// SPDX-License-Identifier: GPL-2.0-only /* Network filesystem high-level (buffered) writeback. * * Copyright (C) 2024 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) * * * To support network filesystems with local caching, we manage a situation * that can be envisioned like the following: * * +---+---+-----+-----+---+----------+ * Folios: | | | | | | | * +---+---+-----+-----+---+----------+ * * +------+------+ +----+----+ * Upload: | | |.....| | | * (Stream 0) +------+------+ +----+----+ * * +------+------+------+------+------+ * Cache: | | | | | | * (Stream 1) +------+------+------+------+------+ * * Where we have a sequence of folios of varying sizes that we need to overlay * with multiple parallel streams of I/O requests, where the I/O requests in a * stream may also be of various sizes (in cifs, for example, the sizes are * negotiated with the server; in something like ceph, they may represent the * sizes of storage objects). * * The sequence in each stream may contain gaps and noncontiguous subrequests * may be glued together into single vectored write RPCs. */ #include #include #include #include #include "internal.h" /* * Kill all dirty folios in the event of an unrecoverable error, starting with * a locked folio we've already obtained from writeback_iter(). */ static void netfs_kill_dirty_pages(struct address_space *mapping, struct writeback_control *wbc, struct folio *folio) { int error = 0; do { enum netfs_folio_trace why = netfs_folio_trace_kill; struct netfs_group *group = NULL; struct netfs_folio *finfo = NULL; void *priv; priv = folio_detach_private(folio); if (priv) { finfo = __netfs_folio_info(priv); if (finfo) { /* Kill folio from streaming write. */ group = finfo->netfs_group; why = netfs_folio_trace_kill_s; } else { group = priv; if (group == NETFS_FOLIO_COPY_TO_CACHE) { /* Kill copy-to-cache folio */ why = netfs_folio_trace_kill_cc; group = NULL; } else { /* Kill folio with group */ why = netfs_folio_trace_kill_g; } } } trace_netfs_folio(folio, why); folio_start_writeback(folio); folio_unlock(folio); folio_end_writeback(folio); netfs_put_group(group); kfree(finfo); } while ((folio = writeback_iter(mapping, wbc, folio, &error))); } /* * Create a write request and set it up appropriately for the origin type. */ struct netfs_io_request *netfs_create_write_req(struct address_space *mapping, struct file *file, loff_t start, enum netfs_io_origin origin) { struct netfs_io_request *wreq; struct netfs_inode *ictx; bool is_buffered = (origin == NETFS_WRITEBACK || origin == NETFS_WRITETHROUGH || origin == NETFS_PGPRIV2_COPY_TO_CACHE); wreq = netfs_alloc_request(mapping, file, start, 0, origin); if (IS_ERR(wreq)) return wreq; _enter("R=%x", wreq->debug_id); ictx = netfs_inode(wreq->inode); if (is_buffered && netfs_is_cache_enabled(ictx)) fscache_begin_write_operation(&wreq->cache_resources, netfs_i_cookie(ictx)); wreq->cleaned_to = wreq->start; wreq->io_streams[0].stream_nr = 0; wreq->io_streams[0].source = NETFS_UPLOAD_TO_SERVER; wreq->io_streams[0].prepare_write = ictx->ops->prepare_write; wreq->io_streams[0].issue_write = ictx->ops->issue_write; wreq->io_streams[0].collected_to = start; wreq->io_streams[0].transferred = LONG_MAX; wreq->io_streams[1].stream_nr = 1; wreq->io_streams[1].source = NETFS_WRITE_TO_CACHE; wreq->io_streams[1].collected_to = start; wreq->io_streams[1].transferred = LONG_MAX; if (fscache_resources_valid(&wreq->cache_resources)) { wreq->io_streams[1].avail = true; wreq->io_streams[1].active = true; wreq->io_streams[1].prepare_write = wreq->cache_resources.ops->prepare_write_subreq; wreq->io_streams[1].issue_write = wreq->cache_resources.ops->issue_write; } return wreq; } /** * netfs_prepare_write_failed - Note write preparation failed * @subreq: The subrequest to mark * * Mark a subrequest to note that preparation for write failed. */ void netfs_prepare_write_failed(struct netfs_io_subrequest *subreq) { __set_bit(NETFS_SREQ_FAILED, &subreq->flags); trace_netfs_sreq(subreq, netfs_sreq_trace_prep_failed); } EXPORT_SYMBOL(netfs_prepare_write_failed); /* * Prepare a write subrequest. We need to allocate a new subrequest * if we don't have one. */ static void netfs_prepare_write(struct netfs_io_request *wreq, struct netfs_io_stream *stream, loff_t start) { struct netfs_io_subrequest *subreq; struct iov_iter *wreq_iter = &wreq->io_iter; /* Make sure we don't point the iterator at a used-up folio_queue * struct being used as a placeholder to prevent the queue from * collapsing. In such a case, extend the queue. */ if (iov_iter_is_folioq(wreq_iter) && wreq_iter->folioq_slot >= folioq_nr_slots(wreq_iter->folioq)) { netfs_buffer_make_space(wreq); } subreq = netfs_alloc_subrequest(wreq); subreq->source = stream->source; subreq->start = start; subreq->stream_nr = stream->stream_nr; subreq->io_iter = *wreq_iter; _enter("R=%x[%x]", wreq->debug_id, subreq->debug_index); trace_netfs_sreq(subreq, netfs_sreq_trace_prepare); stream->sreq_max_len = UINT_MAX; stream->sreq_max_segs = INT_MAX; switch (stream->source) { case NETFS_UPLOAD_TO_SERVER: netfs_stat(&netfs_n_wh_upload); stream->sreq_max_len = wreq->wsize; break; case NETFS_WRITE_TO_CACHE: netfs_stat(&netfs_n_wh_write); break; default: WARN_ON_ONCE(1); break; } if (stream->prepare_write) stream->prepare_write(subreq); __set_bit(NETFS_SREQ_IN_PROGRESS, &subreq->flags); /* We add to the end of the list whilst the collector may be walking * the list. The collector only goes nextwards and uses the lock to * remove entries off of the front. */ spin_lock_bh(&wreq->lock); list_add_tail(&subreq->rreq_link, &stream->subrequests); if (list_is_first(&subreq->rreq_link, &stream->subrequests)) { stream->front = subreq; if (!stream->active) { stream->collected_to = stream->front->start; /* Write list pointers before active flag */ smp_store_release(&stream->active, true); } } spin_unlock_bh(&wreq->lock); stream->construct = subreq; } /* * Set the I/O iterator for the filesystem/cache to use and dispatch the I/O * operation. The operation may be asynchronous and should call * netfs_write_subrequest_terminated() when complete. */ static void netfs_do_issue_write(struct netfs_io_stream *stream, struct netfs_io_subrequest *subreq) { struct netfs_io_request *wreq = subreq->rreq; _enter("R=%x[%x],%zx", wreq->debug_id, subreq->debug_index, subreq->len); if (test_bit(NETFS_SREQ_FAILED, &subreq->flags)) return netfs_write_subrequest_terminated(subreq, subreq->error, false); trace_netfs_sreq(subreq, netfs_sreq_trace_submit); stream->issue_write(subreq); } void netfs_reissue_write(struct netfs_io_stream *stream, struct netfs_io_subrequest *subreq, struct iov_iter *source) { size_t size = subreq->len - subreq->transferred; // TODO: Use encrypted buffer subreq->io_iter = *source; iov_iter_advance(source, size); iov_iter_truncate(&subreq->io_iter, size); subreq->retry_count++; __clear_bit(NETFS_SREQ_MADE_PROGRESS, &subreq->flags); __set_bit(NETFS_SREQ_IN_PROGRESS, &subreq->flags); netfs_do_issue_write(stream, subreq); } void netfs_issue_write(struct netfs_io_request *wreq, struct netfs_io_stream *stream) { struct netfs_io_subrequest *subreq = stream->construct; if (!subreq) return; stream->construct = NULL; subreq->io_iter.count = subreq->len; netfs_do_issue_write(stream, subreq); } /* * Add data to the write subrequest, dispatching each as we fill it up or if it * is discontiguous with the previous. We only fill one part at a time so that * we can avoid overrunning the credits obtained (cifs) and try to parallelise * content-crypto preparation with network writes. */ int netfs_advance_write(struct netfs_io_request *wreq, struct netfs_io_stream *stream, loff_t start, size_t len, bool to_eof) { struct netfs_io_subrequest *subreq = stream->construct; size_t part; if (!stream->avail) { _leave("no write"); return len; } _enter("R=%x[%x]", wreq->debug_id, subreq ? subreq->debug_index : 0); if (subreq && start != subreq->start + subreq->len) { netfs_issue_write(wreq, stream); subreq = NULL; } if (!stream->construct) netfs_prepare_write(wreq, stream, start); subreq = stream->construct; part = umin(stream->sreq_max_len - subreq->len, len); _debug("part %zx/%zx %zx/%zx", subreq->len, stream->sreq_max_len, part, len); subreq->len += part; subreq->nr_segs++; stream->submit_extendable_to -= part; if (subreq->len >= stream->sreq_max_len || subreq->nr_segs >= stream->sreq_max_segs || to_eof) { netfs_issue_write(wreq, stream); subreq = NULL; } return part; } /* * Write some of a pending folio data back to the server. */ static int netfs_write_folio(struct netfs_io_request *wreq, struct writeback_control *wbc, struct folio *folio) { struct netfs_io_stream *upload = &wreq->io_streams[0]; struct netfs_io_stream *cache = &wreq->io_streams[1]; struct netfs_io_stream *stream; struct netfs_group *fgroup; /* TODO: Use this with ceph */ struct netfs_folio *finfo; size_t iter_off = 0; size_t fsize = folio_size(folio), flen = fsize, foff = 0; loff_t fpos = folio_pos(folio), i_size; bool to_eof = false, streamw = false; bool debug = false; _enter(""); /* netfs_perform_write() may shift i_size around the page or from out * of the page to beyond it, but cannot move i_size into or through the * page since we have it locked. */ i_size = i_size_read(wreq->inode); if (fpos >= i_size) { /* mmap beyond eof. */ _debug("beyond eof"); folio_start_writeback(folio); folio_unlock(folio); wreq->nr_group_rel += netfs_folio_written_back(folio); netfs_put_group_many(wreq->group, wreq->nr_group_rel); wreq->nr_group_rel = 0; return 0; } if (fpos + fsize > wreq->i_size) wreq->i_size = i_size; fgroup = netfs_folio_group(folio); finfo = netfs_folio_info(folio); if (finfo) { foff = finfo->dirty_offset; flen = foff + finfo->dirty_len; streamw = true; } if (wreq->origin == NETFS_WRITETHROUGH) { to_eof = false; if (flen > i_size - fpos) flen = i_size - fpos; } else if (flen > i_size - fpos) { flen = i_size - fpos; if (!streamw) folio_zero_segment(folio, flen, fsize); to_eof = true; } else if (flen == i_size - fpos) { to_eof = true; } flen -= foff; _debug("folio %zx %zx %zx", foff, flen, fsize); /* Deal with discontinuities in the stream of dirty pages. These can * arise from a number of sources: * * (1) Intervening non-dirty pages from random-access writes, multiple * flushers writing back different parts simultaneously and manual * syncing. * * (2) Partially-written pages from write-streaming. * * (3) Pages that belong to a different write-back group (eg. Ceph * snapshots). * * (4) Actually-clean pages that were marked for write to the cache * when they were read. Note that these appear as a special * write-back group. */ if (fgroup == NETFS_FOLIO_COPY_TO_CACHE) { netfs_issue_write(wreq, upload); } else if (fgroup != wreq->group) { /* We can't write this page to the server yet. */ kdebug("wrong group"); folio_redirty_for_writepage(wbc, folio); folio_unlock(folio); netfs_issue_write(wreq, upload); netfs_issue_write(wreq, cache); return 0; } if (foff > 0) netfs_issue_write(wreq, upload); if (streamw) netfs_issue_write(wreq, cache); /* Flip the page to the writeback state and unlock. If we're called * from write-through, then the page has already been put into the wb * state. */ if (wreq->origin == NETFS_WRITEBACK) folio_start_writeback(folio); folio_unlock(folio); if (fgroup == NETFS_FOLIO_COPY_TO_CACHE) { if (!cache->avail) { trace_netfs_folio(folio, netfs_folio_trace_cancel_copy); netfs_issue_write(wreq, upload); netfs_folio_written_back(folio); return 0; } trace_netfs_folio(folio, netfs_folio_trace_store_copy); } else if (!upload->avail && !cache->avail) { trace_netfs_folio(folio, netfs_folio_trace_cancel_store); netfs_folio_written_back(folio); return 0; } else if (!upload->construct) { trace_netfs_folio(folio, netfs_folio_trace_store); } else { trace_netfs_folio(folio, netfs_folio_trace_store_plus); } /* Attach the folio to the rolling buffer. */ netfs_buffer_append_folio(wreq, folio, false); /* Move the submission point forward to allow for write-streaming data * not starting at the front of the page. We don't do write-streaming * with the cache as the cache requires DIO alignment. * * Also skip uploading for data that's been read and just needs copying * to the cache. */ for (int s = 0; s < NR_IO_STREAMS; s++) { stream = &wreq->io_streams[s]; stream->submit_off = foff; stream->submit_len = flen; if ((stream->source == NETFS_WRITE_TO_CACHE && streamw) || (stream->source == NETFS_UPLOAD_TO_SERVER && fgroup == NETFS_FOLIO_COPY_TO_CACHE)) { stream->submit_off = UINT_MAX; stream->submit_len = 0; } } /* Attach the folio to one or more subrequests. For a big folio, we * could end up with thousands of subrequests if the wsize is small - * but we might need to wait during the creation of subrequests for * network resources (eg. SMB credits). */ for (;;) { ssize_t part; size_t lowest_off = ULONG_MAX; int choose_s = -1; /* Always add to the lowest-submitted stream first. */ for (int s = 0; s < NR_IO_STREAMS; s++) { stream = &wreq->io_streams[s]; if (stream->submit_len > 0 && stream->submit_off < lowest_off) { lowest_off = stream->submit_off; choose_s = s; } } if (choose_s < 0) break; stream = &wreq->io_streams[choose_s]; /* Advance the iterator(s). */ if (stream->submit_off > iter_off) { iov_iter_advance(&wreq->io_iter, stream->submit_off - iter_off); iter_off = stream->submit_off; } atomic64_set(&wreq->issued_to, fpos + stream->submit_off); stream->submit_extendable_to = fsize - stream->submit_off; part = netfs_advance_write(wreq, stream, fpos + stream->submit_off, stream->submit_len, to_eof); stream->submit_off += part; if (part > stream->submit_len) stream->submit_len = 0; else stream->submit_len -= part; if (part > 0) debug = true; } if (fsize > iter_off) iov_iter_advance(&wreq->io_iter, fsize - iter_off); atomic64_set(&wreq->issued_to, fpos + fsize); if (!debug) kdebug("R=%x: No submit", wreq->debug_id); if (foff + flen < fsize) for (int s = 0; s < NR_IO_STREAMS; s++) netfs_issue_write(wreq, &wreq->io_streams[s]); _leave(" = 0"); return 0; } /* * End the issuing of writes, letting the collector know we're done. */ static void netfs_end_issue_write(struct netfs_io_request *wreq) { bool needs_poke = true; smp_wmb(); /* Write subreq lists before ALL_QUEUED. */ set_bit(NETFS_RREQ_ALL_QUEUED, &wreq->flags); for (int s = 0; s < NR_IO_STREAMS; s++) { struct netfs_io_stream *stream = &wreq->io_streams[s]; if (!stream->active) continue; if (!list_empty(&stream->subrequests)) needs_poke = false; netfs_issue_write(wreq, stream); } if (needs_poke) netfs_wake_write_collector(wreq, false); } /* * Write some of the pending data back to the server */ int netfs_writepages(struct address_space *mapping, struct writeback_control *wbc) { struct netfs_inode *ictx = netfs_inode(mapping->host); struct netfs_io_request *wreq = NULL; struct folio *folio; int error = 0; if (!mutex_trylock(&ictx->wb_lock)) { if (wbc->sync_mode == WB_SYNC_NONE) { netfs_stat(&netfs_n_wb_lock_skip); return 0; } netfs_stat(&netfs_n_wb_lock_wait); mutex_lock(&ictx->wb_lock); } /* Need the first folio to be able to set up the op. */ folio = writeback_iter(mapping, wbc, NULL, &error); if (!folio) goto out; wreq = netfs_create_write_req(mapping, NULL, folio_pos(folio), NETFS_WRITEBACK); if (IS_ERR(wreq)) { error = PTR_ERR(wreq); goto couldnt_start; } trace_netfs_write(wreq, netfs_write_trace_writeback); netfs_stat(&netfs_n_wh_writepages); do { _debug("wbiter %lx %llx", folio->index, atomic64_read(&wreq->issued_to)); /* It appears we don't have to handle cyclic writeback wrapping. */ WARN_ON_ONCE(wreq && folio_pos(folio) < atomic64_read(&wreq->issued_to)); if (netfs_folio_group(folio) != NETFS_FOLIO_COPY_TO_CACHE && unlikely(!test_bit(NETFS_RREQ_UPLOAD_TO_SERVER, &wreq->flags))) { set_bit(NETFS_RREQ_UPLOAD_TO_SERVER, &wreq->flags); wreq->netfs_ops->begin_writeback(wreq); } error = netfs_write_folio(wreq, wbc, folio); if (error < 0) break; } while ((folio = writeback_iter(mapping, wbc, folio, &error))); netfs_end_issue_write(wreq); mutex_unlock(&ictx->wb_lock); netfs_put_request(wreq, false, netfs_rreq_trace_put_return); _leave(" = %d", error); return error; couldnt_start: netfs_kill_dirty_pages(mapping, wbc, folio); out: mutex_unlock(&ictx->wb_lock); _leave(" = %d", error); return error; } EXPORT_SYMBOL(netfs_writepages); /* * Begin a write operation for writing through the pagecache. */ struct netfs_io_request *netfs_begin_writethrough(struct kiocb *iocb, size_t len) { struct netfs_io_request *wreq = NULL; struct netfs_inode *ictx = netfs_inode(file_inode(iocb->ki_filp)); mutex_lock(&ictx->wb_lock); wreq = netfs_create_write_req(iocb->ki_filp->f_mapping, iocb->ki_filp, iocb->ki_pos, NETFS_WRITETHROUGH); if (IS_ERR(wreq)) { mutex_unlock(&ictx->wb_lock); return wreq; } wreq->io_streams[0].avail = true; trace_netfs_write(wreq, netfs_write_trace_writethrough); return wreq; } /* * Advance the state of the write operation used when writing through the * pagecache. Data has been copied into the pagecache that we need to append * to the request. If we've added more than wsize then we need to create a new * subrequest. */ int netfs_advance_writethrough(struct netfs_io_request *wreq, struct writeback_control *wbc, struct folio *folio, size_t copied, bool to_page_end, struct folio **writethrough_cache) { _enter("R=%x ic=%zu ws=%u cp=%zu tp=%u", wreq->debug_id, wreq->iter.count, wreq->wsize, copied, to_page_end); if (!*writethrough_cache) { if (folio_test_dirty(folio)) /* Sigh. mmap. */ folio_clear_dirty_for_io(folio); /* We can make multiple writes to the folio... */ folio_start_writeback(folio); if (wreq->len == 0) trace_netfs_folio(folio, netfs_folio_trace_wthru); else trace_netfs_folio(folio, netfs_folio_trace_wthru_plus); *writethrough_cache = folio; } wreq->len += copied; if (!to_page_end) return 0; *writethrough_cache = NULL; return netfs_write_folio(wreq, wbc, folio); } /* * End a write operation used when writing through the pagecache. */ int netfs_end_writethrough(struct netfs_io_request *wreq, struct writeback_control *wbc, struct folio *writethrough_cache) { struct netfs_inode *ictx = netfs_inode(wreq->inode); int ret; _enter("R=%x", wreq->debug_id); if (writethrough_cache) netfs_write_folio(wreq, wbc, writethrough_cache); netfs_end_issue_write(wreq); mutex_unlock(&ictx->wb_lock); if (wreq->iocb) { ret = -EIOCBQUEUED; } else { wait_on_bit(&wreq->flags, NETFS_RREQ_IN_PROGRESS, TASK_UNINTERRUPTIBLE); ret = wreq->error; } netfs_put_request(wreq, false, netfs_rreq_trace_put_return); return ret; } /* * Write data to the server without going through the pagecache and without * writing it to the local cache. */ int netfs_unbuffered_write(struct netfs_io_request *wreq, bool may_wait, size_t len) { struct netfs_io_stream *upload = &wreq->io_streams[0]; ssize_t part; loff_t start = wreq->start; int error = 0; _enter("%zx", len); if (wreq->origin == NETFS_DIO_WRITE) inode_dio_begin(wreq->inode); while (len) { // TODO: Prepare content encryption _debug("unbuffered %zx", len); part = netfs_advance_write(wreq, upload, start, len, false); start += part; len -= part; iov_iter_advance(&wreq->io_iter, part); if (test_bit(NETFS_RREQ_PAUSE, &wreq->flags)) { trace_netfs_rreq(wreq, netfs_rreq_trace_wait_pause); wait_on_bit(&wreq->flags, NETFS_RREQ_PAUSE, TASK_UNINTERRUPTIBLE); } if (test_bit(NETFS_RREQ_FAILED, &wreq->flags)) break; } netfs_end_issue_write(wreq); _leave(" = %d", error); return error; }