// SPDX-License-Identifier: GPL-2.0-only /**************************************************************************** * Driver for Solarflare network controllers and boards * Copyright 2005-2006 Fen Systems Ltd. * Copyright 2005-2013 Solarflare Communications Inc. */ #include #include #include #include #include #include #include #include #include #include #include "net_driver.h" #include "efx.h" #include "io.h" #include "nic.h" #include "tx.h" #include "workarounds.h" static inline u8 *ef4_tx_get_copy_buffer(struct ef4_tx_queue *tx_queue, struct ef4_tx_buffer *buffer) { unsigned int index = ef4_tx_queue_get_insert_index(tx_queue); struct ef4_buffer *page_buf = &tx_queue->cb_page[index >> (PAGE_SHIFT - EF4_TX_CB_ORDER)]; unsigned int offset = ((index << EF4_TX_CB_ORDER) + NET_IP_ALIGN) & (PAGE_SIZE - 1); if (unlikely(!page_buf->addr) && ef4_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE, GFP_ATOMIC)) return NULL; buffer->dma_addr = page_buf->dma_addr + offset; buffer->unmap_len = 0; return (u8 *)page_buf->addr + offset; } static void ef4_dequeue_buffer(struct ef4_tx_queue *tx_queue, struct ef4_tx_buffer *buffer, unsigned int *pkts_compl, unsigned int *bytes_compl) { if (buffer->unmap_len) { struct device *dma_dev = &tx_queue->efx->pci_dev->dev; dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset; if (buffer->flags & EF4_TX_BUF_MAP_SINGLE) dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len, DMA_TO_DEVICE); else dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len, DMA_TO_DEVICE); buffer->unmap_len = 0; } if (buffer->flags & EF4_TX_BUF_SKB) { (*pkts_compl)++; (*bytes_compl) += buffer->skb->len; dev_consume_skb_any((struct sk_buff *)buffer->skb); netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev, "TX queue %d transmission id %x complete\n", tx_queue->queue, tx_queue->read_count); } buffer->len = 0; buffer->flags = 0; } unsigned int ef4_tx_max_skb_descs(struct ef4_nic *efx) { /* This is probably too much since we don't have any TSO support; * it's a left-over from when we had Software TSO. But it's safer * to leave it as-is than try to determine a new bound. */ /* Header and payload descriptor for each output segment, plus * one for every input fragment boundary within a segment */ unsigned int max_descs = EF4_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS; /* Possibly one more per segment for the alignment workaround, * or for option descriptors */ if (EF4_WORKAROUND_5391(efx)) max_descs += EF4_TSO_MAX_SEGS; /* Possibly more for PCIe page boundaries within input fragments */ if (PAGE_SIZE > EF4_PAGE_SIZE) max_descs += max_t(unsigned int, MAX_SKB_FRAGS, DIV_ROUND_UP(GSO_LEGACY_MAX_SIZE, EF4_PAGE_SIZE)); return max_descs; } static void ef4_tx_maybe_stop_queue(struct ef4_tx_queue *txq1) { /* We need to consider both queues that the net core sees as one */ struct ef4_tx_queue *txq2 = ef4_tx_queue_partner(txq1); struct ef4_nic *efx = txq1->efx; unsigned int fill_level; fill_level = max(txq1->insert_count - txq1->old_read_count, txq2->insert_count - txq2->old_read_count); if (likely(fill_level < efx->txq_stop_thresh)) return; /* We used the stale old_read_count above, which gives us a * pessimistic estimate of the fill level (which may even * validly be >= efx->txq_entries). Now try again using * read_count (more likely to be a cache miss). * * If we read read_count and then conditionally stop the * queue, it is possible for the completion path to race with * us and complete all outstanding descriptors in the middle, * after which there will be no more completions to wake it. * Therefore we stop the queue first, then read read_count * (with a memory barrier to ensure the ordering), then * restart the queue if the fill level turns out to be low * enough. */ netif_tx_stop_queue(txq1->core_txq); smp_mb(); txq1->old_read_count = READ_ONCE(txq1->read_count); txq2->old_read_count = READ_ONCE(txq2->read_count); fill_level = max(txq1->insert_count - txq1->old_read_count, txq2->insert_count - txq2->old_read_count); EF4_BUG_ON_PARANOID(fill_level >= efx->txq_entries); if (likely(fill_level < efx->txq_stop_thresh)) { smp_mb(); if (likely(!efx->loopback_selftest)) netif_tx_start_queue(txq1->core_txq); } } static int ef4_enqueue_skb_copy(struct ef4_tx_queue *tx_queue, struct sk_buff *skb) { unsigned int min_len = tx_queue->tx_min_size; unsigned int copy_len = skb->len; struct ef4_tx_buffer *buffer; u8 *copy_buffer; int rc; EF4_BUG_ON_PARANOID(copy_len > EF4_TX_CB_SIZE); buffer = ef4_tx_queue_get_insert_buffer(tx_queue); copy_buffer = ef4_tx_get_copy_buffer(tx_queue, buffer); if (unlikely(!copy_buffer)) return -ENOMEM; rc = skb_copy_bits(skb, 0, copy_buffer, copy_len); EF4_WARN_ON_PARANOID(rc); if (unlikely(copy_len < min_len)) { memset(copy_buffer + copy_len, 0, min_len - copy_len); buffer->len = min_len; } else { buffer->len = copy_len; } buffer->skb = skb; buffer->flags = EF4_TX_BUF_SKB; ++tx_queue->insert_count; return rc; } static struct ef4_tx_buffer *ef4_tx_map_chunk(struct ef4_tx_queue *tx_queue, dma_addr_t dma_addr, size_t len) { const struct ef4_nic_type *nic_type = tx_queue->efx->type; struct ef4_tx_buffer *buffer; unsigned int dma_len; /* Map the fragment taking account of NIC-dependent DMA limits. */ do { buffer = ef4_tx_queue_get_insert_buffer(tx_queue); dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len); buffer->len = dma_len; buffer->dma_addr = dma_addr; buffer->flags = EF4_TX_BUF_CONT; len -= dma_len; dma_addr += dma_len; ++tx_queue->insert_count; } while (len); return buffer; } /* Map all data from an SKB for DMA and create descriptors on the queue. */ static int ef4_tx_map_data(struct ef4_tx_queue *tx_queue, struct sk_buff *skb) { struct ef4_nic *efx = tx_queue->efx; struct device *dma_dev = &efx->pci_dev->dev; unsigned int frag_index, nr_frags; dma_addr_t dma_addr, unmap_addr; unsigned short dma_flags; size_t len, unmap_len; nr_frags = skb_shinfo(skb)->nr_frags; frag_index = 0; /* Map header data. */ len = skb_headlen(skb); dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE); dma_flags = EF4_TX_BUF_MAP_SINGLE; unmap_len = len; unmap_addr = dma_addr; if (unlikely(dma_mapping_error(dma_dev, dma_addr))) return -EIO; /* Add descriptors for each fragment. */ do { struct ef4_tx_buffer *buffer; skb_frag_t *fragment; buffer = ef4_tx_map_chunk(tx_queue, dma_addr, len); /* The final descriptor for a fragment is responsible for * unmapping the whole fragment. */ buffer->flags = EF4_TX_BUF_CONT | dma_flags; buffer->unmap_len = unmap_len; buffer->dma_offset = buffer->dma_addr - unmap_addr; if (frag_index >= nr_frags) { /* Store SKB details with the final buffer for * the completion. */ buffer->skb = skb; buffer->flags = EF4_TX_BUF_SKB | dma_flags; return 0; } /* Move on to the next fragment. */ fragment = &skb_shinfo(skb)->frags[frag_index++]; len = skb_frag_size(fragment); dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len, DMA_TO_DEVICE); dma_flags = 0; unmap_len = len; unmap_addr = dma_addr; if (unlikely(dma_mapping_error(dma_dev, dma_addr))) return -EIO; } while (1); } /* Remove buffers put into a tx_queue. None of the buffers must have * an skb attached. */ static void ef4_enqueue_unwind(struct ef4_tx_queue *tx_queue) { struct ef4_tx_buffer *buffer; /* Work backwards until we hit the original insert pointer value */ while (tx_queue->insert_count != tx_queue->write_count) { --tx_queue->insert_count; buffer = __ef4_tx_queue_get_insert_buffer(tx_queue); ef4_dequeue_buffer(tx_queue, buffer, NULL, NULL); } } /* * Add a socket buffer to a TX queue * * This maps all fragments of a socket buffer for DMA and adds them to * the TX queue. The queue's insert pointer will be incremented by * the number of fragments in the socket buffer. * * If any DMA mapping fails, any mapped fragments will be unmapped, * the queue's insert pointer will be restored to its original value. * * This function is split out from ef4_hard_start_xmit to allow the * loopback test to direct packets via specific TX queues. * * Returns NETDEV_TX_OK. * You must hold netif_tx_lock() to call this function. */ netdev_tx_t ef4_enqueue_skb(struct ef4_tx_queue *tx_queue, struct sk_buff *skb) { bool data_mapped = false; unsigned int skb_len; skb_len = skb->len; EF4_WARN_ON_PARANOID(skb_is_gso(skb)); if (skb_len < tx_queue->tx_min_size || (skb->data_len && skb_len <= EF4_TX_CB_SIZE)) { /* Pad short packets or coalesce short fragmented packets. */ if (ef4_enqueue_skb_copy(tx_queue, skb)) goto err; tx_queue->cb_packets++; data_mapped = true; } /* Map for DMA and create descriptors if we haven't done so already. */ if (!data_mapped && (ef4_tx_map_data(tx_queue, skb))) goto err; /* Update BQL */ netdev_tx_sent_queue(tx_queue->core_txq, skb_len); /* Pass off to hardware */ if (!netdev_xmit_more() || netif_xmit_stopped(tx_queue->core_txq)) { struct ef4_tx_queue *txq2 = ef4_tx_queue_partner(tx_queue); /* There could be packets left on the partner queue if those * SKBs had skb->xmit_more set. If we do not push those they * could be left for a long time and cause a netdev watchdog. */ if (txq2->xmit_more_available) ef4_nic_push_buffers(txq2); ef4_nic_push_buffers(tx_queue); } else { tx_queue->xmit_more_available = netdev_xmit_more(); } tx_queue->tx_packets++; ef4_tx_maybe_stop_queue(tx_queue); return NETDEV_TX_OK; err: ef4_enqueue_unwind(tx_queue); dev_kfree_skb_any(skb); return NETDEV_TX_OK; } /* Remove packets from the TX queue * * This removes packets from the TX queue, up to and including the * specified index. */ static void ef4_dequeue_buffers(struct ef4_tx_queue *tx_queue, unsigned int index, unsigned int *pkts_compl, unsigned int *bytes_compl) { struct ef4_nic *efx = tx_queue->efx; unsigned int stop_index, read_ptr; stop_index = (index + 1) & tx_queue->ptr_mask; read_ptr = tx_queue->read_count & tx_queue->ptr_mask; while (read_ptr != stop_index) { struct ef4_tx_buffer *buffer = &tx_queue->buffer[read_ptr]; if (!(buffer->flags & EF4_TX_BUF_OPTION) && unlikely(buffer->len == 0)) { netif_err(efx, tx_err, efx->net_dev, "TX queue %d spurious TX completion id %x\n", tx_queue->queue, read_ptr); ef4_schedule_reset(efx, RESET_TYPE_TX_SKIP); return; } ef4_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl); ++tx_queue->read_count; read_ptr = tx_queue->read_count & tx_queue->ptr_mask; } } /* Initiate a packet transmission. We use one channel per CPU * (sharing when we have more CPUs than channels). On Falcon, the TX * completion events will be directed back to the CPU that transmitted * the packet, which should be cache-efficient. * * Context: non-blocking. * Note that returning anything other than NETDEV_TX_OK will cause the * OS to free the skb. */ netdev_tx_t ef4_hard_start_xmit(struct sk_buff *skb, struct net_device *net_dev) { struct ef4_nic *efx = netdev_priv(net_dev); struct ef4_tx_queue *tx_queue; unsigned index, type; EF4_WARN_ON_PARANOID(!netif_device_present(net_dev)); index = skb_get_queue_mapping(skb); type = skb->ip_summed == CHECKSUM_PARTIAL ? EF4_TXQ_TYPE_OFFLOAD : 0; if (index >= efx->n_tx_channels) { index -= efx->n_tx_channels; type |= EF4_TXQ_TYPE_HIGHPRI; } tx_queue = ef4_get_tx_queue(efx, index, type); return ef4_enqueue_skb(tx_queue, skb); } void ef4_init_tx_queue_core_txq(struct ef4_tx_queue *tx_queue) { struct ef4_nic *efx = tx_queue->efx; /* Must be inverse of queue lookup in ef4_hard_start_xmit() */ tx_queue->core_txq = netdev_get_tx_queue(efx->net_dev, tx_queue->queue / EF4_TXQ_TYPES + ((tx_queue->queue & EF4_TXQ_TYPE_HIGHPRI) ? efx->n_tx_channels : 0)); } int ef4_setup_tc(struct net_device *net_dev, enum tc_setup_type type, void *type_data) { struct ef4_nic *efx = netdev_priv(net_dev); struct tc_mqprio_qopt *mqprio = type_data; struct ef4_channel *channel; struct ef4_tx_queue *tx_queue; unsigned tc, num_tc; int rc; if (type != TC_SETUP_QDISC_MQPRIO) return -EOPNOTSUPP; num_tc = mqprio->num_tc; if (ef4_nic_rev(efx) < EF4_REV_FALCON_B0 || num_tc > EF4_MAX_TX_TC) return -EINVAL; mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; if (num_tc == net_dev->num_tc) return 0; for (tc = 0; tc < num_tc; tc++) { net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels; net_dev->tc_to_txq[tc].count = efx->n_tx_channels; } if (num_tc > net_dev->num_tc) { /* Initialise high-priority queues as necessary */ ef4_for_each_channel(channel, efx) { ef4_for_each_possible_channel_tx_queue(tx_queue, channel) { if (!(tx_queue->queue & EF4_TXQ_TYPE_HIGHPRI)) continue; if (!tx_queue->buffer) { rc = ef4_probe_tx_queue(tx_queue); if (rc) return rc; } if (!tx_queue->initialised) ef4_init_tx_queue(tx_queue); ef4_init_tx_queue_core_txq(tx_queue); } } } else { /* Reduce number of classes before number of queues */ net_dev->num_tc = num_tc; } rc = netif_set_real_num_tx_queues(net_dev, max_t(int, num_tc, 1) * efx->n_tx_channels); if (rc) return rc; /* Do not destroy high-priority queues when they become * unused. We would have to flush them first, and it is * fairly difficult to flush a subset of TX queues. Leave * it to ef4_fini_channels(). */ net_dev->num_tc = num_tc; return 0; } void ef4_xmit_done(struct ef4_tx_queue *tx_queue, unsigned int index) { unsigned fill_level; struct ef4_nic *efx = tx_queue->efx; struct ef4_tx_queue *txq2; unsigned int pkts_compl = 0, bytes_compl = 0; EF4_BUG_ON_PARANOID(index > tx_queue->ptr_mask); ef4_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl); tx_queue->pkts_compl += pkts_compl; tx_queue->bytes_compl += bytes_compl; if (pkts_compl > 1) ++tx_queue->merge_events; /* See if we need to restart the netif queue. This memory * barrier ensures that we write read_count (inside * ef4_dequeue_buffers()) before reading the queue status. */ smp_mb(); if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) && likely(efx->port_enabled) && likely(netif_device_present(efx->net_dev))) { txq2 = ef4_tx_queue_partner(tx_queue); fill_level = max(tx_queue->insert_count - tx_queue->read_count, txq2->insert_count - txq2->read_count); if (fill_level <= efx->txq_wake_thresh) netif_tx_wake_queue(tx_queue->core_txq); } /* Check whether the hardware queue is now empty */ if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) { tx_queue->old_write_count = READ_ONCE(tx_queue->write_count); if (tx_queue->read_count == tx_queue->old_write_count) { smp_mb(); tx_queue->empty_read_count = tx_queue->read_count | EF4_EMPTY_COUNT_VALID; } } } static unsigned int ef4_tx_cb_page_count(struct ef4_tx_queue *tx_queue) { return DIV_ROUND_UP(tx_queue->ptr_mask + 1, PAGE_SIZE >> EF4_TX_CB_ORDER); } int ef4_probe_tx_queue(struct ef4_tx_queue *tx_queue) { struct ef4_nic *efx = tx_queue->efx; unsigned int entries; int rc; /* Create the smallest power-of-two aligned ring */ entries = max(roundup_pow_of_two(efx->txq_entries), EF4_MIN_DMAQ_SIZE); EF4_BUG_ON_PARANOID(entries > EF4_MAX_DMAQ_SIZE); tx_queue->ptr_mask = entries - 1; netif_dbg(efx, probe, efx->net_dev, "creating TX queue %d size %#x mask %#x\n", tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask); /* Allocate software ring */ tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer), GFP_KERNEL); if (!tx_queue->buffer) return -ENOMEM; tx_queue->cb_page = kcalloc(ef4_tx_cb_page_count(tx_queue), sizeof(tx_queue->cb_page[0]), GFP_KERNEL); if (!tx_queue->cb_page) { rc = -ENOMEM; goto fail1; } /* Allocate hardware ring */ rc = ef4_nic_probe_tx(tx_queue); if (rc) goto fail2; return 0; fail2: kfree(tx_queue->cb_page); tx_queue->cb_page = NULL; fail1: kfree(tx_queue->buffer); tx_queue->buffer = NULL; return rc; } void ef4_init_tx_queue(struct ef4_tx_queue *tx_queue) { struct ef4_nic *efx = tx_queue->efx; netif_dbg(efx, drv, efx->net_dev, "initialising TX queue %d\n", tx_queue->queue); tx_queue->insert_count = 0; tx_queue->write_count = 0; tx_queue->old_write_count = 0; tx_queue->read_count = 0; tx_queue->old_read_count = 0; tx_queue->empty_read_count = 0 | EF4_EMPTY_COUNT_VALID; tx_queue->xmit_more_available = false; /* Some older hardware requires Tx writes larger than 32. */ tx_queue->tx_min_size = EF4_WORKAROUND_15592(efx) ? 33 : 0; /* Set up TX descriptor ring */ ef4_nic_init_tx(tx_queue); tx_queue->initialised = true; } void ef4_fini_tx_queue(struct ef4_tx_queue *tx_queue) { struct ef4_tx_buffer *buffer; netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev, "shutting down TX queue %d\n", tx_queue->queue); if (!tx_queue->buffer) return; /* Free any buffers left in the ring */ while (tx_queue->read_count != tx_queue->write_count) { unsigned int pkts_compl = 0, bytes_compl = 0; buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask]; ef4_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl); ++tx_queue->read_count; } tx_queue->xmit_more_available = false; netdev_tx_reset_queue(tx_queue->core_txq); } void ef4_remove_tx_queue(struct ef4_tx_queue *tx_queue) { int i; if (!tx_queue->buffer) return; netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev, "destroying TX queue %d\n", tx_queue->queue); ef4_nic_remove_tx(tx_queue); if (tx_queue->cb_page) { for (i = 0; i < ef4_tx_cb_page_count(tx_queue); i++) ef4_nic_free_buffer(tx_queue->efx, &tx_queue->cb_page[i]); kfree(tx_queue->cb_page); tx_queue->cb_page = NULL; } kfree(tx_queue->buffer); tx_queue->buffer = NULL; }