// SPDX-License-Identifier: GPL-2.0-only /* * Battery driver for Marvell 88PM860x PMIC * * Copyright (c) 2012 Marvell International Ltd. * Author: Jett Zhou * Haojian Zhuang */ #include #include #include #include #include #include #include #include #include /* bit definitions of Status Query Interface 2 */ #define STATUS2_CHG (1 << 2) #define STATUS2_BAT (1 << 3) #define STATUS2_VBUS (1 << 4) /* bit definitions of Measurement Enable 1 Register */ #define MEAS1_TINT (1 << 3) #define MEAS1_GP1 (1 << 5) /* bit definitions of Measurement Enable 3 Register */ #define MEAS3_IBAT (1 << 0) #define MEAS3_BAT_DET (1 << 1) #define MEAS3_CC (1 << 2) /* bit definitions of Measurement Off Time Register */ #define MEAS_OFF_SLEEP_EN (1 << 1) /* bit definitions of GPADC Bias Current 2 Register */ #define GPBIAS2_GPADC1_SET (2 << 4) /* GPADC1 Bias Current value in uA unit */ #define GPBIAS2_GPADC1_UA ((GPBIAS2_GPADC1_SET >> 4) * 5 + 1) /* bit definitions of GPADC Misc 1 Register */ #define GPMISC1_GPADC_EN (1 << 0) /* bit definitions of Charger Control 6 Register */ #define CC6_BAT_DET_GPADC1 1 /* bit definitions of Coulomb Counter Reading Register */ #define CCNT_AVG_SEL (4 << 3) /* bit definitions of RTC miscellaneous Register1 */ #define RTC_SOC_5LSB (0x1F << 3) /* bit definitions of RTC Register1 */ #define RTC_SOC_3MSB (0x7) /* bit definitions of Power up Log register */ #define BAT_WU_LOG (1<<6) /* coulomb counter index */ #define CCNT_POS1 0 #define CCNT_POS2 1 #define CCNT_NEG1 2 #define CCNT_NEG2 3 #define CCNT_SPOS 4 #define CCNT_SNEG 5 /* OCV -- Open Circuit Voltage */ #define OCV_MODE_ACTIVE 0 #define OCV_MODE_SLEEP 1 /* Vbat range of CC for measuring Rbat */ #define LOW_BAT_THRESHOLD 3600 #define VBATT_RESISTOR_MIN 3800 #define VBATT_RESISTOR_MAX 4100 /* TBAT for batt, TINT for chip itself */ #define PM860X_TEMP_TINT (0) #define PM860X_TEMP_TBAT (1) /* * Battery temperature based on NTC resistor, defined * corresponding resistor value -- Ohm / C degeree. */ #define TBAT_NEG_25D 127773 /* -25 */ #define TBAT_NEG_10D 54564 /* -10 */ #define TBAT_0D 32330 /* 0 */ #define TBAT_10D 19785 /* 10 */ #define TBAT_20D 12468 /* 20 */ #define TBAT_30D 8072 /* 30 */ #define TBAT_40D 5356 /* 40 */ struct pm860x_battery_info { struct pm860x_chip *chip; struct i2c_client *i2c; struct device *dev; struct power_supply *battery; struct mutex lock; int status; int irq_cc; int irq_batt; int max_capacity; int resistor; /* Battery Internal Resistor */ int last_capacity; int start_soc; unsigned present:1; unsigned temp_type:1; /* TINT or TBAT */ }; struct ccnt { unsigned long long pos; unsigned long long neg; unsigned int spos; unsigned int sneg; int total_chg; /* mAh(3.6C) */ int total_dischg; /* mAh(3.6C) */ }; /* * State of Charge. * The first number is mAh(=3.6C), and the second number is percent point. */ static int array_soc[][2] = { {4170, 100}, {4154, 99}, {4136, 98}, {4122, 97}, {4107, 96}, {4102, 95}, {4088, 94}, {4081, 93}, {4070, 92}, {4060, 91}, {4053, 90}, {4044, 89}, {4035, 88}, {4028, 87}, {4019, 86}, {4013, 85}, {4006, 84}, {3995, 83}, {3987, 82}, {3982, 81}, {3976, 80}, {3968, 79}, {3962, 78}, {3954, 77}, {3946, 76}, {3941, 75}, {3934, 74}, {3929, 73}, {3922, 72}, {3916, 71}, {3910, 70}, {3904, 69}, {3898, 68}, {3892, 67}, {3887, 66}, {3880, 65}, {3874, 64}, {3868, 63}, {3862, 62}, {3854, 61}, {3849, 60}, {3843, 59}, {3840, 58}, {3833, 57}, {3829, 56}, {3824, 55}, {3818, 54}, {3815, 53}, {3810, 52}, {3808, 51}, {3804, 50}, {3801, 49}, {3798, 48}, {3796, 47}, {3792, 46}, {3789, 45}, {3785, 44}, {3784, 43}, {3782, 42}, {3780, 41}, {3777, 40}, {3776, 39}, {3774, 38}, {3772, 37}, {3771, 36}, {3769, 35}, {3768, 34}, {3764, 33}, {3763, 32}, {3760, 31}, {3760, 30}, {3754, 29}, {3750, 28}, {3749, 27}, {3744, 26}, {3740, 25}, {3734, 24}, {3732, 23}, {3728, 22}, {3726, 21}, {3720, 20}, {3716, 19}, {3709, 18}, {3703, 17}, {3698, 16}, {3692, 15}, {3683, 14}, {3675, 13}, {3670, 12}, {3665, 11}, {3661, 10}, {3649, 9}, {3637, 8}, {3622, 7}, {3609, 6}, {3580, 5}, {3558, 4}, {3540, 3}, {3510, 2}, {3429, 1}, }; static struct ccnt ccnt_data; /* * register 1 bit[7:0] -- bit[11:4] of measured value of voltage * register 0 bit[3:0] -- bit[3:0] of measured value of voltage */ static int measure_12bit_voltage(struct pm860x_battery_info *info, int offset, int *data) { unsigned char buf[2]; int ret; ret = pm860x_bulk_read(info->i2c, offset, 2, buf); if (ret < 0) return ret; *data = ((buf[0] & 0xff) << 4) | (buf[1] & 0x0f); /* V_MEAS(mV) = data * 1.8 * 1000 / (2^12) */ *data = ((*data & 0xfff) * 9 * 25) >> 9; return 0; } static int measure_vbatt(struct pm860x_battery_info *info, int state, int *data) { unsigned char buf[5]; int ret; switch (state) { case OCV_MODE_ACTIVE: ret = measure_12bit_voltage(info, PM8607_VBAT_MEAS1, data); if (ret) return ret; /* V_BATT_MEAS(mV) = value * 3 * 1.8 * 1000 / (2^12) */ *data *= 3; break; case OCV_MODE_SLEEP: /* * voltage value of VBATT in sleep mode is saved in different * registers. * bit[11:10] -- bit[7:6] of LDO9(0x18) * bit[9:8] -- bit[7:6] of LDO8(0x17) * bit[7:6] -- bit[7:6] of LDO7(0x16) * bit[5:4] -- bit[7:6] of LDO6(0x15) * bit[3:0] -- bit[7:4] of LDO5(0x14) */ ret = pm860x_bulk_read(info->i2c, PM8607_LDO5, 5, buf); if (ret < 0) return ret; ret = ((buf[4] >> 6) << 10) | ((buf[3] >> 6) << 8) | ((buf[2] >> 6) << 6) | ((buf[1] >> 6) << 4) | (buf[0] >> 4); /* V_BATT_MEAS(mV) = data * 3 * 1.8 * 1000 / (2^12) */ *data = ((*data & 0xff) * 27 * 25) >> 9; break; default: return -EINVAL; } return 0; } /* * Return value is signed data. * Negative value means discharging, and positive value means charging. */ static int measure_current(struct pm860x_battery_info *info, int *data) { unsigned char buf[2]; short s; int ret; ret = pm860x_bulk_read(info->i2c, PM8607_IBAT_MEAS1, 2, buf); if (ret < 0) return ret; s = ((buf[0] & 0xff) << 8) | (buf[1] & 0xff); /* current(mA) = value * 0.125 */ *data = s >> 3; return 0; } static int set_charger_current(struct pm860x_battery_info *info, int data, int *old) { int ret; if (data < 50 || data > 1600 || !old) return -EINVAL; data = ((data - 50) / 50) & 0x1f; *old = pm860x_reg_read(info->i2c, PM8607_CHG_CTRL2); *old = (*old & 0x1f) * 50 + 50; ret = pm860x_set_bits(info->i2c, PM8607_CHG_CTRL2, 0x1f, data); if (ret < 0) return ret; return 0; } static int read_ccnt(struct pm860x_battery_info *info, int offset, int *ccnt) { unsigned char buf[2]; int ret; ret = pm860x_set_bits(info->i2c, PM8607_CCNT, 7, offset & 7); if (ret < 0) goto out; ret = pm860x_bulk_read(info->i2c, PM8607_CCNT_MEAS1, 2, buf); if (ret < 0) goto out; *ccnt = ((buf[0] & 0xff) << 8) | (buf[1] & 0xff); return 0; out: return ret; } static int calc_ccnt(struct pm860x_battery_info *info, struct ccnt *ccnt) { unsigned int sum; int ret; int data; ret = read_ccnt(info, CCNT_POS1, &data); if (ret) goto out; sum = data & 0xffff; ret = read_ccnt(info, CCNT_POS2, &data); if (ret) goto out; sum |= (data & 0xffff) << 16; ccnt->pos += sum; ret = read_ccnt(info, CCNT_NEG1, &data); if (ret) goto out; sum = data & 0xffff; ret = read_ccnt(info, CCNT_NEG2, &data); if (ret) goto out; sum |= (data & 0xffff) << 16; sum = ~sum + 1; /* since it's negative */ ccnt->neg += sum; ret = read_ccnt(info, CCNT_SPOS, &data); if (ret) goto out; ccnt->spos += data; ret = read_ccnt(info, CCNT_SNEG, &data); if (ret) goto out; /* * charge(mAh) = count * 1.6984 * 1e(-8) * = count * 16984 * 1.024 * 1.024 * 1.024 / (2 ^ 40) * = count * 18236 / (2 ^ 40) */ ccnt->total_chg = (int) ((ccnt->pos * 18236) >> 40); ccnt->total_dischg = (int) ((ccnt->neg * 18236) >> 40); return 0; out: return ret; } static int clear_ccnt(struct pm860x_battery_info *info, struct ccnt *ccnt) { int data; memset(ccnt, 0, sizeof(*ccnt)); /* read to clear ccnt */ read_ccnt(info, CCNT_POS1, &data); read_ccnt(info, CCNT_POS2, &data); read_ccnt(info, CCNT_NEG1, &data); read_ccnt(info, CCNT_NEG2, &data); read_ccnt(info, CCNT_SPOS, &data); read_ccnt(info, CCNT_SNEG, &data); return 0; } /* Calculate Open Circuit Voltage */ static int calc_ocv(struct pm860x_battery_info *info, int *ocv) { int ret; int i; int data; int vbatt_avg; int vbatt_sum; int ibatt_avg; int ibatt_sum; if (!ocv) return -EINVAL; for (i = 0, ibatt_sum = 0, vbatt_sum = 0; i < 10; i++) { ret = measure_vbatt(info, OCV_MODE_ACTIVE, &data); if (ret) goto out; vbatt_sum += data; ret = measure_current(info, &data); if (ret) goto out; ibatt_sum += data; } vbatt_avg = vbatt_sum / 10; ibatt_avg = ibatt_sum / 10; mutex_lock(&info->lock); if (info->present) *ocv = vbatt_avg - ibatt_avg * info->resistor / 1000; else *ocv = vbatt_avg; mutex_unlock(&info->lock); dev_dbg(info->dev, "VBAT average:%d, OCV:%d\n", vbatt_avg, *ocv); return 0; out: return ret; } /* Calculate State of Charge (percent points) */ static int calc_soc(struct pm860x_battery_info *info, int state, int *soc) { int i; int ocv; int count; int ret = -EINVAL; if (!soc) return -EINVAL; switch (state) { case OCV_MODE_ACTIVE: ret = calc_ocv(info, &ocv); break; case OCV_MODE_SLEEP: ret = measure_vbatt(info, OCV_MODE_SLEEP, &ocv); break; } if (ret) return ret; count = ARRAY_SIZE(array_soc); if (ocv < array_soc[count - 1][0]) { *soc = 0; return 0; } for (i = 0; i < count; i++) { if (ocv >= array_soc[i][0]) { *soc = array_soc[i][1]; break; } } return 0; } static irqreturn_t pm860x_coulomb_handler(int irq, void *data) { struct pm860x_battery_info *info = data; calc_ccnt(info, &ccnt_data); return IRQ_HANDLED; } static irqreturn_t pm860x_batt_handler(int irq, void *data) { struct pm860x_battery_info *info = data; int ret; mutex_lock(&info->lock); ret = pm860x_reg_read(info->i2c, PM8607_STATUS_2); if (ret & STATUS2_BAT) { info->present = 1; info->temp_type = PM860X_TEMP_TBAT; } else { info->present = 0; info->temp_type = PM860X_TEMP_TINT; } mutex_unlock(&info->lock); /* clear ccnt since battery is attached or detached */ clear_ccnt(info, &ccnt_data); return IRQ_HANDLED; } static void pm860x_init_battery(struct pm860x_battery_info *info) { unsigned char buf[2]; int ret; int data; int bat_remove; int soc = 0; /* measure enable on GPADC1 */ data = MEAS1_GP1; if (info->temp_type == PM860X_TEMP_TINT) data |= MEAS1_TINT; ret = pm860x_set_bits(info->i2c, PM8607_MEAS_EN1, data, data); if (ret) goto out; /* measure enable on IBAT, BAT_DET, CC. IBAT is depend on CC. */ data = MEAS3_IBAT | MEAS3_BAT_DET | MEAS3_CC; ret = pm860x_set_bits(info->i2c, PM8607_MEAS_EN3, data, data); if (ret) goto out; /* measure disable CC in sleep time */ ret = pm860x_reg_write(info->i2c, PM8607_MEAS_OFF_TIME1, 0x82); if (ret) goto out; ret = pm860x_reg_write(info->i2c, PM8607_MEAS_OFF_TIME2, 0x6c); if (ret) goto out; /* enable GPADC */ ret = pm860x_set_bits(info->i2c, PM8607_GPADC_MISC1, GPMISC1_GPADC_EN, GPMISC1_GPADC_EN); if (ret < 0) goto out; /* detect battery via GPADC1 */ ret = pm860x_set_bits(info->i2c, PM8607_CHG_CTRL6, CC6_BAT_DET_GPADC1, CC6_BAT_DET_GPADC1); if (ret < 0) goto out; ret = pm860x_set_bits(info->i2c, PM8607_CCNT, 7 << 3, CCNT_AVG_SEL); if (ret < 0) goto out; /* set GPADC1 bias */ ret = pm860x_set_bits(info->i2c, PM8607_GP_BIAS2, 0xF << 4, GPBIAS2_GPADC1_SET); if (ret < 0) goto out; /* check whether battery present) */ mutex_lock(&info->lock); ret = pm860x_reg_read(info->i2c, PM8607_STATUS_2); if (ret < 0) { mutex_unlock(&info->lock); goto out; } if (ret & STATUS2_BAT) { info->present = 1; info->temp_type = PM860X_TEMP_TBAT; } else { info->present = 0; info->temp_type = PM860X_TEMP_TINT; } mutex_unlock(&info->lock); ret = calc_soc(info, OCV_MODE_ACTIVE, &soc); if (ret < 0) goto out; data = pm860x_reg_read(info->i2c, PM8607_POWER_UP_LOG); bat_remove = data & BAT_WU_LOG; dev_dbg(info->dev, "battery wake up? %s\n", bat_remove != 0 ? "yes" : "no"); /* restore SOC from RTC domain register */ if (bat_remove == 0) { buf[0] = pm860x_reg_read(info->i2c, PM8607_RTC_MISC2); buf[1] = pm860x_reg_read(info->i2c, PM8607_RTC1); data = ((buf[1] & 0x3) << 5) | ((buf[0] >> 3) & 0x1F); if (data > soc + 15) info->start_soc = soc; else if (data < soc - 15) info->start_soc = soc; else info->start_soc = data; dev_dbg(info->dev, "soc_rtc %d, soc_ocv :%d\n", data, soc); } else { pm860x_set_bits(info->i2c, PM8607_POWER_UP_LOG, BAT_WU_LOG, BAT_WU_LOG); info->start_soc = soc; } info->last_capacity = info->start_soc; dev_dbg(info->dev, "init soc : %d\n", info->last_capacity); out: return; } static void set_temp_threshold(struct pm860x_battery_info *info, int min, int max) { int data; /* (tmp << 8) / 1800 */ if (min <= 0) data = 0; else data = (min << 8) / 1800; pm860x_reg_write(info->i2c, PM8607_GPADC1_HIGHTH, data); dev_dbg(info->dev, "TEMP_HIGHTH : min: %d, 0x%x\n", min, data); if (max <= 0) data = 0xff; else data = (max << 8) / 1800; pm860x_reg_write(info->i2c, PM8607_GPADC1_LOWTH, data); dev_dbg(info->dev, "TEMP_LOWTH:max : %d, 0x%x\n", max, data); } static int measure_temp(struct pm860x_battery_info *info, int *data) { int ret; int temp; int min; int max; if (info->temp_type == PM860X_TEMP_TINT) { ret = measure_12bit_voltage(info, PM8607_TINT_MEAS1, data); if (ret) return ret; *data = (*data - 884) * 1000 / 3611; } else { ret = measure_12bit_voltage(info, PM8607_GPADC1_MEAS1, data); if (ret) return ret; /* measured Vtbat(mV) / Ibias_current(11uA)*/ *data = (*data * 1000) / GPBIAS2_GPADC1_UA; if (*data > TBAT_NEG_25D) { temp = -30; /* over cold , suppose -30 roughly */ max = TBAT_NEG_10D * GPBIAS2_GPADC1_UA / 1000; set_temp_threshold(info, 0, max); } else if (*data > TBAT_NEG_10D) { temp = -15; /* -15 degree, code */ max = TBAT_NEG_10D * GPBIAS2_GPADC1_UA / 1000; set_temp_threshold(info, 0, max); } else if (*data > TBAT_0D) { temp = -5; /* -5 degree */ min = TBAT_NEG_10D * GPBIAS2_GPADC1_UA / 1000; max = TBAT_40D * GPBIAS2_GPADC1_UA / 1000; set_temp_threshold(info, min, max); } else if (*data > TBAT_10D) { temp = 5; /* in range of (0, 10) */ min = TBAT_NEG_10D * GPBIAS2_GPADC1_UA / 1000; max = TBAT_40D * GPBIAS2_GPADC1_UA / 1000; set_temp_threshold(info, min, max); } else if (*data > TBAT_20D) { temp = 15; /* in range of (10, 20) */ min = TBAT_NEG_10D * GPBIAS2_GPADC1_UA / 1000; max = TBAT_40D * GPBIAS2_GPADC1_UA / 1000; set_temp_threshold(info, min, max); } else if (*data > TBAT_30D) { temp = 25; /* in range of (20, 30) */ min = TBAT_NEG_10D * GPBIAS2_GPADC1_UA / 1000; max = TBAT_40D * GPBIAS2_GPADC1_UA / 1000; set_temp_threshold(info, min, max); } else if (*data > TBAT_40D) { temp = 35; /* in range of (30, 40) */ min = TBAT_NEG_10D * GPBIAS2_GPADC1_UA / 1000; max = TBAT_40D * GPBIAS2_GPADC1_UA / 1000; set_temp_threshold(info, min, max); } else { min = TBAT_40D * GPBIAS2_GPADC1_UA / 1000; set_temp_threshold(info, min, 0); temp = 45; /* over heat ,suppose 45 roughly */ } dev_dbg(info->dev, "temp_C:%d C,temp_mv:%d mv\n", temp, *data); *data = temp; } return 0; } static int calc_resistor(struct pm860x_battery_info *info) { int vbatt_sum1; int vbatt_sum2; int chg_current; int ibatt_sum1; int ibatt_sum2; int data; int ret; int i; ret = measure_current(info, &data); /* make sure that charging is launched by data > 0 */ if (ret || data < 0) goto out; ret = measure_vbatt(info, OCV_MODE_ACTIVE, &data); if (ret) goto out; /* calculate resistor only in CC charge mode */ if (data < VBATT_RESISTOR_MIN || data > VBATT_RESISTOR_MAX) goto out; /* current is saved */ if (set_charger_current(info, 500, &chg_current)) goto out; /* * set charge current as 500mA, wait about 500ms till charging * process is launched and stable with the newer charging current. */ msleep(500); for (i = 0, vbatt_sum1 = 0, ibatt_sum1 = 0; i < 10; i++) { ret = measure_vbatt(info, OCV_MODE_ACTIVE, &data); if (ret) goto out_meas; vbatt_sum1 += data; ret = measure_current(info, &data); if (ret) goto out_meas; if (data < 0) ibatt_sum1 = ibatt_sum1 - data; /* discharging */ else ibatt_sum1 = ibatt_sum1 + data; /* charging */ } if (set_charger_current(info, 100, &ret)) goto out_meas; /* * set charge current as 100mA, wait about 500ms till charging * process is launched and stable with the newer charging current. */ msleep(500); for (i = 0, vbatt_sum2 = 0, ibatt_sum2 = 0; i < 10; i++) { ret = measure_vbatt(info, OCV_MODE_ACTIVE, &data); if (ret) goto out_meas; vbatt_sum2 += data; ret = measure_current(info, &data); if (ret) goto out_meas; if (data < 0) ibatt_sum2 = ibatt_sum2 - data; /* discharging */ else ibatt_sum2 = ibatt_sum2 + data; /* charging */ } /* restore current setting */ if (set_charger_current(info, chg_current, &ret)) goto out_meas; if ((vbatt_sum1 > vbatt_sum2) && (ibatt_sum1 > ibatt_sum2) && (ibatt_sum2 > 0)) { /* calculate resistor in discharging case */ data = 1000 * (vbatt_sum1 - vbatt_sum2) / (ibatt_sum1 - ibatt_sum2); if ((data - info->resistor > 0) && (data - info->resistor < info->resistor)) info->resistor = data; if ((info->resistor - data > 0) && (info->resistor - data < data)) info->resistor = data; } return 0; out_meas: set_charger_current(info, chg_current, &ret); out: return -EINVAL; } static int calc_capacity(struct pm860x_battery_info *info, int *cap) { int ret; int data; int ibat; int cap_ocv = 0; int cap_cc = 0; ret = calc_ccnt(info, &ccnt_data); if (ret) goto out; soc: data = info->max_capacity * info->start_soc / 100; if (ccnt_data.total_dischg - ccnt_data.total_chg <= data) { cap_cc = data + ccnt_data.total_chg - ccnt_data.total_dischg; } else { clear_ccnt(info, &ccnt_data); calc_soc(info, OCV_MODE_ACTIVE, &info->start_soc); dev_dbg(info->dev, "restart soc = %d !\n", info->start_soc); goto soc; } cap_cc = cap_cc * 100 / info->max_capacity; if (cap_cc < 0) cap_cc = 0; else if (cap_cc > 100) cap_cc = 100; dev_dbg(info->dev, "%s, last cap : %d", __func__, info->last_capacity); ret = measure_current(info, &ibat); if (ret) goto out; /* Calculate the capacity when discharging(ibat < 0) */ if (ibat < 0) { ret = calc_soc(info, OCV_MODE_ACTIVE, &cap_ocv); if (ret) cap_ocv = info->last_capacity; ret = measure_vbatt(info, OCV_MODE_ACTIVE, &data); if (ret) goto out; if (data <= LOW_BAT_THRESHOLD) { /* choose the lower capacity value to report * between vbat and CC when vbat < 3.6v; * than 3.6v; */ *cap = min(cap_ocv, cap_cc); } else { /* when detect vbat > 3.6v, but cap_cc < 15,and * cap_ocv is 10% larger than cap_cc, we can think * CC have some accumulation error, switch to OCV * to estimate capacity; * */ if (cap_cc < 15 && cap_ocv - cap_cc > 10) *cap = cap_ocv; else *cap = cap_cc; } /* when discharging, make sure current capacity * is lower than last*/ if (*cap > info->last_capacity) *cap = info->last_capacity; } else { *cap = cap_cc; } info->last_capacity = *cap; dev_dbg(info->dev, "%s, cap_ocv:%d cap_cc:%d, cap:%d\n", (ibat < 0) ? "discharging" : "charging", cap_ocv, cap_cc, *cap); /* * store the current capacity to RTC domain register, * after next power up , it will be restored. */ pm860x_set_bits(info->i2c, PM8607_RTC_MISC2, RTC_SOC_5LSB, (*cap & 0x1F) << 3); pm860x_set_bits(info->i2c, PM8607_RTC1, RTC_SOC_3MSB, ((*cap >> 5) & 0x3)); return 0; out: return ret; } static void pm860x_external_power_changed(struct power_supply *psy) { struct pm860x_battery_info *info = dev_get_drvdata(psy->dev.parent); calc_resistor(info); } static int pm860x_batt_get_prop(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct pm860x_battery_info *info = dev_get_drvdata(psy->dev.parent); int data; int ret; switch (psp) { case POWER_SUPPLY_PROP_PRESENT: val->intval = info->present; break; case POWER_SUPPLY_PROP_CAPACITY: ret = calc_capacity(info, &data); if (ret) return ret; if (data < 0) data = 0; else if (data > 100) data = 100; /* return 100 if battery is not attached */ if (!info->present) data = 100; val->intval = data; break; case POWER_SUPPLY_PROP_TECHNOLOGY: val->intval = POWER_SUPPLY_TECHNOLOGY_LION; break; case POWER_SUPPLY_PROP_VOLTAGE_NOW: /* return real vbatt Voltage */ ret = measure_vbatt(info, OCV_MODE_ACTIVE, &data); if (ret) return ret; val->intval = data * 1000; break; case POWER_SUPPLY_PROP_VOLTAGE_AVG: /* return Open Circuit Voltage (not measured voltage) */ ret = calc_ocv(info, &data); if (ret) return ret; val->intval = data * 1000; break; case POWER_SUPPLY_PROP_CURRENT_NOW: ret = measure_current(info, &data); if (ret) return ret; val->intval = data; break; case POWER_SUPPLY_PROP_TEMP: if (info->present) { ret = measure_temp(info, &data); if (ret) return ret; data *= 10; } else { /* Fake Temp 25C Without Battery */ data = 250; } val->intval = data; break; default: return -ENODEV; } return 0; } static int pm860x_batt_set_prop(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val) { struct pm860x_battery_info *info = dev_get_drvdata(psy->dev.parent); switch (psp) { case POWER_SUPPLY_PROP_CHARGE_FULL: clear_ccnt(info, &ccnt_data); info->start_soc = 100; dev_dbg(info->dev, "chg done, update soc = %d\n", info->start_soc); break; default: return -EPERM; } return 0; } static enum power_supply_property pm860x_batt_props[] = { POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_VOLTAGE_AVG, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_TEMP, }; static const struct power_supply_desc pm860x_battery_desc = { .name = "battery-monitor", .type = POWER_SUPPLY_TYPE_BATTERY, .properties = pm860x_batt_props, .num_properties = ARRAY_SIZE(pm860x_batt_props), .get_property = pm860x_batt_get_prop, .set_property = pm860x_batt_set_prop, .external_power_changed = pm860x_external_power_changed, }; static int pm860x_battery_probe(struct platform_device *pdev) { struct pm860x_chip *chip = dev_get_drvdata(pdev->dev.parent); struct pm860x_battery_info *info; struct pm860x_power_pdata *pdata; int ret; info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL); if (!info) return -ENOMEM; info->irq_cc = platform_get_irq(pdev, 0); if (info->irq_cc < 0) return info->irq_cc; info->irq_batt = platform_get_irq(pdev, 1); if (info->irq_batt < 0) return info->irq_batt; info->chip = chip; info->i2c = (chip->id == CHIP_PM8607) ? chip->client : chip->companion; info->dev = &pdev->dev; info->status = POWER_SUPPLY_STATUS_UNKNOWN; pdata = pdev->dev.platform_data; mutex_init(&info->lock); platform_set_drvdata(pdev, info); pm860x_init_battery(info); if (pdata && pdata->max_capacity) info->max_capacity = pdata->max_capacity; else info->max_capacity = 1500; /* set default capacity */ if (pdata && pdata->resistor) info->resistor = pdata->resistor; else info->resistor = 300; /* set default internal resistor */ info->battery = devm_power_supply_register(&pdev->dev, &pm860x_battery_desc, NULL); if (IS_ERR(info->battery)) return PTR_ERR(info->battery); info->battery->dev.parent = &pdev->dev; ret = devm_request_threaded_irq(chip->dev, info->irq_cc, NULL, pm860x_coulomb_handler, IRQF_ONESHOT, "coulomb", info); if (ret < 0) { dev_err(chip->dev, "Failed to request IRQ: #%d: %d\n", info->irq_cc, ret); return ret; } ret = devm_request_threaded_irq(chip->dev, info->irq_batt, NULL, pm860x_batt_handler, IRQF_ONESHOT, "battery", info); if (ret < 0) { dev_err(chip->dev, "Failed to request IRQ: #%d: %d\n", info->irq_batt, ret); return ret; } return 0; } #ifdef CONFIG_PM_SLEEP static int pm860x_battery_suspend(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct pm860x_chip *chip = dev_get_drvdata(pdev->dev.parent); if (device_may_wakeup(dev)) chip->wakeup_flag |= 1 << PM8607_IRQ_CC; return 0; } static int pm860x_battery_resume(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct pm860x_chip *chip = dev_get_drvdata(pdev->dev.parent); if (device_may_wakeup(dev)) chip->wakeup_flag &= ~(1 << PM8607_IRQ_CC); return 0; } #endif static SIMPLE_DEV_PM_OPS(pm860x_battery_pm_ops, pm860x_battery_suspend, pm860x_battery_resume); static struct platform_driver pm860x_battery_driver = { .driver = { .name = "88pm860x-battery", .pm = &pm860x_battery_pm_ops, }, .probe = pm860x_battery_probe, }; module_platform_driver(pm860x_battery_driver); MODULE_DESCRIPTION("Marvell 88PM860x Battery driver"); MODULE_LICENSE("GPL");