// SPDX-License-Identifier: GPL-2.0 #include "messages.h" #include "ctree.h" #include "fs.h" #include "accessors.h" #include "volumes.h" static const struct btrfs_csums { u16 size; const char name[10]; const char driver[12]; } btrfs_csums[] = { [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" }, [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" }, [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" }, [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b", .driver = "blake2b-256" }, }; /* This exists for btrfs-progs usages. */ u16 btrfs_csum_type_size(u16 type) { return btrfs_csums[type].size; } int btrfs_super_csum_size(const struct btrfs_super_block *s) { u16 t = btrfs_super_csum_type(s); /* csum type is validated at mount time. */ return btrfs_csum_type_size(t); } const char *btrfs_super_csum_name(u16 csum_type) { /* csum type is validated at mount time. */ return btrfs_csums[csum_type].name; } /* * Return driver name if defined, otherwise the name that's also a valid driver * name. */ const char *btrfs_super_csum_driver(u16 csum_type) { /* csum type is validated at mount time */ return btrfs_csums[csum_type].driver[0] ? btrfs_csums[csum_type].driver : btrfs_csums[csum_type].name; } size_t __attribute_const__ btrfs_get_num_csums(void) { return ARRAY_SIZE(btrfs_csums); } /* * Start exclusive operation @type, return true on success. */ bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, enum btrfs_exclusive_operation type) { bool ret = false; spin_lock(&fs_info->super_lock); if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) { fs_info->exclusive_operation = type; ret = true; } spin_unlock(&fs_info->super_lock); return ret; } /* * Conditionally allow to enter the exclusive operation in case it's compatible * with the running one. This must be paired with btrfs_exclop_start_unlock() * and btrfs_exclop_finish(). * * Compatibility: * - the same type is already running * - when trying to add a device and balance has been paused * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller * must check the condition first that would allow none -> @type */ bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info, enum btrfs_exclusive_operation type) { spin_lock(&fs_info->super_lock); if (fs_info->exclusive_operation == type || (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED && type == BTRFS_EXCLOP_DEV_ADD)) return true; spin_unlock(&fs_info->super_lock); return false; } void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info) { spin_unlock(&fs_info->super_lock); } void btrfs_exclop_finish(struct btrfs_fs_info *fs_info) { spin_lock(&fs_info->super_lock); WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE); spin_unlock(&fs_info->super_lock); sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation"); } void btrfs_exclop_balance(struct btrfs_fs_info *fs_info, enum btrfs_exclusive_operation op) { switch (op) { case BTRFS_EXCLOP_BALANCE_PAUSED: spin_lock(&fs_info->super_lock); ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE || fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD || fs_info->exclusive_operation == BTRFS_EXCLOP_NONE || fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED; spin_unlock(&fs_info->super_lock); break; case BTRFS_EXCLOP_BALANCE: spin_lock(&fs_info->super_lock); ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; spin_unlock(&fs_info->super_lock); break; default: btrfs_warn(fs_info, "invalid exclop balance operation %d requested", op); } } void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag, const char *name) { struct btrfs_super_block *disk_super; u64 features; disk_super = fs_info->super_copy; features = btrfs_super_incompat_flags(disk_super); if (!(features & flag)) { spin_lock(&fs_info->super_lock); features = btrfs_super_incompat_flags(disk_super); if (!(features & flag)) { features |= flag; btrfs_set_super_incompat_flags(disk_super, features); btrfs_info(fs_info, "setting incompat feature flag for %s (0x%llx)", name, flag); } spin_unlock(&fs_info->super_lock); set_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags); } } void __btrfs_clear_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag, const char *name) { struct btrfs_super_block *disk_super; u64 features; disk_super = fs_info->super_copy; features = btrfs_super_incompat_flags(disk_super); if (features & flag) { spin_lock(&fs_info->super_lock); features = btrfs_super_incompat_flags(disk_super); if (features & flag) { features &= ~flag; btrfs_set_super_incompat_flags(disk_super, features); btrfs_info(fs_info, "clearing incompat feature flag for %s (0x%llx)", name, flag); } spin_unlock(&fs_info->super_lock); set_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags); } } void __btrfs_set_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag, const char *name) { struct btrfs_super_block *disk_super; u64 features; disk_super = fs_info->super_copy; features = btrfs_super_compat_ro_flags(disk_super); if (!(features & flag)) { spin_lock(&fs_info->super_lock); features = btrfs_super_compat_ro_flags(disk_super); if (!(features & flag)) { features |= flag; btrfs_set_super_compat_ro_flags(disk_super, features); btrfs_info(fs_info, "setting compat-ro feature flag for %s (0x%llx)", name, flag); } spin_unlock(&fs_info->super_lock); set_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags); } } void __btrfs_clear_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag, const char *name) { struct btrfs_super_block *disk_super; u64 features; disk_super = fs_info->super_copy; features = btrfs_super_compat_ro_flags(disk_super); if (features & flag) { spin_lock(&fs_info->super_lock); features = btrfs_super_compat_ro_flags(disk_super); if (features & flag) { features &= ~flag; btrfs_set_super_compat_ro_flags(disk_super, features); btrfs_info(fs_info, "clearing compat-ro feature flag for %s (0x%llx)", name, flag); } spin_unlock(&fs_info->super_lock); set_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags); } }