// SPDX-License-Identifier: GPL-2.0 /* * PCI Endpoint *Controller* (EPC) library * * Copyright (C) 2017 Texas Instruments * Author: Kishon Vijay Abraham I */ #include #include #include #include #include #include static const struct class pci_epc_class = { .name = "pci_epc", }; static void devm_pci_epc_release(struct device *dev, void *res) { struct pci_epc *epc = *(struct pci_epc **)res; pci_epc_destroy(epc); } static int devm_pci_epc_match(struct device *dev, void *res, void *match_data) { struct pci_epc **epc = res; return *epc == match_data; } /** * pci_epc_put() - release the PCI endpoint controller * @epc: epc returned by pci_epc_get() * * release the refcount the caller obtained by invoking pci_epc_get() */ void pci_epc_put(struct pci_epc *epc) { if (IS_ERR_OR_NULL(epc)) return; module_put(epc->ops->owner); put_device(&epc->dev); } EXPORT_SYMBOL_GPL(pci_epc_put); /** * pci_epc_get() - get the PCI endpoint controller * @epc_name: device name of the endpoint controller * * Invoke to get struct pci_epc * corresponding to the device name of the * endpoint controller */ struct pci_epc *pci_epc_get(const char *epc_name) { int ret = -EINVAL; struct pci_epc *epc; struct device *dev; struct class_dev_iter iter; class_dev_iter_init(&iter, &pci_epc_class, NULL, NULL); while ((dev = class_dev_iter_next(&iter))) { if (strcmp(epc_name, dev_name(dev))) continue; epc = to_pci_epc(dev); if (!try_module_get(epc->ops->owner)) { ret = -EINVAL; goto err; } class_dev_iter_exit(&iter); get_device(&epc->dev); return epc; } err: class_dev_iter_exit(&iter); return ERR_PTR(ret); } EXPORT_SYMBOL_GPL(pci_epc_get); /** * pci_epc_get_first_free_bar() - helper to get first unreserved BAR * @epc_features: pci_epc_features structure that holds the reserved bar bitmap * * Invoke to get the first unreserved BAR that can be used by the endpoint * function. */ enum pci_barno pci_epc_get_first_free_bar(const struct pci_epc_features *epc_features) { return pci_epc_get_next_free_bar(epc_features, BAR_0); } EXPORT_SYMBOL_GPL(pci_epc_get_first_free_bar); /** * pci_epc_get_next_free_bar() - helper to get unreserved BAR starting from @bar * @epc_features: pci_epc_features structure that holds the reserved bar bitmap * @bar: the starting BAR number from where unreserved BAR should be searched * * Invoke to get the next unreserved BAR starting from @bar that can be used * for endpoint function. */ enum pci_barno pci_epc_get_next_free_bar(const struct pci_epc_features *epc_features, enum pci_barno bar) { int i; if (!epc_features) return BAR_0; /* If 'bar - 1' is a 64-bit BAR, move to the next BAR */ if (bar > 0 && epc_features->bar[bar - 1].only_64bit) bar++; for (i = bar; i < PCI_STD_NUM_BARS; i++) { /* If the BAR is not reserved, return it. */ if (epc_features->bar[i].type != BAR_RESERVED) return i; } return NO_BAR; } EXPORT_SYMBOL_GPL(pci_epc_get_next_free_bar); static bool pci_epc_function_is_valid(struct pci_epc *epc, u8 func_no, u8 vfunc_no) { if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions) return false; if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no])) return false; return true; } /** * pci_epc_get_features() - get the features supported by EPC * @epc: the features supported by *this* EPC device will be returned * @func_no: the features supported by the EPC device specific to the * endpoint function with func_no will be returned * @vfunc_no: the features supported by the EPC device specific to the * virtual endpoint function with vfunc_no will be returned * * Invoke to get the features provided by the EPC which may be * specific to an endpoint function. Returns pci_epc_features on success * and NULL for any failures. */ const struct pci_epc_features *pci_epc_get_features(struct pci_epc *epc, u8 func_no, u8 vfunc_no) { const struct pci_epc_features *epc_features; if (!pci_epc_function_is_valid(epc, func_no, vfunc_no)) return NULL; if (!epc->ops->get_features) return NULL; mutex_lock(&epc->lock); epc_features = epc->ops->get_features(epc, func_no, vfunc_no); mutex_unlock(&epc->lock); return epc_features; } EXPORT_SYMBOL_GPL(pci_epc_get_features); /** * pci_epc_stop() - stop the PCI link * @epc: the link of the EPC device that has to be stopped * * Invoke to stop the PCI link */ void pci_epc_stop(struct pci_epc *epc) { if (IS_ERR(epc) || !epc->ops->stop) return; mutex_lock(&epc->lock); epc->ops->stop(epc); mutex_unlock(&epc->lock); } EXPORT_SYMBOL_GPL(pci_epc_stop); /** * pci_epc_start() - start the PCI link * @epc: the link of *this* EPC device has to be started * * Invoke to start the PCI link */ int pci_epc_start(struct pci_epc *epc) { int ret; if (IS_ERR(epc)) return -EINVAL; if (!epc->ops->start) return 0; mutex_lock(&epc->lock); ret = epc->ops->start(epc); mutex_unlock(&epc->lock); return ret; } EXPORT_SYMBOL_GPL(pci_epc_start); /** * pci_epc_raise_irq() - interrupt the host system * @epc: the EPC device which has to interrupt the host * @func_no: the physical endpoint function number in the EPC device * @vfunc_no: the virtual endpoint function number in the physical function * @type: specify the type of interrupt; INTX, MSI or MSI-X * @interrupt_num: the MSI or MSI-X interrupt number with range (1-N) * * Invoke to raise an INTX, MSI or MSI-X interrupt */ int pci_epc_raise_irq(struct pci_epc *epc, u8 func_no, u8 vfunc_no, unsigned int type, u16 interrupt_num) { int ret; if (!pci_epc_function_is_valid(epc, func_no, vfunc_no)) return -EINVAL; if (!epc->ops->raise_irq) return 0; mutex_lock(&epc->lock); ret = epc->ops->raise_irq(epc, func_no, vfunc_no, type, interrupt_num); mutex_unlock(&epc->lock); return ret; } EXPORT_SYMBOL_GPL(pci_epc_raise_irq); /** * pci_epc_map_msi_irq() - Map physical address to MSI address and return * MSI data * @epc: the EPC device which has the MSI capability * @func_no: the physical endpoint function number in the EPC device * @vfunc_no: the virtual endpoint function number in the physical function * @phys_addr: the physical address of the outbound region * @interrupt_num: the MSI interrupt number with range (1-N) * @entry_size: Size of Outbound address region for each interrupt * @msi_data: the data that should be written in order to raise MSI interrupt * with interrupt number as 'interrupt num' * @msi_addr_offset: Offset of MSI address from the aligned outbound address * to which the MSI address is mapped * * Invoke to map physical address to MSI address and return MSI data. The * physical address should be an address in the outbound region. This is * required to implement doorbell functionality of NTB wherein EPC on either * side of the interface (primary and secondary) can directly write to the * physical address (in outbound region) of the other interface to ring * doorbell. */ int pci_epc_map_msi_irq(struct pci_epc *epc, u8 func_no, u8 vfunc_no, phys_addr_t phys_addr, u8 interrupt_num, u32 entry_size, u32 *msi_data, u32 *msi_addr_offset) { int ret; if (!pci_epc_function_is_valid(epc, func_no, vfunc_no)) return -EINVAL; if (!epc->ops->map_msi_irq) return -EINVAL; mutex_lock(&epc->lock); ret = epc->ops->map_msi_irq(epc, func_no, vfunc_no, phys_addr, interrupt_num, entry_size, msi_data, msi_addr_offset); mutex_unlock(&epc->lock); return ret; } EXPORT_SYMBOL_GPL(pci_epc_map_msi_irq); /** * pci_epc_get_msi() - get the number of MSI interrupt numbers allocated * @epc: the EPC device to which MSI interrupts was requested * @func_no: the physical endpoint function number in the EPC device * @vfunc_no: the virtual endpoint function number in the physical function * * Invoke to get the number of MSI interrupts allocated by the RC */ int pci_epc_get_msi(struct pci_epc *epc, u8 func_no, u8 vfunc_no) { int interrupt; if (!pci_epc_function_is_valid(epc, func_no, vfunc_no)) return 0; if (!epc->ops->get_msi) return 0; mutex_lock(&epc->lock); interrupt = epc->ops->get_msi(epc, func_no, vfunc_no); mutex_unlock(&epc->lock); if (interrupt < 0) return 0; interrupt = 1 << interrupt; return interrupt; } EXPORT_SYMBOL_GPL(pci_epc_get_msi); /** * pci_epc_set_msi() - set the number of MSI interrupt numbers required * @epc: the EPC device on which MSI has to be configured * @func_no: the physical endpoint function number in the EPC device * @vfunc_no: the virtual endpoint function number in the physical function * @interrupts: number of MSI interrupts required by the EPF * * Invoke to set the required number of MSI interrupts. */ int pci_epc_set_msi(struct pci_epc *epc, u8 func_no, u8 vfunc_no, u8 interrupts) { int ret; u8 encode_int; if (!pci_epc_function_is_valid(epc, func_no, vfunc_no)) return -EINVAL; if (interrupts < 1 || interrupts > 32) return -EINVAL; if (!epc->ops->set_msi) return 0; encode_int = order_base_2(interrupts); mutex_lock(&epc->lock); ret = epc->ops->set_msi(epc, func_no, vfunc_no, encode_int); mutex_unlock(&epc->lock); return ret; } EXPORT_SYMBOL_GPL(pci_epc_set_msi); /** * pci_epc_get_msix() - get the number of MSI-X interrupt numbers allocated * @epc: the EPC device to which MSI-X interrupts was requested * @func_no: the physical endpoint function number in the EPC device * @vfunc_no: the virtual endpoint function number in the physical function * * Invoke to get the number of MSI-X interrupts allocated by the RC */ int pci_epc_get_msix(struct pci_epc *epc, u8 func_no, u8 vfunc_no) { int interrupt; if (!pci_epc_function_is_valid(epc, func_no, vfunc_no)) return 0; if (!epc->ops->get_msix) return 0; mutex_lock(&epc->lock); interrupt = epc->ops->get_msix(epc, func_no, vfunc_no); mutex_unlock(&epc->lock); if (interrupt < 0) return 0; return interrupt + 1; } EXPORT_SYMBOL_GPL(pci_epc_get_msix); /** * pci_epc_set_msix() - set the number of MSI-X interrupt numbers required * @epc: the EPC device on which MSI-X has to be configured * @func_no: the physical endpoint function number in the EPC device * @vfunc_no: the virtual endpoint function number in the physical function * @interrupts: number of MSI-X interrupts required by the EPF * @bir: BAR where the MSI-X table resides * @offset: Offset pointing to the start of MSI-X table * * Invoke to set the required number of MSI-X interrupts. */ int pci_epc_set_msix(struct pci_epc *epc, u8 func_no, u8 vfunc_no, u16 interrupts, enum pci_barno bir, u32 offset) { int ret; if (!pci_epc_function_is_valid(epc, func_no, vfunc_no)) return -EINVAL; if (interrupts < 1 || interrupts > 2048) return -EINVAL; if (!epc->ops->set_msix) return 0; mutex_lock(&epc->lock); ret = epc->ops->set_msix(epc, func_no, vfunc_no, interrupts - 1, bir, offset); mutex_unlock(&epc->lock); return ret; } EXPORT_SYMBOL_GPL(pci_epc_set_msix); /** * pci_epc_unmap_addr() - unmap CPU address from PCI address * @epc: the EPC device on which address is allocated * @func_no: the physical endpoint function number in the EPC device * @vfunc_no: the virtual endpoint function number in the physical function * @phys_addr: physical address of the local system * * Invoke to unmap the CPU address from PCI address. */ void pci_epc_unmap_addr(struct pci_epc *epc, u8 func_no, u8 vfunc_no, phys_addr_t phys_addr) { if (!pci_epc_function_is_valid(epc, func_no, vfunc_no)) return; if (!epc->ops->unmap_addr) return; mutex_lock(&epc->lock); epc->ops->unmap_addr(epc, func_no, vfunc_no, phys_addr); mutex_unlock(&epc->lock); } EXPORT_SYMBOL_GPL(pci_epc_unmap_addr); /** * pci_epc_map_addr() - map CPU address to PCI address * @epc: the EPC device on which address is allocated * @func_no: the physical endpoint function number in the EPC device * @vfunc_no: the virtual endpoint function number in the physical function * @phys_addr: physical address of the local system * @pci_addr: PCI address to which the physical address should be mapped * @size: the size of the allocation * * Invoke to map CPU address with PCI address. */ int pci_epc_map_addr(struct pci_epc *epc, u8 func_no, u8 vfunc_no, phys_addr_t phys_addr, u64 pci_addr, size_t size) { int ret; if (!pci_epc_function_is_valid(epc, func_no, vfunc_no)) return -EINVAL; if (!epc->ops->map_addr) return 0; mutex_lock(&epc->lock); ret = epc->ops->map_addr(epc, func_no, vfunc_no, phys_addr, pci_addr, size); mutex_unlock(&epc->lock); return ret; } EXPORT_SYMBOL_GPL(pci_epc_map_addr); /** * pci_epc_mem_map() - allocate and map a PCI address to a CPU address * @epc: the EPC device on which the CPU address is to be allocated and mapped * @func_no: the physical endpoint function number in the EPC device * @vfunc_no: the virtual endpoint function number in the physical function * @pci_addr: PCI address to which the CPU address should be mapped * @pci_size: the number of bytes to map starting from @pci_addr * @map: where to return the mapping information * * Allocate a controller memory address region and map it to a RC PCI address * region, taking into account the controller physical address mapping * constraints using the controller operation align_addr(). If this operation is * not defined, we assume that there are no alignment constraints for the * mapping. * * The effective size of the PCI address range mapped from @pci_addr is * indicated by @map->pci_size. This size may be less than the requested * @pci_size. The local virtual CPU address for the mapping is indicated by * @map->virt_addr (@map->phys_addr indicates the physical address). * The size and CPU address of the controller memory allocated and mapped are * respectively indicated by @map->map_size and @map->virt_base (and * @map->phys_base for the physical address of @map->virt_base). * * Returns 0 on success and a negative error code in case of error. */ int pci_epc_mem_map(struct pci_epc *epc, u8 func_no, u8 vfunc_no, u64 pci_addr, size_t pci_size, struct pci_epc_map *map) { size_t map_size = pci_size; size_t map_offset = 0; int ret; if (!pci_epc_function_is_valid(epc, func_no, vfunc_no)) return -EINVAL; if (!pci_size || !map) return -EINVAL; /* * Align the PCI address to map. If the controller defines the * .align_addr() operation, use it to determine the PCI address to map * and the size of the mapping. Otherwise, assume that the controller * has no alignment constraint. */ memset(map, 0, sizeof(*map)); map->pci_addr = pci_addr; if (epc->ops->align_addr) map->map_pci_addr = epc->ops->align_addr(epc, pci_addr, &map_size, &map_offset); else map->map_pci_addr = pci_addr; map->map_size = map_size; if (map->map_pci_addr + map->map_size < pci_addr + pci_size) map->pci_size = map->map_pci_addr + map->map_size - pci_addr; else map->pci_size = pci_size; map->virt_base = pci_epc_mem_alloc_addr(epc, &map->phys_base, map->map_size); if (!map->virt_base) return -ENOMEM; map->phys_addr = map->phys_base + map_offset; map->virt_addr = map->virt_base + map_offset; ret = pci_epc_map_addr(epc, func_no, vfunc_no, map->phys_base, map->map_pci_addr, map->map_size); if (ret) { pci_epc_mem_free_addr(epc, map->phys_base, map->virt_base, map->map_size); return ret; } return 0; } EXPORT_SYMBOL_GPL(pci_epc_mem_map); /** * pci_epc_mem_unmap() - unmap and free a CPU address region * @epc: the EPC device on which the CPU address is allocated and mapped * @func_no: the physical endpoint function number in the EPC device * @vfunc_no: the virtual endpoint function number in the physical function * @map: the mapping information * * Unmap and free a CPU address region that was allocated and mapped with * pci_epc_mem_map(). */ void pci_epc_mem_unmap(struct pci_epc *epc, u8 func_no, u8 vfunc_no, struct pci_epc_map *map) { if (!pci_epc_function_is_valid(epc, func_no, vfunc_no)) return; if (!map || !map->virt_base) return; pci_epc_unmap_addr(epc, func_no, vfunc_no, map->phys_base); pci_epc_mem_free_addr(epc, map->phys_base, map->virt_base, map->map_size); } EXPORT_SYMBOL_GPL(pci_epc_mem_unmap); /** * pci_epc_clear_bar() - reset the BAR * @epc: the EPC device for which the BAR has to be cleared * @func_no: the physical endpoint function number in the EPC device * @vfunc_no: the virtual endpoint function number in the physical function * @epf_bar: the struct epf_bar that contains the BAR information * * Invoke to reset the BAR of the endpoint device. */ void pci_epc_clear_bar(struct pci_epc *epc, u8 func_no, u8 vfunc_no, struct pci_epf_bar *epf_bar) { if (!pci_epc_function_is_valid(epc, func_no, vfunc_no)) return; if (epf_bar->barno == BAR_5 && epf_bar->flags & PCI_BASE_ADDRESS_MEM_TYPE_64) return; if (!epc->ops->clear_bar) return; mutex_lock(&epc->lock); epc->ops->clear_bar(epc, func_no, vfunc_no, epf_bar); mutex_unlock(&epc->lock); } EXPORT_SYMBOL_GPL(pci_epc_clear_bar); /** * pci_epc_set_bar() - configure BAR in order for host to assign PCI addr space * @epc: the EPC device on which BAR has to be configured * @func_no: the physical endpoint function number in the EPC device * @vfunc_no: the virtual endpoint function number in the physical function * @epf_bar: the struct epf_bar that contains the BAR information * * Invoke to configure the BAR of the endpoint device. */ int pci_epc_set_bar(struct pci_epc *epc, u8 func_no, u8 vfunc_no, struct pci_epf_bar *epf_bar) { int ret; int flags = epf_bar->flags; if (!pci_epc_function_is_valid(epc, func_no, vfunc_no)) return -EINVAL; if ((epf_bar->barno == BAR_5 && flags & PCI_BASE_ADDRESS_MEM_TYPE_64) || (flags & PCI_BASE_ADDRESS_SPACE_IO && flags & PCI_BASE_ADDRESS_IO_MASK) || (upper_32_bits(epf_bar->size) && !(flags & PCI_BASE_ADDRESS_MEM_TYPE_64))) return -EINVAL; if (!epc->ops->set_bar) return 0; mutex_lock(&epc->lock); ret = epc->ops->set_bar(epc, func_no, vfunc_no, epf_bar); mutex_unlock(&epc->lock); return ret; } EXPORT_SYMBOL_GPL(pci_epc_set_bar); /** * pci_epc_write_header() - write standard configuration header * @epc: the EPC device to which the configuration header should be written * @func_no: the physical endpoint function number in the EPC device * @vfunc_no: the virtual endpoint function number in the physical function * @header: standard configuration header fields * * Invoke to write the configuration header to the endpoint controller. Every * endpoint controller will have a dedicated location to which the standard * configuration header would be written. The callback function should write * the header fields to this dedicated location. */ int pci_epc_write_header(struct pci_epc *epc, u8 func_no, u8 vfunc_no, struct pci_epf_header *header) { int ret; if (!pci_epc_function_is_valid(epc, func_no, vfunc_no)) return -EINVAL; /* Only Virtual Function #1 has deviceID */ if (vfunc_no > 1) return -EINVAL; if (!epc->ops->write_header) return 0; mutex_lock(&epc->lock); ret = epc->ops->write_header(epc, func_no, vfunc_no, header); mutex_unlock(&epc->lock); return ret; } EXPORT_SYMBOL_GPL(pci_epc_write_header); /** * pci_epc_add_epf() - bind PCI endpoint function to an endpoint controller * @epc: the EPC device to which the endpoint function should be added * @epf: the endpoint function to be added * @type: Identifies if the EPC is connected to the primary or secondary * interface of EPF * * A PCI endpoint device can have one or more functions. In the case of PCIe, * the specification allows up to 8 PCIe endpoint functions. Invoke * pci_epc_add_epf() to add a PCI endpoint function to an endpoint controller. */ int pci_epc_add_epf(struct pci_epc *epc, struct pci_epf *epf, enum pci_epc_interface_type type) { struct list_head *list; u32 func_no; int ret = 0; if (IS_ERR_OR_NULL(epc) || epf->is_vf) return -EINVAL; if (type == PRIMARY_INTERFACE && epf->epc) return -EBUSY; if (type == SECONDARY_INTERFACE && epf->sec_epc) return -EBUSY; mutex_lock(&epc->list_lock); func_no = find_first_zero_bit(&epc->function_num_map, BITS_PER_LONG); if (func_no >= BITS_PER_LONG) { ret = -EINVAL; goto ret; } if (func_no > epc->max_functions - 1) { dev_err(&epc->dev, "Exceeding max supported Function Number\n"); ret = -EINVAL; goto ret; } set_bit(func_no, &epc->function_num_map); if (type == PRIMARY_INTERFACE) { epf->func_no = func_no; epf->epc = epc; list = &epf->list; } else { epf->sec_epc_func_no = func_no; epf->sec_epc = epc; list = &epf->sec_epc_list; } list_add_tail(list, &epc->pci_epf); ret: mutex_unlock(&epc->list_lock); return ret; } EXPORT_SYMBOL_GPL(pci_epc_add_epf); /** * pci_epc_remove_epf() - remove PCI endpoint function from endpoint controller * @epc: the EPC device from which the endpoint function should be removed * @epf: the endpoint function to be removed * @type: identifies if the EPC is connected to the primary or secondary * interface of EPF * * Invoke to remove PCI endpoint function from the endpoint controller. */ void pci_epc_remove_epf(struct pci_epc *epc, struct pci_epf *epf, enum pci_epc_interface_type type) { struct list_head *list; u32 func_no = 0; if (IS_ERR_OR_NULL(epc) || !epf) return; mutex_lock(&epc->list_lock); if (type == PRIMARY_INTERFACE) { func_no = epf->func_no; list = &epf->list; epf->epc = NULL; } else { func_no = epf->sec_epc_func_no; list = &epf->sec_epc_list; epf->sec_epc = NULL; } clear_bit(func_no, &epc->function_num_map); list_del(list); mutex_unlock(&epc->list_lock); } EXPORT_SYMBOL_GPL(pci_epc_remove_epf); /** * pci_epc_linkup() - Notify the EPF device that EPC device has established a * connection with the Root Complex. * @epc: the EPC device which has established link with the host * * Invoke to Notify the EPF device that the EPC device has established a * connection with the Root Complex. */ void pci_epc_linkup(struct pci_epc *epc) { struct pci_epf *epf; if (IS_ERR_OR_NULL(epc)) return; mutex_lock(&epc->list_lock); list_for_each_entry(epf, &epc->pci_epf, list) { mutex_lock(&epf->lock); if (epf->event_ops && epf->event_ops->link_up) epf->event_ops->link_up(epf); mutex_unlock(&epf->lock); } mutex_unlock(&epc->list_lock); } EXPORT_SYMBOL_GPL(pci_epc_linkup); /** * pci_epc_linkdown() - Notify the EPF device that EPC device has dropped the * connection with the Root Complex. * @epc: the EPC device which has dropped the link with the host * * Invoke to Notify the EPF device that the EPC device has dropped the * connection with the Root Complex. */ void pci_epc_linkdown(struct pci_epc *epc) { struct pci_epf *epf; if (IS_ERR_OR_NULL(epc)) return; mutex_lock(&epc->list_lock); list_for_each_entry(epf, &epc->pci_epf, list) { mutex_lock(&epf->lock); if (epf->event_ops && epf->event_ops->link_down) epf->event_ops->link_down(epf); mutex_unlock(&epf->lock); } mutex_unlock(&epc->list_lock); } EXPORT_SYMBOL_GPL(pci_epc_linkdown); /** * pci_epc_init_notify() - Notify the EPF device that EPC device initialization * is completed. * @epc: the EPC device whose initialization is completed * * Invoke to Notify the EPF device that the EPC device's initialization * is completed. */ void pci_epc_init_notify(struct pci_epc *epc) { struct pci_epf *epf; if (IS_ERR_OR_NULL(epc)) return; mutex_lock(&epc->list_lock); list_for_each_entry(epf, &epc->pci_epf, list) { mutex_lock(&epf->lock); if (epf->event_ops && epf->event_ops->epc_init) epf->event_ops->epc_init(epf); mutex_unlock(&epf->lock); } epc->init_complete = true; mutex_unlock(&epc->list_lock); } EXPORT_SYMBOL_GPL(pci_epc_init_notify); /** * pci_epc_notify_pending_init() - Notify the pending EPC device initialization * complete to the EPF device * @epc: the EPC device whose initialization is pending to be notified * @epf: the EPF device to be notified * * Invoke to notify the pending EPC device initialization complete to the EPF * device. This is used to deliver the notification if the EPC initialization * got completed before the EPF driver bind. */ void pci_epc_notify_pending_init(struct pci_epc *epc, struct pci_epf *epf) { if (epc->init_complete) { mutex_lock(&epf->lock); if (epf->event_ops && epf->event_ops->epc_init) epf->event_ops->epc_init(epf); mutex_unlock(&epf->lock); } } EXPORT_SYMBOL_GPL(pci_epc_notify_pending_init); /** * pci_epc_deinit_notify() - Notify the EPF device about EPC deinitialization * @epc: the EPC device whose deinitialization is completed * * Invoke to notify the EPF device that the EPC deinitialization is completed. */ void pci_epc_deinit_notify(struct pci_epc *epc) { struct pci_epf *epf; if (IS_ERR_OR_NULL(epc)) return; mutex_lock(&epc->list_lock); list_for_each_entry(epf, &epc->pci_epf, list) { mutex_lock(&epf->lock); if (epf->event_ops && epf->event_ops->epc_deinit) epf->event_ops->epc_deinit(epf); mutex_unlock(&epf->lock); } epc->init_complete = false; mutex_unlock(&epc->list_lock); } EXPORT_SYMBOL_GPL(pci_epc_deinit_notify); /** * pci_epc_bus_master_enable_notify() - Notify the EPF device that the EPC * device has received the Bus Master * Enable event from the Root complex * @epc: the EPC device that received the Bus Master Enable event * * Notify the EPF device that the EPC device has generated the Bus Master Enable * event due to host setting the Bus Master Enable bit in the Command register. */ void pci_epc_bus_master_enable_notify(struct pci_epc *epc) { struct pci_epf *epf; if (IS_ERR_OR_NULL(epc)) return; mutex_lock(&epc->list_lock); list_for_each_entry(epf, &epc->pci_epf, list) { mutex_lock(&epf->lock); if (epf->event_ops && epf->event_ops->bus_master_enable) epf->event_ops->bus_master_enable(epf); mutex_unlock(&epf->lock); } mutex_unlock(&epc->list_lock); } EXPORT_SYMBOL_GPL(pci_epc_bus_master_enable_notify); /** * pci_epc_destroy() - destroy the EPC device * @epc: the EPC device that has to be destroyed * * Invoke to destroy the PCI EPC device */ void pci_epc_destroy(struct pci_epc *epc) { pci_ep_cfs_remove_epc_group(epc->group); #ifdef CONFIG_PCI_DOMAINS_GENERIC pci_bus_release_domain_nr(epc->dev.parent, epc->domain_nr); #endif device_unregister(&epc->dev); } EXPORT_SYMBOL_GPL(pci_epc_destroy); /** * devm_pci_epc_destroy() - destroy the EPC device * @dev: device that wants to destroy the EPC * @epc: the EPC device that has to be destroyed * * Invoke to destroy the devres associated with this * pci_epc and destroy the EPC device. */ void devm_pci_epc_destroy(struct device *dev, struct pci_epc *epc) { int r; r = devres_destroy(dev, devm_pci_epc_release, devm_pci_epc_match, epc); dev_WARN_ONCE(dev, r, "couldn't find PCI EPC resource\n"); } EXPORT_SYMBOL_GPL(devm_pci_epc_destroy); static void pci_epc_release(struct device *dev) { kfree(to_pci_epc(dev)); } /** * __pci_epc_create() - create a new endpoint controller (EPC) device * @dev: device that is creating the new EPC * @ops: function pointers for performing EPC operations * @owner: the owner of the module that creates the EPC device * * Invoke to create a new EPC device and add it to pci_epc class. */ struct pci_epc * __pci_epc_create(struct device *dev, const struct pci_epc_ops *ops, struct module *owner) { int ret; struct pci_epc *epc; if (WARN_ON(!dev)) { ret = -EINVAL; goto err_ret; } epc = kzalloc(sizeof(*epc), GFP_KERNEL); if (!epc) { ret = -ENOMEM; goto err_ret; } mutex_init(&epc->lock); mutex_init(&epc->list_lock); INIT_LIST_HEAD(&epc->pci_epf); device_initialize(&epc->dev); epc->dev.class = &pci_epc_class; epc->dev.parent = dev; epc->dev.release = pci_epc_release; epc->ops = ops; #ifdef CONFIG_PCI_DOMAINS_GENERIC epc->domain_nr = pci_bus_find_domain_nr(NULL, dev); #else /* * TODO: If the architecture doesn't support generic PCI * domains, then a custom implementation has to be used. */ WARN_ONCE(1, "This architecture doesn't support generic PCI domains\n"); #endif ret = dev_set_name(&epc->dev, "%s", dev_name(dev)); if (ret) goto put_dev; ret = device_add(&epc->dev); if (ret) goto put_dev; epc->group = pci_ep_cfs_add_epc_group(dev_name(dev)); return epc; put_dev: put_device(&epc->dev); err_ret: return ERR_PTR(ret); } EXPORT_SYMBOL_GPL(__pci_epc_create); /** * __devm_pci_epc_create() - create a new endpoint controller (EPC) device * @dev: device that is creating the new EPC * @ops: function pointers for performing EPC operations * @owner: the owner of the module that creates the EPC device * * Invoke to create a new EPC device and add it to pci_epc class. * While at that, it also associates the device with the pci_epc using devres. * On driver detach, release function is invoked on the devres data, * then, devres data is freed. */ struct pci_epc * __devm_pci_epc_create(struct device *dev, const struct pci_epc_ops *ops, struct module *owner) { struct pci_epc **ptr, *epc; ptr = devres_alloc(devm_pci_epc_release, sizeof(*ptr), GFP_KERNEL); if (!ptr) return ERR_PTR(-ENOMEM); epc = __pci_epc_create(dev, ops, owner); if (!IS_ERR(epc)) { *ptr = epc; devres_add(dev, ptr); } else { devres_free(ptr); } return epc; } EXPORT_SYMBOL_GPL(__devm_pci_epc_create); static int __init pci_epc_init(void) { return class_register(&pci_epc_class); } module_init(pci_epc_init); static void __exit pci_epc_exit(void) { class_unregister(&pci_epc_class); } module_exit(pci_epc_exit); MODULE_DESCRIPTION("PCI EPC Library"); MODULE_AUTHOR("Kishon Vijay Abraham I ");