE_PORT_PPE2, q, 0); } /* GMD4 */ for (q = 0; q < pse_port_num_queues[FE_PSE_PORT_GDM4]; q++) airoha_fe_set_pse_oq_rsv(eth, FE_PSE_PORT_GDM4, q, PSE_QUEUE_RSV_PAGES); /* CDM5 */ for (q = 0; q < pse_port_num_queues[FE_PSE_PORT_CDM5]; q++) airoha_fe_set_pse_oq_rsv(eth, FE_PSE_PORT_CDM5, q, PSE_QUEUE_RSV_PAGES); } static int airoha_fe_mc_vlan_clear(struct airoha_eth *eth) { int i; for (i = 0; i < AIROHA_FE_MC_MAX_VLAN_TABLE; i++) { int err, j; u32 val; airoha_fe_wr(eth, REG_MC_VLAN_DATA, 0x0); val = FIELD_PREP(MC_VLAN_CFG_TABLE_ID_MASK, i) | MC_VLAN_CFG_TABLE_SEL_MASK | MC_VLAN_CFG_RW_MASK; airoha_fe_wr(eth, REG_MC_VLAN_CFG, val); err = read_poll_timeout(airoha_fe_rr, val, val & MC_VLAN_CFG_CMD_DONE_MASK, USEC_PER_MSEC, 5 * USEC_PER_MSEC, false, eth, REG_MC_VLAN_CFG); if (err) return err; for (j = 0; j < AIROHA_FE_MC_MAX_VLAN_PORT; j++) { airoha_fe_wr(eth, REG_MC_VLAN_DATA, 0x0); val = FIELD_PREP(MC_VLAN_CFG_TABLE_ID_MASK, i) | FIELD_PREP(MC_VLAN_CFG_PORT_ID_MASK, j) | MC_VLAN_CFG_RW_MASK; airoha_fe_wr(eth, REG_MC_VLAN_CFG, val); err = read_poll_timeout(airoha_fe_rr, val, val & MC_VLAN_CFG_CMD_DONE_MASK, USEC_PER_MSEC, 5 * USEC_PER_MSEC, false, eth, REG_MC_VLAN_CFG); if (err) return err; } } return 0; } static void airoha_fe_crsn_qsel_init(struct airoha_eth *eth) { /* CDM1_CRSN_QSEL */ airoha_fe_rmw(eth, REG_CDM1_CRSN_QSEL(CRSN_22 >> 2), CDM1_CRSN_QSEL_REASON_MASK(CRSN_22), FIELD_PREP(CDM1_CRSN_QSEL_REASON_MASK(CRSN_22), CDM_CRSN_QSEL_Q1)); airoha_fe_rmw(eth, REG_CDM1_CRSN_QSEL(CRSN_08 >> 2), CDM1_CRSN_QSEL_REASON_MASK(CRSN_08), FIELD_PREP(CDM1_CRSN_QSEL_REASON_MASK(CRSN_08), CDM_CRSN_QSEL_Q1)); airoha_fe_rmw(eth, REG_CDM1_CRSN_QSEL(CRSN_21 >> 2), CDM1_CRSN_QSEL_REASON_MASK(CRSN_21), FIELD_PREP(CDM1_CRSN_QSEL_REASON_MASK(CRSN_21), CDM_CRSN_QSEL_Q1)); airoha_fe_rmw(eth, REG_CDM1_CRSN_QSEL(CRSN_24 >> 2), CDM1_CRSN_QSEL_REASON_MASK(CRSN_24), FIELD_PREP(CDM1_CRSN_QSEL_REASON_MASK(CRSN_24), CDM_CRSN_QSEL_Q6)); airoha_fe_rmw(eth, REG_CDM1_CRSN_QSEL(CRSN_25 >> 2), CDM1_CRSN_QSEL_REASON_MASK(CRSN_25), FIELD_PREP(CDM1_CRSN_QSEL_REASON_MASK(CRSN_25), CDM_CRSN_QSEL_Q1)); /* CDM2_CRSN_QSEL */ airoha_fe_rmw(eth, REG_CDM2_CRSN_QSEL(CRSN_08 >> 2), CDM2_CRSN_QSEL_REASON_MASK(CRSN_08), FIELD_PREP(CDM2_CRSN_QSEL_REASON_MASK(CRSN_08), CDM_CRSN_QSEL_Q1)); airoha_fe_rmw(eth, REG_CDM2_CRSN_QSEL(CRSN_21 >> 2), CDM2_CRSN_QSEL_REASON_MASK(CRSN_21), FIELD_PREP(CDM2_CRSN_QSEL_REASON_MASK(CRSN_21), CDM_CRSN_QSEL_Q1)); airoha_fe_rmw(eth, REG_CDM2_CRSN_QSEL(CRSN_22 >> 2), CDM2_CRSN_QSEL_REASON_MASK(CRSN_22), FIELD_PREP(CDM2_CRSN_QSEL_REASON_MASK(CRSN_22), CDM_CRSN_QSEL_Q1)); airoha_fe_rmw(eth, REG_CDM2_CRSN_QSEL(CRSN_24 >> 2), CDM2_CRSN_QSEL_REASON_MASK(CRSN_24), FIELD_PREP(CDM2_CRSN_QSEL_REASON_MASK(CRSN_24), CDM_CRSN_QSEL_Q6)); airoha_fe_rmw(eth, REG_CDM2_CRSN_QSEL(CRSN_25 >> 2), CDM2_CRSN_QSEL_REASON_MASK(CRSN_25), FIELD_PREP(CDM2_CRSN_QSEL_REASON_MASK(CRSN_25), CDM_CRSN_QSEL_Q1)); } static int airoha_fe_init(struct airoha_eth *eth) { airoha_fe_maccr_init(eth); /* PSE IQ reserve */ airoha_fe_rmw(eth, REG_PSE_IQ_REV1, PSE_IQ_RES1_P2_MASK, FIELD_PREP(PSE_IQ_RES1_P2_MASK, 0x10)); airoha_fe_rmw(eth, REG_PSE_IQ_REV2, PSE_IQ_RES2_P5_MASK | PSE_IQ_RES2_P4_MASK, FIELD_PREP(PSE_IQ_RES2_P5_MASK, 0x40) | FIELD_PREP(PSE_IQ_RES2_P4_MASK, 0x34)); /* enable FE copy engine for MC/KA/DPI */ airoha_fe_wr(eth, REG_FE_PCE_CFG, PCE_DPI_EN_MASK | PCE_KA_EN_MASK | PCE_MC_EN_MASK); /* set vip queue selection to ring 1 */ airoha_fe_rmw(eth, REG_CDM1_FWD_CFG, CDM1_VIP_QSEL_MASK, FIELD_PREP(CDM1_VIP_QSEL_MASK, 0x4)); airoha_fe_rmw(eth, REG_CDM2_FWD_CFG, CDM2_VIP_QSEL_MASK, FIELD_PREP(CDM2_VIP_QSEL_MASK, 0x4)); /* set GDM4 source interface offset to 8 */ airoha_fe_rmw(eth, REG_GDM4_SRC_PORT_SET, GDM4_SPORT_OFF2_MASK | GDM4_SPORT_OFF1_MASK | GDM4_SPORT_OFF0_MASK, FIELD_PREP(GDM4_SPORT_OFF2_MASK, 8) | FIELD_PREP(GDM4_SPORT_OFF1_MASK, 8) | FIELD_PREP(GDM4_SPORT_OFF0_MASK, 8)); /* set PSE Page as 128B */ airoha_fe_rmw(eth, REG_FE_DMA_GLO_CFG, FE_DMA_GLO_L2_SPACE_MASK | FE_DMA_GLO_PG_SZ_MASK, FIELD_PREP(FE_DMA_GLO_L2_SPACE_MASK, 2) | FE_DMA_GLO_PG_SZ_MASK); airoha_fe_wr(eth, REG_FE_RST_GLO_CFG, FE_RST_CORE_MASK | FE_RST_GDM3_MBI_ARB_MASK | FE_RST_GDM4_MBI_ARB_MASK); usleep_range(1000, 2000); /* connect RxRing1 and RxRing15 to PSE Port0 OQ-1 * connect other rings to PSE Port0 OQ-0 */ airoha_fe_wr(eth, REG_FE_CDM1_OQ_MAP0, BIT(4)); airoha_fe_wr(eth, REG_FE_CDM1_OQ_MAP1, BIT(28)); airoha_fe_wr(eth, REG_FE_CDM1_OQ_MAP2, BIT(4)); airoha_fe_wr(eth, REG_FE_CDM1_OQ_MAP3, BIT(28)); airoha_fe_vip_setup(eth); airoha_fe_pse_ports_init(eth); airoha_fe_set(eth, REG_GDM_MISC_CFG, GDM2_RDM_ACK_WAIT_PREF_MASK | GDM2_CHN_VLD_MODE_MASK); airoha_fe_rmw(eth, REG_CDM2_FWD_CFG, CDM2_OAM_QSEL_MASK, FIELD_PREP(CDM2_OAM_QSEL_MASK, 15)); /* init fragment and assemble Force Port */ /* NPU Core-3, NPU Bridge Channel-3 */ airoha_fe_rmw(eth, REG_IP_FRAG_FP, IP_FRAGMENT_PORT_MASK | IP_FRAGMENT_NBQ_MASK, FIELD_PREP(IP_FRAGMENT_PORT_MASK, 6) | FIELD_PREP(IP_FRAGMENT_NBQ_MASK, 3)); /* QDMA LAN, RX Ring-22 */ airoha_fe_rmw(eth, REG_IP_FRAG_FP, IP_ASSEMBLE_PORT_MASK | IP_ASSEMBLE_NBQ_MASK, FIELD_PREP(IP_ASSEMBLE_PORT_MASK, 0) | FIELD_PREP(IP_ASSEMBLE_NBQ_MASK, 22)); airoha_fe_set(eth, REG_GDM3_FWD_CFG, GDM3_PAD_EN_MASK); airoha_fe_set(eth, REG_GDM4_FWD_CFG, GDM4_PAD_EN_MASK); airoha_fe_crsn_qsel_init(eth); airoha_fe_clear(eth, REG_FE_CPORT_CFG, FE_CPORT_QUEUE_XFC_MASK); airoha_fe_set(eth, REG_FE_CPORT_CFG, FE_CPORT_PORT_XFC_MASK); /* default aging mode for mbi unlock issue */ airoha_fe_rmw(eth, REG_GDM2_CHN_RLS, MBI_RX_AGE_SEL_MASK | MBI_TX_AGE_SEL_MASK, FIELD_PREP(MBI_RX_AGE_SEL_MASK, 3) | FIELD_PREP(MBI_TX_AGE_SEL_MASK, 3)); /* disable IFC by default */ airoha_fe_clear(eth, REG_FE_CSR_IFC_CFG, FE_IFC_EN_MASK); /* enable 1:N vlan action, init vlan table */ airoha_fe_set(eth, REG_MC_VLAN_EN, MC_VLAN_EN_MASK); return airoha_fe_mc_vlan_clear(eth); } static int airoha_qdma_fill_rx_queue(struct airoha_queue *q) { enum dma_data_direction dir = page_pool_get_dma_dir(q->page_pool); struct airoha_qdma *qdma = q->qdma; struct airoha_eth *eth = qdma->eth; int qid = q - &qdma->q_rx[0]; int nframes = 0; while (q->queued < q->ndesc - 1) { struct airoha_queue_entry *e = &q->entry[q->head]; struct airoha_qdma_desc *desc = &q->desc[q->head]; struct page *page; int offset; u32 val; page = page_pool_dev_alloc_frag(q->page_pool, &offset, q->buf_size); if (!page) break; q->head = (q->head + 1) % q->ndesc; q->queued++; nframes++; e->buf = page_address(page) + offset; e->dma_addr = page_pool_get_dma_addr(page) + offset; e->dma_len = SKB_WITH_OVERHEAD(q->buf_size); dma_sync_single_for_device(eth->dev, e->dma_addr, e->dma_len, dir); val = FIELD_PREP(QDMA_DESC_LEN_MASK, e->dma_len); WRITE_ONCE(desc->ctrl, cpu_to_le32(val)); WRITE_ONCE(desc->addr, cpu_to_le32(e->dma_addr)); val = FIELD_PREP(QDMA_DESC_NEXT_ID_MASK, q->head); WRITE_ONCE(desc->data, cpu_to_le32(val)); WRITE_ONCE(desc->msg0, 0); WRITE_ONCE(desc->msg1, 0); WRITE_ONCE(desc->msg2, 0); WRITE_ONCE(desc->msg3, 0); airoha_qdma_rmw(qdma, REG_RX_CPU_IDX(qid), RX_RING_CPU_IDX_MASK, FIELD_PREP(RX_RING_CPU_IDX_MASK, q->head)); } return nframes; } static int airoha_qdma_get_gdm_port(struct airoha_eth *eth, struct airoha_qdma_desc *desc) { u32 port, sport, msg1 = le32_to_cpu(desc->msg1); sport = FIELD_GET(QDMA_ETH_RXMSG_SPORT_MASK, msg1); switch (sport) { case 0x10 ... 0x13: port = 0; break; case 0x2 ... 0x4: port = sport - 1; break; default: return -EINVAL; } return port >= ARRAY_SIZE(eth->ports) ? -EINVAL : port; } static int airoha_qdma_rx_process(struct airoha_queue *q, int budget) { enum dma_data_direction dir = page_pool_get_dma_dir(q->page_pool); struct airoha_qdma *qdma = q->qdma; struct airoha_eth *eth = qdma->eth; int qid = q - &qdma->q_rx[0]; int done = 0; while (done < budget) { struct airoha_queue_entry *e = &q->entry[q->tail]; struct airoha_qdma_desc *desc = &q->desc[q->tail]; dma_addr_t dma_addr = le32_to_cpu(desc->addr); u32 desc_ctrl = le32_to_cpu(desc->ctrl); struct sk_buff *skb; int len, p; if (!(desc_ctrl & QDMA_DESC_DONE_MASK)) break; if (!dma_addr) break; len = FIELD_GET(QDMA_DESC_LEN_MASK, desc_ctrl); if (!len) break; q->tail = (q->tail + 1) % q->ndesc; q->queued--; dma_sync_single_for_cpu(eth->dev, dma_addr, SKB_WITH_OVERHEAD(q->buf_size), dir); p = airoha_qdma_get_gdm_port(eth, desc); if (p < 0 || !eth->ports[p]) { page_pool_put_full_page(q->page_pool, virt_to_head_page(e->buf), true); continue; } skb = napi_build_skb(e->buf, q->buf_size); if (!skb) { page_pool_put_full_page(q->page_pool, virt_to_head_page(e->buf), true); break; } skb_reserve(skb, 2); __skb_put(skb, len); skb_mark_for_recycle(skb); skb->dev = eth->ports[p]->dev; skb->protocol = eth_type_trans(skb, skb->dev); skb->ip_summed = CHECKSUM_UNNECESSARY; skb_record_rx_queue(skb, qid); napi_gro_receive(&q->napi, skb); done++; } airoha_qdma_fill_rx_queue(q); return done; } static int airoha_qdma_rx_napi_poll(struct napi_struct *napi, int budget) { struct airoha_queue *q = container_of(napi, struct airoha_queue, napi); int cur, done = 0; do { cur = airoha_qdma_rx_process(q, budget - done); done += cur; } while (cur && done < budget); if (done < budget && napi_complete(napi)) airoha_qdma_irq_enable(q->qdma, QDMA_INT_REG_IDX1, RX_DONE_INT_MASK); return done; } static int airoha_qdma_init_rx_queue(struct airoha_queue *q, struct airoha_qdma *qdma, int ndesc) { const struct page_pool_params pp_params = { .order = 0, .pool_size = 256, .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV, .dma_dir = DMA_FROM_DEVICE, .max_len = PAGE_SIZE, .nid = NUMA_NO_NODE, .dev = qdma->eth->dev, .napi = &q->napi, }; struct airoha_eth *eth = qdma->eth; int qid = q - &qdma->q_rx[0], thr; dma_addr_t dma_addr; q->buf_size = PAGE_SIZE / 2; q->ndesc = ndesc; q->qdma = qdma; q->entry = devm_kzalloc(eth->dev, q->ndesc * sizeof(*q->entry), GFP_KERNEL); if (!q->entry) return -ENOMEM; q->page_pool = page_pool_create(&pp_params); if (IS_ERR(q->page_pool)) { int err = PTR_ERR(q->page_pool); q->page_pool = NULL; return err; } q->desc = dmam_alloc_coherent(eth->dev, q->ndesc * sizeof(*q->desc), &dma_addr, GFP_KERNEL); if (!q->desc) return -ENOMEM; netif_napi_add(eth->napi_dev, &q->napi, airoha_qdma_rx_napi_poll); airoha_qdma_wr(qdma, REG_RX_RING_BASE(qid), dma_addr); airoha_qdma_rmw(qdma, REG_RX_RING_SIZE(qid), RX_RING_SIZE_MASK, FIELD_PREP(RX_RING_SIZE_MASK, ndesc)); thr = clamp(ndesc >> 3, 1, 32); airoha_qdma_rmw(qdma, REG_RX_RING_SIZE(qid), RX_RING_THR_MASK, FIELD_PREP(RX_RING_THR_MASK, thr)); airoha_qdma_rmw(qdma, REG_RX_DMA_IDX(qid), RX_RING_DMA_IDX_MASK, FIELD_PREP(RX_RING_DMA_IDX_MASK, q->head)); airoha_qdma_fill_rx_queue(q); return 0; } static void airoha_qdma_cleanup_rx_queue(struct airoha_queue *q) { struct airoha_eth *eth = q->qdma->eth; while (q->queued) { struct airoha_queue_entry *e = &q->entry[q->tail]; struct page *page = virt_to_head_page(e->buf); dma_sync_single_for_cpu(eth->dev, e->dma_addr, e->dma_len, page_pool_get_dma_dir(q->page_pool)); page_pool_put_full_page(q->page_pool, page, false); q->tail = (q->tail + 1) % q->ndesc; q->queued--; } } static int airoha_qdma_init_rx(struct airoha_qdma *qdma) { int i; for (i = 0; i < ARRAY_SIZE(qdma->q_rx); i++) { int err; if (!(RX_DONE_INT_MASK & BIT(i))) { /* rx-queue not binded to irq */ continue; } err = airoha_qdma_init_rx_queue(&qdma->q_rx[i], qdma, RX_DSCP_NUM(i)); if (err) return err; } return 0; } static int airoha_qdma_tx_napi_poll(struct napi_struct *napi, int budget) { struct airoha_tx_irq_queue *irq_q; int id, done = 0, irq_queued; struct airoha_qdma *qdma; struct airoha_eth *eth; u32 status, head; irq_q = container_of(napi, struct airoha_tx_irq_queue, napi); qdma = irq_q->qdma; id = irq_q - &qdma->q_tx_irq[0]; eth = qdma->eth; status = airoha_qdma_rr(qdma, REG_IRQ_STATUS(id)); head = FIELD_GET(IRQ_HEAD_IDX_MASK, status); head = head % irq_q->size; irq_queued = FIELD_GET(IRQ_ENTRY_LEN_MASK, status); while (irq_queued > 0 && done < budget) { u32 qid, val = irq_q->q[head]; struct airoha_qdma_desc *desc; struct airoha_queue_entry *e; struct airoha_queue *q; u32 index, desc_ctrl; struct sk_buff *skb; if (val == 0xff) break; irq_q->q[head] = 0xff; /* mark as done */ head = (head + 1) % irq_q->size; irq_queued--; done++; qid = FIELD_GET(IRQ_RING_IDX_MASK, val); if (qid >= ARRAY_SIZE(qdma->q_tx)) continue; q = &qdma->q_tx[qid]; if (!q->ndesc) continue; index = FIELD_GET(IRQ_DESC_IDX_MASK, val); if (index >= q->ndesc) continue; spin_lock_bh(&q->lock); if (!q->queued) goto unlock; desc = &q->desc[index]; desc_ctrl = le32_to_cpu(desc->ctrl); if (!(desc_ctrl & QDMA_DESC_DONE_MASK) && !(desc_ctrl & QDMA_DESC_DROP_MASK)) goto unlock; e = &q->entry[index]; skb = e->skb; dma_unmap_single(eth->dev, e->dma_addr, e->dma_len, DMA_TO_DEVICE); memset(e, 0, sizeof(*e)); WRITE_ONCE(desc->msg0, 0); WRITE_ONCE(desc->msg1, 0); q->queued--; /* completion ring can report out-of-order indexes if hw QoS * is enabled and packets with different priority are queued * to same DMA ring. Take into account possible out-of-order * reports incrementing DMA ring tail pointer */ while (q->tail != q->head && !q->entry[q->tail].dma_addr) q->tail = (q->tail + 1) % q->ndesc; if (skb) { u16 queue = skb_get_queue_mapping(skb); struct netdev_queue *txq; txq = netdev_get_tx_queue(skb->dev, queue); netdev_tx_completed_queue(txq, 1, skb->len); if (netif_tx_queue_stopped(txq) && q->ndesc - q->queued >= q->free_thr) netif_tx_wake_queue(txq); dev_kfree_skb_any(skb); } unlock: spin_unlock_bh(&q->lock); } if (done) { int i, len = done >> 7; for (i = 0; i < len; i++) airoha_qdma_rmw(qdma, REG_IRQ_CLEAR_LEN(id), IRQ_CLEAR_LEN_MASK, 0x80); airoha_qdma_rmw(qdma, REG_IRQ_CLEAR_LEN(id), IRQ_CLEAR_LEN_MASK, (done & 0x7f)); } if (done < budget && napi_complete(napi)) airoha_qdma_irq_enable(qdma, QDMA_INT_REG_IDX0, TX_DONE_INT_MASK(id)); return done; } static int airoha_qdma_init_tx_queue(struct airoha_queue *q, struct airoha_qdma *qdma, int size) { struct airoha_eth *eth = qdma->eth; int i, qid = q - &qdma->q_tx[0]; dma_addr_t dma_addr; spin_lock_init(&q->lock); q->ndesc = size; q->qdma = qdma; q->free_thr = 1 + MAX_SKB_FRAGS; q->entry = devm_kzalloc(eth->dev, q->ndesc * sizeof(*q->entry), GFP_KERNEL); if (!q->entry) return -ENOMEM; q->desc = dmam_alloc_coherent(eth->dev, q->ndesc * sizeof(*q->desc), &dma_addr, GFP_KERNEL); if (!q->desc) return -ENOMEM; for (i = 0; i < q->ndesc; i++) { u32 val; val = FIELD_PREP(QDMA_DESC_DONE_MASK, 1); WRITE_ONCE(q->desc[i].ctrl, cpu_to_le32(val)); } airoha_qdma_wr(qdma, REG_TX_RING_BASE(qid), dma_addr); airoha_qdma_rmw(qdma, REG_TX_CPU_IDX(qid), TX_RING_CPU_IDX_MASK, FIELD_PREP(TX_RING_CPU_IDX_MASK, q->head)); airoha_qdma_rmw(qdma, REG_TX_DMA_IDX(qid), TX_RING_DMA_IDX_MASK, FIELD_PREP(TX_RING_DMA_IDX_MASK, q->head)); return 0; } static int airoha_qdma_tx_irq_init(struct airoha_tx_irq_queue *irq_q, struct airoha_qdma *qdma, int size) { int id = irq_q - &qdma->q_tx_irq[0]; struct airoha_eth *eth = qdma->eth; dma_addr_t dma_addr; netif_napi_add_tx(eth->napi_dev, &irq_q->napi, airoha_qdma_tx_napi_poll); irq_q->q = dmam_alloc_coherent(eth->dev, size * sizeof(u32), &dma_addr, GFP_KERNEL); if (!irq_q->q) return -ENOMEM; memset(irq_q->q, 0xff, size * sizeof(u32)); irq_q->size = size; irq_q->qdma = qdma; airoha_qdma_wr(qdma, REG_TX_IRQ_BASE(id), dma_addr); airoha_qdma_rmw(qdma, REG_TX_IRQ_CFG(id), TX_IRQ_DEPTH_MASK, FIELD_PREP(TX_IRQ_DEPTH_MASK, size)); airoha_qdma_rmw(qdma, REG_TX_IRQ_CFG(id), TX_IRQ_THR_MASK, FIELD_PREP(TX_IRQ_THR_MASK, 1)); return 0; } static int airoha_qdma_init_tx(struct airoha_qdma *qdma) { int i, err; for (i = 0; i < ARRAY_SIZE(qdma->q_tx_irq); i++) { err = airoha_qdma_tx_irq_init(&qdma->q_tx_irq[i], qdma, IRQ_QUEUE_LEN(i)); if (err) return err; } for (i = 0; i < ARRAY_SIZE(qdma->q_tx); i++) { err = airoha_qdma_init_tx_queue(&qdma->q_tx[i], qdma, TX_DSCP_NUM); if (err) return err; } return 0; } static void airoha_qdma_cleanup_tx_queue(struct airoha_queue *q) { struct airoha_eth *eth = q->qdma->eth; spin_lock_bh(&q->lock); while (q->queued) { struct airoha_queue_entry *e = &q->entry[q->tail]; dma_unmap_single(eth->dev, e->dma_addr, e->dma_len, DMA_TO_DEVICE); dev_kfree_skb_any(e->skb); e->skb = NULL; q->tail = (q->tail + 1) % q->ndesc; q->queued--; } spin_unlock_bh(&q->lock); } static int airoha_qdma_init_hfwd_queues(struct airoha_qdma *qdma) { struct airoha_eth *eth = qdma->eth; dma_addr_t dma_addr; u32 status; int size; size = HW_DSCP_NUM * sizeof(struct airoha_qdma_fwd_desc); qdma->hfwd.desc = dmam_alloc_coherent(eth->dev, size, &dma_addr, GFP_KERNEL); if (!qdma->hfwd.desc) return -ENOMEM; airoha_qdma_wr(qdma, REG_FWD_DSCP_BASE, dma_addr); size = AIROHA_MAX_PACKET_SIZE * HW_DSCP_NUM; qdma->hfwd.q = dmam_alloc_coherent(eth->dev, size, &dma_addr, GFP_KERNEL); if (!qdma->hfwd.q) return -ENOMEM; airoha_qdma_wr(qdma, REG_FWD_BUF_BASE, dma_addr); airoha_qdma_rmw(qdma, REG_HW_FWD_DSCP_CFG, HW_FWD_DSCP_PAYLOAD_SIZE_MASK, FIELD_PREP(HW_FWD_DSCP_PAYLOAD_SIZE_MASK, 0)); airoha_qdma_rmw(qdma, REG_FWD_DSCP_LOW_THR, FWD_DSCP_LOW_THR_MASK, FIELD_PREP(FWD_DSCP_LOW_THR_MASK, 128)); airoha_qdma_rmw(qdma, REG_LMGR_INIT_CFG, LMGR_INIT_START | LMGR_SRAM_MODE_MASK | HW_FWD_DESC_NUM_MASK, FIELD_PREP(HW_FWD_DESC_NUM_MASK, HW_DSCP_NUM) | LMGR_INIT_START); return read_poll_timeout(airoha_qdma_rr, status, !(status & LMGR_INIT_START), USEC_PER_MSEC, 30 * USEC_PER_MSEC, true, qdma, REG_LMGR_INIT_CFG); } static void airoha_qdma_init_qos(struct airoha_qdma *qdma) { airoha_qdma_clear(qdma, REG_TXWRR_MODE_CFG, TWRR_WEIGHT_SCALE_MASK); airoha_qdma_set(qdma, REG_TXWRR_MODE_CFG, TWRR_WEIGHT_BASE_MASK); airoha_qdma_clear(qdma, REG_PSE_BUF_USAGE_CFG, PSE_BUF_ESTIMATE_EN_MASK); airoha_qdma_set(qdma, REG_EGRESS_RATE_METER_CFG, EGRESS_RATE_METER_EN_MASK | EGRESS_RATE_METER_EQ_RATE_EN_MASK); /* 2047us x 31 = 63.457ms */ airoha_qdma_rmw(qdma, REG_EGRESS_RATE_METER_CFG, EGRESS_RATE_METER_WINDOW_SZ_MASK, FIELD_PREP(EGRESS_RATE_METER_WINDOW_SZ_MASK, 0x1f)); airoha_qdma_rmw(qdma, REG_EGRESS_RATE_METER_CFG, EGRESS_RATE_METER_TIMESLICE_MASK, FIELD_PREP(EGRESS_RATE_METER_TIMESLICE_MASK, 0x7ff)); /* ratelimit init */ airoha_qdma_set(qdma, REG_GLB_TRTCM_CFG, GLB_TRTCM_EN_MASK); /* fast-tick 25us */ airoha_qdma_rmw(qdma, REG_GLB_TRTCM_CFG, GLB_FAST_TICK_MASK, FIELD_PREP(GLB_FAST_TICK_MASK, 25)); airoha_qdma_rmw(qdma, REG_GLB_TRTCM_CFG, GLB_SLOW_TICK_RATIO_MASK, FIELD_PREP(GLB_SLOW_TICK_RATIO_MASK, 40)); airoha_qdma_set(qdma, REG_EGRESS_TRTCM_CFG, EGRESS_TRTCM_EN_MASK); airoha_qdma_rmw(qdma, REG_EGRESS_TRTCM_CFG, EGRESS_FAST_TICK_MASK, FIELD_PREP(EGRESS_FAST_TICK_MASK, 25)); airoha_qdma_rmw(qdma, REG_EGRESS_TRTCM_CFG, EGRESS_SLOW_TICK_RATIO_MASK, FIELD_PREP(EGRESS_SLOW_TICK_RATIO_MASK, 40)); airoha_qdma_set(qdma, REG_INGRESS_TRTCM_CFG, INGRESS_TRTCM_EN_MASK); airoha_qdma_clear(qdma, REG_INGRESS_TRTCM_CFG, INGRESS_TRTCM_MODE_MASK); airoha_qdma_rmw(qdma, REG_INGRESS_TRTCM_CFG, INGRESS_FAST_TICK_MASK, FIELD_PREP(INGRESS_FAST_TICK_MASK, 125)); airoha_qdma_rmw(qdma, REG_INGRESS_TRTCM_CFG, INGRESS_SLOW_TICK_RATIO_MASK, FIELD_PREP(INGRESS_SLOW_TICK_RATIO_MASK, 8)); airoha_qdma_set(qdma, REG_SLA_TRTCM_CFG, SLA_TRTCM_EN_MASK); airoha_qdma_rmw(qdma, REG_SLA_TRTCM_CFG, SLA_FAST_TICK_MASK, FIELD_PREP(SLA_FAST_TICK_MASK, 25)); airoha_qdma_rmw(qdma, REG_SLA_TRTCM_CFG, SLA_SLOW_TICK_RATIO_MASK, FIELD_PREP(SLA_SLOW_TICK_RATIO_MASK, 40)); } static int airoha_qdma_hw_init(struct airoha_qdma *qdma) { int i; /* clear pending irqs */ for (i = 0; i < ARRAY_SIZE(qdma->irqmask); i++) airoha_qdma_wr(qdma, REG_INT_STATUS(i), 0xffffffff); /* setup irqs */ airoha_qdma_irq_enable(qdma, QDMA_INT_REG_IDX0, INT_IDX0_MASK); airoha_qdma_irq_enable(qdma, QDMA_INT_REG_IDX1, INT_IDX1_MASK); airoha_qdma_irq_enable(qdma, QDMA_INT_REG_IDX4, INT_IDX4_MASK); /* setup irq binding */ for (i = 0; i < ARRAY_SIZE(qdma->q_tx); i++) { if (!qdma->q_tx[i].ndesc) continue; if (TX_RING_IRQ_BLOCKING_MAP_MASK & BIT(i)) airoha_qdma_set(qdma, REG_TX_RING_BLOCKING(i), TX_RING_IRQ_BLOCKING_CFG_MASK); else airoha_qdma_clear(qdma, REG_TX_RING_BLOCKING(i), TX_RING_IRQ_BLOCKING_CFG_MASK); } airoha_qdma_wr(qdma, REG_QDMA_GLOBAL_CFG, GLOBAL_CFG_RX_2B_OFFSET_MASK | FIELD_PREP(GLOBAL_CFG_DMA_PREFERENCE_MASK, 3) | GLOBAL_CFG_CPU_TXR_RR_MASK | GLOBAL_CFG_PAYLOAD_BYTE_SWAP_MASK | GLOBAL_CFG_MULTICAST_MODIFY_FP_MASK | GLOBAL_CFG_MULTICAST_EN_MASK | GLOBAL_CFG_IRQ0_EN_MASK | GLOBAL_CFG_IRQ1_EN_MASK | GLOBAL_CFG_TX_WB_DONE_MASK | FIELD_PREP(GLOBAL_CFG_MAX_ISSUE_NUM_MASK, 2)); airoha_qdma_init_qos(qdma); /* disable qdma rx delay interrupt */ for (i = 0; i < ARRAY_SIZE(qdma->q_rx); i++) { if (!qdma->q_rx[i].ndesc) continue; airoha_qdma_clear(qdma, REG_RX_DELAY_INT_IDX(i), RX_DELAY_INT_MASK); } airoha_qdma_set(qdma, REG_TXQ_CNGST_CFG, TXQ_CNGST_DROP_EN | TXQ_CNGST_DEI_DROP_EN); return 0; } static irqreturn_t airoha_irq_handler(int irq, void *dev_instance) { struct airoha_qdma *qdma = dev_instance; u32 intr[ARRAY_SIZE(qdma->irqmask)]; int i; for (i = 0; i < ARRAY_SIZE(qdma->irqmask); i++) { intr[i] = airoha_qdma_rr(qdma, REG_INT_STATUS(i)); intr[i] &= qdma->irqmask[i]; airoha_qdma_wr(qdma, REG_INT_STATUS(i), intr[i]); } if (!test_bit(DEV_STATE_INITIALIZED, &qdma->eth->state)) return IRQ_NONE; if (intr[1] & RX_DONE_INT_MASK) { airoha_qdma_irq_disable(qdma, QDMA_INT_REG_IDX1, RX_DONE_INT_MASK); for (i = 0; i < ARRAY_SIZE(qdma->q_rx); i++) { if (!qdma->q_rx[i].ndesc) continue; if (intr[1] & BIT(i)) napi_schedule(&qdma->q_rx[i].napi); } } if (intr[0] & INT_TX_MASK) { for (i = 0; i < ARRAY_SIZE(qdma->q_tx_irq); i++) { if (!(intr[0] & TX_DONE_INT_MASK(i))) continue; airoha_qdma_irq_disable(qdma, QDMA_INT_REG_IDX0, TX_DONE_INT_MASK(i)); napi_schedule(&qdma->q_tx_irq[i].napi); } } return IRQ_HANDLED; } static int airoha_qdma_init(struct platform_device *pdev, struct airoha_eth *eth, struct airoha_qdma *qdma) { int err, id = qdma - ð->qdma[0]; const char *res; spin_lock_init(&qdma->irq_lock); qdma->eth = eth; res = devm_kasprintf(eth->dev, GFP_KERNEL, "qdma%d", id); if (!res) return -ENOMEM; qdma->regs = devm_platform_ioremap_resource_byname(pdev, res); if (IS_ERR(qdma->regs)) return dev_err_probe(eth->dev, PTR_ERR(qdma->regs), "failed to iomap qdma%d regs\n", id); qdma->irq = platform_get_irq(pdev, 4 * id); if (qdma->irq < 0) return qdma->irq; err = devm_request_irq(eth->dev, qdma->irq, airoha_irq_handler, IRQF_SHARED, KBUILD_MODNAME, qdma); if (err) return err; err = airoha_qdma_init_rx(qdma); if (err) return err; err = airoha_qdma_init_tx(qdma); if (err) return err; err = airoha_qdma_init_hfwd_queues(qdma); if (err) return err; return airoha_qdma_hw_init(qdma); } static int airoha_hw_init(struct platform_device *pdev, struct airoha_eth *eth) { int err, i; /* disable xsi */ err = reset_control_bulk_assert(ARRAY_SIZE(eth->xsi_rsts), eth->xsi_rsts); if (err) return err; err = reset_control_bulk_assert(ARRAY_SIZE(eth->rsts), eth->rsts); if (err) return err; msleep(20); err = reset_control_bulk_deassert(ARRAY_SIZE(eth->rsts), eth->rsts); if (err) return err; msleep(20); err = airoha_fe_init(eth); if (err) return err; for (i = 0; i < ARRAY_SIZE(eth->qdma); i++) { err = airoha_qdma_init(pdev, eth, ð->qdma[i]); if (err) return err; } set_bit(DEV_STATE_INITIALIZED, ð->state); return 0; } static void airoha_hw_cleanup(struct airoha_qdma *qdma) { int i; for (i = 0; i < ARRAY_SIZE(qdma->q_rx); i++) { if (!qdma->q_rx[i].ndesc) continue; napi_disable(&qdma->q_rx[i].napi); netif_napi_del(&qdma->q_rx[i].napi); airoha_qdma_cleanup_rx_queue(&qdma->q_rx[i]); if (qdma->q_rx[i].page_pool) page_pool_destroy(qdma->q_rx[i].page_pool); } for (i = 0; i < ARRAY_SIZE(qdma->q_tx_irq); i++) { napi_disable(&qdma->q_tx_irq[i].napi); netif_napi_del(&qdma->q_tx_irq[i].napi); } for (i = 0; i < ARRAY_SIZE(qdma->q_tx); i++) { if (!qdma->q_tx[i].ndesc) continue; airoha_qdma_cleanup_tx_queue(&qdma->q_tx[i]); } } static void airoha_qdma_start_napi(struct airoha_qdma *qdma) { int i; for (i = 0; i < ARRAY_SIZE(qdma->q_tx_irq); i++) napi_enable(&qdma->q_tx_irq[i].napi); for (i = 0; i < ARRAY_SIZE(qdma->q_rx); i++) { if (!qdma->q_rx[i].ndesc) continue; napi_enable(&qdma->q_rx[i].napi); } } static void airoha_update_hw_stats(struct airoha_gdm_port *port) { struct airoha_eth *eth = port->qdma->eth; u32 val, i = 0; spin_lock(&port->stats.lock); u64_stats_update_begin(&port->stats.syncp); /* TX */ val = airoha_fe_rr(eth, REG_FE_GDM_TX_OK_PKT_CNT_H(port->id)); port->stats.tx_ok_pkts += ((u64)val << 32); val = airoha_fe_rr(eth, REG_FE_GDM_TX_OK_PKT_CNT_L(port->id)); port->stats.tx_ok_pkts += val; val = airoha_fe_rr(eth, REG_FE_GDM_TX_OK_BYTE_CNT_H(port->id)); port->stats.tx_ok_bytes += ((u64)val << 32); val = airoha_fe_rr(eth, REG_FE_GDM_TX_OK_BYTE_CNT_L(port->id)); port->stats.tx_ok_bytes += val; val = airoha_fe_rr(eth, REG_FE_GDM_TX_ETH_DROP_CNT(port->id)); port->stats.tx_drops += val; val = airoha_fe_rr(eth, REG_FE_GDM_TX_ETH_BC_CNT(port->id)); port->stats.tx_broadcast += val; val = airoha_fe_rr(eth, REG_FE_GDM_TX_ETH_MC_CNT(port->id)); port->stats.tx_multicast += val; val = airoha_fe_rr(eth, REG_FE_GDM_TX_ETH_RUNT_CNT(port->id)); port->stats.tx_len[i] += val; val = airoha_fe_rr(eth, REG_FE_GDM_TX_ETH_E64_CNT_H(port->id)); port->stats.tx_len[i] += ((u64)val << 32); val = airoha_fe_rr(eth, REG_FE_GDM_TX_ETH_E64_CNT_L(port->id)); port->stats.tx_len[i++] += val; val = airoha_fe_rr(eth, REG_FE_GDM_TX_ETH_L64_CNT_H(port->id)); port->stats.tx_len[i] += ((u64)val << 32); val = airoha_fe_rr(eth, REG_FE_GDM_TX_ETH_L64_CNT_L(port->id)); port->stats.tx_len[i++] += val; val = airoha_fe_rr(eth, REG_FE_GDM_TX_ETH_L127_CNT_H(port->id)); port->stats.tx_len[i] += ((u64)val << 32); val = airoha_fe_rr(eth, REG_FE_GDM_TX_ETH_L127_CNT_L(port->id)); port->stats.tx_len[i++] += val; val = airoha_fe_rr(eth, REG_FE_GDM_TX_ETH_L255_CNT_H(port->id)); port->stats.tx_len[i] += ((u64)val << 32); val = airoha_fe_rr(eth, REG_FE_GDM_TX_ETH_L255_CNT_L(port->id)); port->stats.tx_len[i++] += val; val = airoha_fe_rr(eth, REG_FE_GDM_TX_ETH_L511_CNT_H(port->id)); port->stats.tx_len[i] += ((u64)val << 32); val = airoha_fe_rr(eth, REG_FE_GDM_TX_ETH_L511_CNT_L(port->id)); port->stats.tx_len[i++] += val; val = airoha_fe_rr(eth, REG_FE_GDM_TX_ETH_L1023_CNT_H(port->id)); port->stats.tx_len[i] += ((u64)val << 32); val = airoha_fe_rr(eth, REG_FE_GDM_TX_ETH_L1023_CNT_L(port->id)); port->stats.tx_len[i++] += val; val = airoha_fe_rr(eth, REG_FE_GDM_TX_ETH_LONG_CNT(port->id)); port->stats.tx_len[i++] += val; /* RX */ val = airoha_fe_rr(eth, REG_FE_GDM_RX_OK_PKT_CNT_H(port->id)); port->stats.rx_ok_pkts += ((u64)val << 32); val = airoha_fe_rr(eth, REG_FE_GDM_RX_OK_PKT_CNT_L(port->id)); port->stats.rx_ok_pkts += val; val = airoha_fe_rr(eth, REG_FE_GDM_RX_OK_BYTE_CNT_H(port->id)); port->stats.rx_ok_bytes += ((u64)val << 32); val = airoha_fe_rr(eth, REG_FE_GDM_RX_OK_BYTE_CNT_L(port->id)); port->stats.rx_ok_bytes += val; val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_DROP_CNT(port->id)); port->stats.rx_drops += val; val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_BC_CNT(port->id)); port->stats.rx_broadcast += val; val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_MC_CNT(port->id)); port->stats.rx_multicast += val; val = airoha_fe_rr(eth, REG_FE_GDM_RX_ERROR_DROP_CNT(port->id)); port->stats.rx_errors += val; val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_CRC_ERR_CNT(port->id)); port->stats.rx_crc_error += val; val = airoha_fe_rr(eth, REG_FE_GDM_RX_OVERFLOW_DROP_CNT(port->id)); port->stats.rx_over_errors += val; val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_FRAG_CNT(port->id)); port->stats.rx_fragment += val; val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_JABBER_CNT(port->id)); port->stats.rx_jabber += val; i = 0; val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_RUNT_CNT(port->id)); port->stats.rx_len[i] += val; val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_E64_CNT_H(port->id)); port->stats.rx_len[i] += ((u64)val << 32); val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_E64_CNT_L(port->id)); port->stats.rx_len[i++] += val; val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_L64_CNT_H(port->id)); port->stats.rx_len[i] += ((u64)val << 32); val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_L64_CNT_L(port->id)); port->stats.rx_len[i++] += val; val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_L127_CNT_H(port->id)); port->stats.rx_len[i] += ((u64)val << 32); val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_L127_CNT_L(port->id)); port->stats.rx_len[i++] += val; val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_L255_CNT_H(port->id)); port->stats.rx_len[i] += ((u64)val << 32); val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_L255_CNT_L(port->id)); port->stats.rx_len[i++] += val; val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_L511_CNT_H(port->id)); port->stats.rx_len[i] += ((u64)val << 32); val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_L511_CNT_L(port->id)); port->stats.rx_len[i++] += val; val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_L1023_CNT_H(port->id)); port->stats.rx_len[i] += ((u64)val << 32); val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_L1023_CNT_L(port->id)); port->stats.rx_len[i++] += val; val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_LONG_CNT(port->id)); port->stats.rx_len[i++] += val; /* reset mib counters */ airoha_fe_set(eth, REG_FE_GDM_MIB_CLEAR(port->id), FE_GDM_MIB_RX_CLEAR_MASK | FE_GDM_MIB_TX_CLEAR_MASK); u64_stats_update_end(&port->stats.syncp); spin_unlock(&port->stats.lock); } static int airoha_dev_open(struct net_device *dev) { struct airoha_gdm_port *port = netdev_priv(dev); struct airoha_qdma *qdma = port->qdma; int err; netif_tx_start_all_queues(dev); err = airoha_set_gdm_ports(qdma->eth, true); if (err) return err; if (netdev_uses_dsa(dev)) airoha_fe_set(qdma->eth, REG_GDM_INGRESS_CFG(port->id), GDM_STAG_EN_MASK); else airoha_fe_clear(qdma->eth, REG_GDM_INGRESS_CFG(port->id), GDM_STAG_EN_MASK); airoha_qdma_set(qdma, REG_QDMA_GLOBAL_CFG, GLOBAL_CFG_TX_DMA_EN_MASK | GLOBAL_CFG_RX_DMA_EN_MASK); return 0; } static int airoha_dev_stop(struct net_device *dev) { struct airoha_gdm_port *port = netdev_priv(dev); struct airoha_qdma *qdma = port->qdma; int i, err; netif_tx_disable(dev); err = airoha_set_gdm_ports(qdma->eth, false); if (err) return err; airoha_qdma_clear(qdma, REG_QDMA_GLOBAL_CFG, GLOBAL_CFG_TX_DMA_EN_MASK | GLOBAL_CFG_RX_DMA_EN_MASK); for (i = 0; i < ARRAY_SIZE(qdma->q_tx); i++) { if (!qdma->q_tx[i].ndesc) continue; airoha_qdma_cleanup_tx_queue(&qdma->q_tx[i]); netdev_tx_reset_subqueue(dev, i); } return 0; } static int airoha_dev_set_macaddr(struct net_device *dev, void *p) { struct airoha_gdm_port *port = netdev_priv(dev); int err; err = eth_mac_addr(dev, p); if (err) return err; airoha_set_macaddr(port, dev->dev_addr); return 0; } static int airoha_dev_init(struct net_device *dev) { struct airoha_gdm_port *port = netdev_priv(dev); airoha_set_macaddr(port, dev->dev_addr); return 0; } static void airoha_dev_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *storage) { struct airoha_gdm_port *port = netdev_priv(dev); unsigned int start; airoha_update_hw_stats(port); do { start = u64_stats_fetch_begin(&port->stats.syncp); storage->rx_packets = port->stats.rx_ok_pkts; storage->tx_packets = port->stats.tx_ok_pkts; storage->rx_bytes = port->stats.rx_ok_bytes; storage->tx_bytes = port->stats.tx_ok_bytes; storage->multicast = port->stats.rx_multicast; storage->rx_errors = port->stats.rx_errors; storage->rx_dropped = port->stats.rx_drops; storage->tx_dropped = port->stats.tx_drops; storage->rx_crc_errors = port->stats.rx_crc_error; storage->rx_over_errors = port->stats.rx_over_errors; } while (u64_stats_fetch_retry(&port->stats.syncp, start)); } static netdev_tx_t airoha_dev_xmit(struct sk_buff *skb, struct net_device *dev) { struct skb_shared_info *sinfo = skb_shinfo(skb); struct airoha_gdm_port *port = netdev_priv(dev); u32 msg0 = 0, msg1, len = skb_headlen(skb); int i, qid = skb_get_queue_mapping(skb); struct airoha_qdma *qdma = port->qdma; u32 nr_frags = 1 + sinfo->nr_frags; struct netdev_queue *txq; struct airoha_queue *q; void *data = skb->data; u16 index; u8 fport; if (skb->ip_summed == CHECKSUM_PARTIAL) msg0 |= FIELD_PREP(QDMA_ETH_TXMSG_TCO_MASK, 1) | FIELD_PREP(QDMA_ETH_TXMSG_UCO_MASK, 1) | FIELD_PREP(QDMA_ETH_TXMSG_ICO_MASK, 1); /* TSO: fill MSS info in tcp checksum field */ if (skb_is_gso(skb)) { if (skb_cow_head(skb, 0)) goto error; if (sinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) { __be16 csum = cpu_to_be16(sinfo->gso_size); tcp_hdr(skb)->check = (__force __sum16)csum; msg0 |= FIELD_PREP(QDMA_ETH_TXMSG_TSO_MASK, 1); } } fport = port->id == 4 ? FE_PSE_PORT_GDM4 : port->id; msg1 = FIELD_PREP(QDMA_ETH_TXMSG_FPORT_MASK, fport) | FIELD_PREP(QDMA_ETH_TXMSG_METER_MASK, 0x7f); q = &qdma->q_tx[qid]; if (WARN_ON_ONCE(!q->ndesc)) goto error; spin_lock_bh(&q->lock); txq = netdev_get_tx_queue(dev, qid); if (q->queued + nr_frags > q->ndesc) { /* not enough space in the queue */ netif_tx_stop_queue(txq); spin_unlock_bh(&q->lock); return NETDEV_TX_BUSY; } index = q->head; for (i = 0; i < nr_frags; i++) { struct airoha_qdma_desc *desc = &q->desc[index]; struct airoha_queue_entry *e = &q->entry[index]; skb_frag_t *frag = &sinfo->frags[i]; dma_addr_t addr; u32 val; addr = dma_map_single(dev->dev.parent, data, len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(dev->dev.parent, addr))) goto error_unmap; index = (index + 1) % q->ndesc; val = FIELD_PREP(QDMA_DESC_LEN_MASK, len); if (i < nr_frags - 1) val |= FIELD_PREP(QDMA_DESC_MORE_MASK, 1); WRITE_ONCE(desc->ctrl, cpu_to_le32(val)); WRITE_ONCE(desc->addr, cpu_to_le32(addr)); val = FIELD_PREP(QDMA_DESC_NEXT_ID_MASK, index); WRITE_ONCE(desc->data, cpu_to_le32(val)); WRITE_ONCE(desc->msg0, cpu_to_le32(msg0)); WRITE_ONCE(desc->msg1, cpu_to_le32(msg1)); WRITE_ONCE(desc->msg2, cpu_to_le32(0xffff)); e->skb = i ? NULL : skb; e->dma_addr = addr; e->dma_len = len; data = skb_frag_address(frag); len = skb_frag_size(frag); } q->head = index; q->queued += i; skb_tx_timestamp(skb); netdev_tx_sent_queue(txq, skb->len); if (netif_xmit_stopped(txq) || !netdev_xmit_more()) airoha_qdma_rmw(qdma, REG_TX_CPU_IDX(qid), TX_RING_CPU_IDX_MASK, FIELD_PREP(TX_RING_CPU_IDX_MASK, q->head)); if (q->ndesc - q->queued < q->free_thr) netif_tx_stop_queue(txq); spin_unlock_bh(&q->lock); return NETDEV_TX_OK; error_unmap: for (i--; i >= 0; i--) { index = (q->head + i) % q->ndesc; dma_unmap_single(dev->dev.parent, q->entry[index].dma_addr, q->entry[index].dma_len, DMA_TO_DEVICE); } spin_unlock_bh(&q->lock); error: dev_kfree_skb_any(skb); dev->stats.tx_dropped++; return NETDEV_TX_OK; } static void airoha_ethtool_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct airoha_gdm_port *port = netdev_priv(dev); struct airoha_eth *eth = port->qdma->eth; strscpy(info->driver, eth->dev->driver->name, sizeof(info->driver)); strscpy(info->bus_info, dev_name(eth->dev), sizeof(info->bus_info)); } static void airoha_ethtool_get_mac_stats(struct net_device *dev, struct ethtool_eth_mac_stats *stats) { struct airoha_gdm_port *port = netdev_priv(dev); unsigned int start; airoha_update_hw_stats(port); do { start = u64_stats_fetch_begin(&port->stats.syncp); stats->MulticastFramesXmittedOK = port->stats.tx_multicast; stats->BroadcastFramesXmittedOK = port->stats.tx_broadcast; stats->BroadcastFramesReceivedOK = port->stats.rx_broadcast; } while (u64_stats_fetch_retry(&port->stats.syncp, start)); } static const struct ethtool_rmon_hist_range airoha_ethtool_rmon_ranges[] = { { 0, 64 }, { 65, 127 }, { 128, 255 }, { 256, 511 }, { 512, 1023 }, { 1024, 1518 }, { 1519, 10239 }, {}, }; static void airoha_ethtool_get_rmon_stats(struct net_device *dev, struct ethtool_rmon_stats *stats, const struct ethtool_rmon_hist_range **ranges) { struct airoha_gdm_port *port = netdev_priv(dev); struct airoha_hw_stats *hw_stats = &port->stats; unsigned int start; BUILD_BUG_ON(ARRAY_SIZE(airoha_ethtool_rmon_ranges) != ARRAY_SIZE(hw_stats->tx_len) + 1); BUILD_BUG_ON(ARRAY_SIZE(airoha_ethtool_rmon_ranges) != ARRAY_SIZE(hw_stats->rx_len) + 1); *ranges = airoha_ethtool_rmon_ranges; airoha_update_hw_stats(port); do { int i; start = u64_stats_fetch_begin(&port->stats.syncp); stats->fragments = hw_stats->rx_fragment; stats->jabbers = hw_stats->rx_jabber; for (i = 0; i < ARRAY_SIZE(airoha_ethtool_rmon_ranges) - 1; i++) { stats->hist[i] = hw_stats->rx_len[i]; stats->hist_tx[i] = hw_stats->tx_len[i]; } } while (u64_stats_fetch_retry(&port->stats.syncp, start)); } static const struct net_device_ops airoha_netdev_ops = { .ndo_init = airoha_dev_init, .ndo_open = airoha_dev_open, .ndo_stop = airoha_dev_stop, .ndo_start_xmit = airoha_dev_xmit, .ndo_get_stats64 = airoha_dev_get_stats64, .ndo_set_mac_address = airoha_dev_set_macaddr, }; static const struct ethtool_ops airoha_ethtool_ops = { .get_drvinfo = airoha_ethtool_get_drvinfo, .get_eth_mac_stats = airoha_ethtool_get_mac_stats, .get_rmon_stats = airoha_ethtool_get_rmon_stats, }; static int airoha_alloc_gdm_port(struct airoha_eth *eth, struct device_node *np) { const __be32 *id_ptr = of_get_property(np, "reg", NULL); struct airoha_gdm_port *port; struct airoha_qdma *qdma; struct net_device *dev; int err, index; u32 id; if (!id_ptr) { dev_err(eth->dev, "missing gdm port id\n"); return -EINVAL; } id = be32_to_cpup(id_ptr); index = id - 1; if (!id || id > ARRAY_SIZE(eth->ports)) { dev_err(eth->dev, "invalid gdm port id: %d\n", id); return -EINVAL; } if (eth->ports[index]) { dev_err(eth->dev, "duplicate gdm port id: %d\n", id); return -EINVAL; } dev = devm_alloc_etherdev_mqs(eth->dev, sizeof(*port), AIROHA_NUM_TX_RING, AIROHA_NUM_RX_RING); if (!dev) { dev_err(eth->dev, "alloc_etherdev failed\n"); return -ENOMEM; } qdma = ð->qdma[index % AIROHA_MAX_NUM_QDMA]; dev->netdev_ops = &airoha_netdev_ops; dev->ethtool_ops = &airoha_ethtool_ops; dev->max_mtu = AIROHA_MAX_MTU; dev->watchdog_timeo = 5 * HZ; dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_RXCSUM | NETIF_F_TSO6 | NETIF_F_IPV6_CSUM | NETIF_F_SG | NETIF_F_TSO; dev->features |= dev->hw_features; dev->dev.of_node = np; dev->irq = qdma->irq; SET_NETDEV_DEV(dev, eth->dev); err = of_get_ethdev_address(np, dev); if (err) { if (err == -EPROBE_DEFER) return err; eth_hw_addr_random(dev); dev_info(eth->dev, "generated random MAC address %pM\n", dev->dev_addr); } port = netdev_priv(dev); u64_stats_init(&port->stats.syncp); spin_lock_init(&port->stats.lock); port->qdma = qdma; port->dev = dev; port->id = id; eth->ports[index] = port; return register_netdev(dev); } static int airoha_probe(struct platform_device *pdev) { struct device_node *np; struct airoha_eth *eth; int i, err; eth = devm_kzalloc(&pdev->dev, sizeof(*eth), GFP_KERNEL); if (!eth) return -ENOMEM; eth->dev = &pdev->dev; err = dma_set_mask_and_coherent(eth->dev, DMA_BIT_MASK(32)); if (err) { dev_err(eth->dev, "failed configuring DMA mask\n"); return err; } eth->fe_regs = devm_platform_ioremap_resource_byname(pdev, "fe"); if (IS_ERR(eth->fe_regs)) return dev_err_probe(eth->dev, PTR_ERR(eth->fe_regs), "failed to iomap fe regs\n"); eth->rsts[0].id = "fe"; eth->rsts[1].id = "pdma"; eth->rsts[2].id = "qdma"; err = devm_reset_control_bulk_get_exclusive(eth->dev, ARRAY_SIZE(eth->rsts), eth->rsts); if (err) { dev_err(eth->dev, "failed to get bulk reset lines\n"); return err; } eth->xsi_rsts[0].id = "xsi-mac"; eth->xsi_rsts[1].id = "hsi0-mac"; eth->xsi_rsts[2].id = "hsi1-mac"; eth->xsi_rsts[3].id = "hsi-mac"; eth->xsi_rsts[4].id = "xfp-mac"; err = devm_reset_control_bulk_get_exclusive(eth->dev, ARRAY_SIZE(eth->xsi_rsts), eth->xsi_rsts); if (err) { dev_err(eth->dev, "failed to get bulk xsi reset lines\n"); return err; } eth->napi_dev = alloc_netdev_dummy(0); if (!eth->napi_dev) return -ENOMEM; /* Enable threaded NAPI by default */ eth->napi_dev->threaded = true; strscpy(eth->napi_dev->name, "qdma_eth", sizeof(eth->napi_dev->name)); platform_set_drvdata(pdev, eth); err = airoha_hw_init(pdev, eth); if (err) goto error; for (i = 0; i < ARRAY_SIZE(eth->qdma); i++) airoha_qdma_start_napi(ð->qdma[i]); for_each_child_of_node(pdev->dev.of_node, np) { if (!of_device_is_compatible(np, "airoha,eth-mac")) continue; if (!of_device_is_available(np)) continue; err = airoha_alloc_gdm_port(eth, np); if (err) { of_node_put(np); goto error; } } return 0; error: for (i = 0; i < ARRAY_SIZE(eth->qdma); i++) airoha_hw_cleanup(ð->qdma[i]); for (i = 0; i < ARRAY_SIZE(eth->ports); i++) { struct airoha_gdm_port *port = eth->ports[i]; if (port && port->dev->reg_state == NETREG_REGISTERED) unregister_netdev(port->dev); } free_netdev(eth->napi_dev); platform_set_drvdata(pdev, NULL); return err; } static void airoha_remove(struct platform_device *pdev) { struct airoha_eth *eth = platform_get_drvdata(pdev); int i; for (i = 0; i < ARRAY_SIZE(eth->qdma); i++) airoha_hw_cleanup(ð->qdma[i]); for (i = 0; i < ARRAY_SIZE(eth->ports); i++) { struct airoha_gdm_port *port = eth->ports[i]; if (!port) continue; airoha_dev_stop(port->dev); unregister_netdev(port->dev); } free_netdev(eth->napi_dev); platform_set_drvdata(pdev, NULL); } static const struct of_device_id of_airoha_match[] = { { .compatible = "airoha,en7581-eth" }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, of_airoha_match); static struct platform_driver airoha_driver = { .probe = airoha_probe, .remove = airoha_remove, .driver = { .name = KBUILD_MODNAME, .of_match_table = of_airoha_match, }, }; module_platform_driver(airoha_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Lorenzo Bianconi "); MODULE_DESCRIPTION("Ethernet driver for Airoha SoC");