/* * linux/fs/hfs/super.c * * Copyright (C) 1995-1997 Paul H. Hargrove * (C) 2003 Ardis Technologies * This file may be distributed under the terms of the GNU General Public License. * * This file contains hfs_read_super(), some of the super_ops and * init_hfs_fs() and exit_hfs_fs(). The remaining super_ops are in * inode.c since they deal with inodes. * * Based on the minix file system code, (C) 1991, 1992 by Linus Torvalds */ #include #include #include #include #include #include #include #include #include #include #include #include "hfs_fs.h" #include "btree.h" static struct kmem_cache *hfs_inode_cachep; MODULE_DESCRIPTION("Apple Macintosh file system support"); MODULE_LICENSE("GPL"); static int hfs_sync_fs(struct super_block *sb, int wait) { hfs_mdb_commit(sb); return 0; } /* * hfs_put_super() * * This is the put_super() entry in the super_operations structure for * HFS filesystems. The purpose is to release the resources * associated with the superblock sb. */ static void hfs_put_super(struct super_block *sb) { cancel_delayed_work_sync(&HFS_SB(sb)->mdb_work); hfs_mdb_close(sb); /* release the MDB's resources */ hfs_mdb_put(sb); } static void flush_mdb(struct work_struct *work) { struct hfs_sb_info *sbi; struct super_block *sb; sbi = container_of(work, struct hfs_sb_info, mdb_work.work); sb = sbi->sb; spin_lock(&sbi->work_lock); sbi->work_queued = 0; spin_unlock(&sbi->work_lock); hfs_mdb_commit(sb); } void hfs_mark_mdb_dirty(struct super_block *sb) { struct hfs_sb_info *sbi = HFS_SB(sb); unsigned long delay; if (sb_rdonly(sb)) return; spin_lock(&sbi->work_lock); if (!sbi->work_queued) { delay = msecs_to_jiffies(dirty_writeback_interval * 10); queue_delayed_work(system_long_wq, &sbi->mdb_work, delay); sbi->work_queued = 1; } spin_unlock(&sbi->work_lock); } /* * hfs_statfs() * * This is the statfs() entry in the super_operations structure for * HFS filesystems. The purpose is to return various data about the * filesystem. * * changed f_files/f_ffree to reflect the fs_ablock/free_ablocks. */ static int hfs_statfs(struct dentry *dentry, struct kstatfs *buf) { struct super_block *sb = dentry->d_sb; u64 id = huge_encode_dev(sb->s_bdev->bd_dev); buf->f_type = HFS_SUPER_MAGIC; buf->f_bsize = sb->s_blocksize; buf->f_blocks = (u32)HFS_SB(sb)->fs_ablocks * HFS_SB(sb)->fs_div; buf->f_bfree = (u32)HFS_SB(sb)->free_ablocks * HFS_SB(sb)->fs_div; buf->f_bavail = buf->f_bfree; buf->f_files = HFS_SB(sb)->fs_ablocks; buf->f_ffree = HFS_SB(sb)->free_ablocks; buf->f_fsid = u64_to_fsid(id); buf->f_namelen = HFS_NAMELEN; return 0; } static int hfs_reconfigure(struct fs_context *fc) { struct super_block *sb = fc->root->d_sb; sync_filesystem(sb); fc->sb_flags |= SB_NODIRATIME; if ((bool)(fc->sb_flags & SB_RDONLY) == sb_rdonly(sb)) return 0; if (!(fc->sb_flags & SB_RDONLY)) { if (!(HFS_SB(sb)->mdb->drAtrb & cpu_to_be16(HFS_SB_ATTRIB_UNMNT))) { pr_warn("filesystem was not cleanly unmounted, running fsck.hfs is recommended. leaving read-only.\n"); sb->s_flags |= SB_RDONLY; fc->sb_flags |= SB_RDONLY; } else if (HFS_SB(sb)->mdb->drAtrb & cpu_to_be16(HFS_SB_ATTRIB_SLOCK)) { pr_warn("filesystem is marked locked, leaving read-only.\n"); sb->s_flags |= SB_RDONLY; fc->sb_flags |= SB_RDONLY; } } return 0; } static int hfs_show_options(struct seq_file *seq, struct dentry *root) { struct hfs_sb_info *sbi = HFS_SB(root->d_sb); if (sbi->s_creator != cpu_to_be32(0x3f3f3f3f)) seq_show_option_n(seq, "creator", (char *)&sbi->s_creator, 4); if (sbi->s_type != cpu_to_be32(0x3f3f3f3f)) seq_show_option_n(seq, "type", (char *)&sbi->s_type, 4); seq_printf(seq, ",uid=%u,gid=%u", from_kuid_munged(&init_user_ns, sbi->s_uid), from_kgid_munged(&init_user_ns, sbi->s_gid)); if (sbi->s_file_umask != 0133) seq_printf(seq, ",file_umask=%o", sbi->s_file_umask); if (sbi->s_dir_umask != 0022) seq_printf(seq, ",dir_umask=%o", sbi->s_dir_umask); if (sbi->part >= 0) seq_printf(seq, ",part=%u", sbi->part); if (sbi->session >= 0) seq_printf(seq, ",session=%u", sbi->session); if (sbi->nls_disk) seq_printf(seq, ",codepage=%s", sbi->nls_disk->charset); if (sbi->nls_io) seq_printf(seq, ",iocharset=%s", sbi->nls_io->charset); if (sbi->s_quiet) seq_printf(seq, ",quiet"); return 0; } static struct inode *hfs_alloc_inode(struct super_block *sb) { struct hfs_inode_info *i; i = alloc_inode_sb(sb, hfs_inode_cachep, GFP_KERNEL); return i ? &i->vfs_inode : NULL; } static void hfs_free_inode(struct inode *inode) { kmem_cache_free(hfs_inode_cachep, HFS_I(inode)); } static const struct super_operations hfs_super_operations = { .alloc_inode = hfs_alloc_inode, .free_inode = hfs_free_inode, .write_inode = hfs_write_inode, .evict_inode = hfs_evict_inode, .put_super = hfs_put_super, .sync_fs = hfs_sync_fs, .statfs = hfs_statfs, .show_options = hfs_show_options, }; enum { opt_uid, opt_gid, opt_umask, opt_file_umask, opt_dir_umask, opt_part, opt_session, opt_type, opt_creator, opt_quiet, opt_codepage, opt_iocharset, }; static const struct fs_parameter_spec hfs_param_spec[] = { fsparam_u32 ("uid", opt_uid), fsparam_u32 ("gid", opt_gid), fsparam_u32oct ("umask", opt_umask), fsparam_u32oct ("file_umask", opt_file_umask), fsparam_u32oct ("dir_umask", opt_dir_umask), fsparam_u32 ("part", opt_part), fsparam_u32 ("session", opt_session), fsparam_string ("type", opt_type), fsparam_string ("creator", opt_creator), fsparam_flag ("quiet", opt_quiet), fsparam_string ("codepage", opt_codepage), fsparam_string ("iocharset", opt_iocharset), {} }; /* * hfs_parse_param() * * This function is called by the vfs to parse the mount options. */ static int hfs_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct hfs_sb_info *hsb = fc->s_fs_info; struct fs_parse_result result; int opt; /* hfs does not honor any fs-specific options on remount */ if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) return 0; opt = fs_parse(fc, hfs_param_spec, param, &result); if (opt < 0) return opt; switch (opt) { case opt_uid: hsb->s_uid = result.uid; break; case opt_gid: hsb->s_gid = result.gid; break; case opt_umask: hsb->s_file_umask = (umode_t)result.uint_32; hsb->s_dir_umask = (umode_t)result.uint_32; break; case opt_file_umask: hsb->s_file_umask = (umode_t)result.uint_32; break; case opt_dir_umask: hsb->s_dir_umask = (umode_t)result.uint_32; break; case opt_part: hsb->part = result.uint_32; break; case opt_session: hsb->session = result.uint_32; break; case opt_type: if (strlen(param->string) != 4) { pr_err("type requires a 4 character value\n"); return -EINVAL; } memcpy(&hsb->s_type, param->string, 4); break; case opt_creator: if (strlen(param->string) != 4) { pr_err("creator requires a 4 character value\n"); return -EINVAL; } memcpy(&hsb->s_creator, param->string, 4); break; case opt_quiet: hsb->s_quiet = 1; break; case opt_codepage: if (hsb->nls_disk) { pr_err("unable to change codepage\n"); return -EINVAL; } hsb->nls_disk = load_nls(param->string); if (!hsb->nls_disk) { pr_err("unable to load codepage \"%s\"\n", param->string); return -EINVAL; } break; case opt_iocharset: if (hsb->nls_io) { pr_err("unable to change iocharset\n"); return -EINVAL; } hsb->nls_io = load_nls(param->string); if (!hsb->nls_io) { pr_err("unable to load iocharset \"%s\"\n", param->string); return -EINVAL; } break; default: return -EINVAL; } return 0; } /* * hfs_read_super() * * This is the function that is responsible for mounting an HFS * filesystem. It performs all the tasks necessary to get enough data * from the disk to read the root inode. This includes parsing the * mount options, dealing with Macintosh partitions, reading the * superblock and the allocation bitmap blocks, calling * hfs_btree_init() to get the necessary data about the extents and * catalog B-trees and, finally, reading the root inode into memory. */ static int hfs_fill_super(struct super_block *sb, struct fs_context *fc) { struct hfs_sb_info *sbi = HFS_SB(sb); struct hfs_find_data fd; hfs_cat_rec rec; struct inode *root_inode; int silent = fc->sb_flags & SB_SILENT; int res; /* load_nls_default does not fail */ if (sbi->nls_disk && !sbi->nls_io) sbi->nls_io = load_nls_default(); sbi->s_dir_umask &= 0777; sbi->s_file_umask &= 0577; spin_lock_init(&sbi->work_lock); INIT_DELAYED_WORK(&sbi->mdb_work, flush_mdb); sbi->sb = sb; sb->s_op = &hfs_super_operations; sb->s_xattr = hfs_xattr_handlers; sb->s_flags |= SB_NODIRATIME; mutex_init(&sbi->bitmap_lock); res = hfs_mdb_get(sb); if (res) { if (!silent) pr_warn("can't find a HFS filesystem on dev %s\n", hfs_mdb_name(sb)); res = -EINVAL; goto bail; } /* try to get the root inode */ res = hfs_find_init(HFS_SB(sb)->cat_tree, &fd); if (res) goto bail_no_root; res = hfs_cat_find_brec(sb, HFS_ROOT_CNID, &fd); if (!res) { if (fd.entrylength != sizeof(rec.dir)) { res = -EIO; goto bail_hfs_find; } hfs_bnode_read(fd.bnode, &rec, fd.entryoffset, fd.entrylength); if (rec.type != HFS_CDR_DIR) res = -EIO; } if (res) goto bail_hfs_find; res = -EINVAL; root_inode = hfs_iget(sb, &fd.search_key->cat, &rec); hfs_find_exit(&fd); if (!root_inode) goto bail_no_root; sb->s_d_op = &hfs_dentry_operations; res = -ENOMEM; sb->s_root = d_make_root(root_inode); if (!sb->s_root) goto bail_no_root; /* everything's okay */ return 0; bail_hfs_find: hfs_find_exit(&fd); bail_no_root: pr_err("get root inode failed\n"); bail: hfs_mdb_put(sb); return res; } static int hfs_get_tree(struct fs_context *fc) { return get_tree_bdev(fc, hfs_fill_super); } static void hfs_free_fc(struct fs_context *fc) { kfree(fc->s_fs_info); } static const struct fs_context_operations hfs_context_ops = { .parse_param = hfs_parse_param, .get_tree = hfs_get_tree, .reconfigure = hfs_reconfigure, .free = hfs_free_fc, }; static int hfs_init_fs_context(struct fs_context *fc) { struct hfs_sb_info *hsb; hsb = kzalloc(sizeof(struct hfs_sb_info), GFP_KERNEL); if (!hsb) return -ENOMEM; fc->s_fs_info = hsb; fc->ops = &hfs_context_ops; if (fc->purpose != FS_CONTEXT_FOR_RECONFIGURE) { /* initialize options with defaults */ hsb->s_uid = current_uid(); hsb->s_gid = current_gid(); hsb->s_file_umask = 0133; hsb->s_dir_umask = 0022; hsb->s_type = cpu_to_be32(0x3f3f3f3f); /* == '????' */ hsb->s_creator = cpu_to_be32(0x3f3f3f3f); /* == '????' */ hsb->s_quiet = 0; hsb->part = -1; hsb->session = -1; } return 0; } static struct file_system_type hfs_fs_type = { .owner = THIS_MODULE, .name = "hfs", .kill_sb = kill_block_super, .fs_flags = FS_REQUIRES_DEV, .init_fs_context = hfs_init_fs_context, }; MODULE_ALIAS_FS("hfs"); static void hfs_init_once(void *p) { struct hfs_inode_info *i = p; inode_init_once(&i->vfs_inode); } static int __init init_hfs_fs(void) { int err; hfs_inode_cachep = kmem_cache_create("hfs_inode_cache", sizeof(struct hfs_inode_info), 0, SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, hfs_init_once); if (!hfs_inode_cachep) return -ENOMEM; err = register_filesystem(&hfs_fs_type); if (err) kmem_cache_destroy(hfs_inode_cachep); return err; } static void __exit exit_hfs_fs(void) { unregister_filesystem(&hfs_fs_type); /* * Make sure all delayed rcu free inodes are flushed before we * destroy cache. */ rcu_barrier(); kmem_cache_destroy(hfs_inode_cachep); } module_init(init_hfs_fs) module_exit(exit_hfs_fs)