// SPDX-License-Identifier: GPL-2.0-only /* * RAM Oops/Panic logger * * Copyright (C) 2010 Marco Stornelli * Copyright (C) 2011 Kees Cook */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include "internal.h" #include "ram_internal.h" #define RAMOOPS_KERNMSG_HDR "====" #define MIN_MEM_SIZE 4096UL static ulong record_size = MIN_MEM_SIZE; module_param(record_size, ulong, 0400); MODULE_PARM_DESC(record_size, "size of each dump done on oops/panic"); static ulong ramoops_console_size = MIN_MEM_SIZE; module_param_named(console_size, ramoops_console_size, ulong, 0400); MODULE_PARM_DESC(console_size, "size of kernel console log"); static ulong ramoops_ftrace_size = MIN_MEM_SIZE; module_param_named(ftrace_size, ramoops_ftrace_size, ulong, 0400); MODULE_PARM_DESC(ftrace_size, "size of ftrace log"); static ulong ramoops_pmsg_size = MIN_MEM_SIZE; module_param_named(pmsg_size, ramoops_pmsg_size, ulong, 0400); MODULE_PARM_DESC(pmsg_size, "size of user space message log"); static unsigned long long mem_address; module_param_hw(mem_address, ullong, other, 0400); MODULE_PARM_DESC(mem_address, "start of reserved RAM used to store oops/panic logs"); static char *mem_name; module_param_named(mem_name, mem_name, charp, 0400); MODULE_PARM_DESC(mem_name, "name of kernel param that holds addr"); static ulong mem_size; module_param(mem_size, ulong, 0400); MODULE_PARM_DESC(mem_size, "size of reserved RAM used to store oops/panic logs"); static unsigned int mem_type; module_param(mem_type, uint, 0400); MODULE_PARM_DESC(mem_type, "memory type: 0=write-combined (default), 1=unbuffered, 2=cached"); static int ramoops_max_reason = -1; module_param_named(max_reason, ramoops_max_reason, int, 0400); MODULE_PARM_DESC(max_reason, "maximum reason for kmsg dump (default 2: Oops and Panic) "); static int ramoops_ecc; module_param_named(ecc, ramoops_ecc, int, 0400); MODULE_PARM_DESC(ramoops_ecc, "if non-zero, the option enables ECC support and specifies " "ECC buffer size in bytes (1 is a special value, means 16 " "bytes ECC)"); static int ramoops_dump_oops = -1; module_param_named(dump_oops, ramoops_dump_oops, int, 0400); MODULE_PARM_DESC(dump_oops, "(deprecated: use max_reason instead) set to 1 to dump oopses & panics, 0 to only dump panics"); struct ramoops_context { struct persistent_ram_zone **dprzs; /* Oops dump zones */ struct persistent_ram_zone *cprz; /* Console zone */ struct persistent_ram_zone **fprzs; /* Ftrace zones */ struct persistent_ram_zone *mprz; /* PMSG zone */ phys_addr_t phys_addr; unsigned long size; unsigned int memtype; size_t record_size; size_t console_size; size_t ftrace_size; size_t pmsg_size; u32 flags; struct persistent_ram_ecc_info ecc_info; unsigned int max_dump_cnt; unsigned int dump_write_cnt; /* _read_cnt need clear on ramoops_pstore_open */ unsigned int dump_read_cnt; unsigned int console_read_cnt; unsigned int max_ftrace_cnt; unsigned int ftrace_read_cnt; unsigned int pmsg_read_cnt; struct pstore_info pstore; }; static struct platform_device *dummy; static int ramoops_pstore_open(struct pstore_info *psi) { struct ramoops_context *cxt = psi->data; cxt->dump_read_cnt = 0; cxt->console_read_cnt = 0; cxt->ftrace_read_cnt = 0; cxt->pmsg_read_cnt = 0; return 0; } static struct persistent_ram_zone * ramoops_get_next_prz(struct persistent_ram_zone *przs[], int id, struct pstore_record *record) { struct persistent_ram_zone *prz; /* Give up if we never existed or have hit the end. */ if (!przs) return NULL; prz = przs[id]; if (!prz) return NULL; /* Update old/shadowed buffer. */ if (prz->type == PSTORE_TYPE_DMESG) persistent_ram_save_old(prz); if (!persistent_ram_old_size(prz)) return NULL; record->type = prz->type; record->id = id; return prz; } static int ramoops_read_kmsg_hdr(char *buffer, struct timespec64 *time, bool *compressed) { char data_type; int header_length = 0; if (sscanf(buffer, RAMOOPS_KERNMSG_HDR "%lld.%lu-%c\n%n", (time64_t *)&time->tv_sec, &time->tv_nsec, &data_type, &header_length) == 3) { time->tv_nsec *= 1000; if (data_type == 'C') *compressed = true; else *compressed = false; } else if (sscanf(buffer, RAMOOPS_KERNMSG_HDR "%lld.%lu\n%n", (time64_t *)&time->tv_sec, &time->tv_nsec, &header_length) == 2) { time->tv_nsec *= 1000; *compressed = false; } else { time->tv_sec = 0; time->tv_nsec = 0; *compressed = false; } return header_length; } static bool prz_ok(struct persistent_ram_zone *prz) { return !!prz && !!(persistent_ram_old_size(prz) + persistent_ram_ecc_string(prz, NULL, 0)); } static ssize_t ramoops_pstore_read(struct pstore_record *record) { ssize_t size = 0; struct ramoops_context *cxt = record->psi->data; struct persistent_ram_zone *prz = NULL; int header_length = 0; bool free_prz = false; /* * Ramoops headers provide time stamps for PSTORE_TYPE_DMESG, but * PSTORE_TYPE_CONSOLE and PSTORE_TYPE_FTRACE don't currently have * valid time stamps, so it is initialized to zero. */ record->time.tv_sec = 0; record->time.tv_nsec = 0; record->compressed = false; /* Find the next valid persistent_ram_zone for DMESG */ while (cxt->dump_read_cnt < cxt->max_dump_cnt && !prz) { prz = ramoops_get_next_prz(cxt->dprzs, cxt->dump_read_cnt++, record); if (!prz_ok(prz)) continue; header_length = ramoops_read_kmsg_hdr(persistent_ram_old(prz), &record->time, &record->compressed); /* Clear and skip this DMESG record if it has no valid header */ if (!header_length) { persistent_ram_free_old(prz); persistent_ram_zap(prz); prz = NULL; } } if (!prz_ok(prz) && !cxt->console_read_cnt++) prz = ramoops_get_next_prz(&cxt->cprz, 0 /* single */, record); if (!prz_ok(prz) && !cxt->pmsg_read_cnt++) prz = ramoops_get_next_prz(&cxt->mprz, 0 /* single */, record); /* ftrace is last since it may want to dynamically allocate memory. */ if (!prz_ok(prz)) { if (!(cxt->flags & RAMOOPS_FLAG_FTRACE_PER_CPU) && !cxt->ftrace_read_cnt++) { prz = ramoops_get_next_prz(cxt->fprzs, 0 /* single */, record); } else { /* * Build a new dummy record which combines all the * per-cpu records including metadata and ecc info. */ struct persistent_ram_zone *tmp_prz, *prz_next; tmp_prz = kzalloc(sizeof(struct persistent_ram_zone), GFP_KERNEL); if (!tmp_prz) return -ENOMEM; prz = tmp_prz; free_prz = true; while (cxt->ftrace_read_cnt < cxt->max_ftrace_cnt) { prz_next = ramoops_get_next_prz(cxt->fprzs, cxt->ftrace_read_cnt++, record); if (!prz_ok(prz_next)) continue; tmp_prz->ecc_info = prz_next->ecc_info; tmp_prz->corrected_bytes += prz_next->corrected_bytes; tmp_prz->bad_blocks += prz_next->bad_blocks; size = pstore_ftrace_combine_log( &tmp_prz->old_log, &tmp_prz->old_log_size, prz_next->old_log, prz_next->old_log_size); if (size) goto out; } record->id = 0; } } if (!prz_ok(prz)) { size = 0; goto out; } size = persistent_ram_old_size(prz) - header_length; /* ECC correction notice */ record->ecc_notice_size = persistent_ram_ecc_string(prz, NULL, 0); record->buf = kvzalloc(size + record->ecc_notice_size + 1, GFP_KERNEL); if (record->buf == NULL) { size = -ENOMEM; goto out; } memcpy(record->buf, (char *)persistent_ram_old(prz) + header_length, size); persistent_ram_ecc_string(prz, record->buf + size, record->ecc_notice_size + 1); out: if (free_prz) { kvfree(prz->old_log); kfree(prz); } return size; } static size_t ramoops_write_kmsg_hdr(struct persistent_ram_zone *prz, struct pstore_record *record) { char hdr[36]; /* "===="(4), %lld(20), "."(1), %06lu(6), "-%c\n"(3) */ size_t len; len = scnprintf(hdr, sizeof(hdr), RAMOOPS_KERNMSG_HDR "%lld.%06lu-%c\n", (time64_t)record->time.tv_sec, record->time.tv_nsec / 1000, record->compressed ? 'C' : 'D'); persistent_ram_write(prz, hdr, len); return len; } static int notrace ramoops_pstore_write(struct pstore_record *record) { struct ramoops_context *cxt = record->psi->data; struct persistent_ram_zone *prz; size_t size, hlen; if (record->type == PSTORE_TYPE_CONSOLE) { if (!cxt->cprz) return -ENOMEM; persistent_ram_write(cxt->cprz, record->buf, record->size); return 0; } else if (record->type == PSTORE_TYPE_FTRACE) { int zonenum; if (!cxt->fprzs) return -ENOMEM; /* * Choose zone by if we're using per-cpu buffers. */ if (cxt->flags & RAMOOPS_FLAG_FTRACE_PER_CPU) zonenum = smp_processor_id(); else zonenum = 0; persistent_ram_write(cxt->fprzs[zonenum], record->buf, record->size); return 0; } else if (record->type == PSTORE_TYPE_PMSG) { pr_warn_ratelimited("PMSG shouldn't call %s\n", __func__); return -EINVAL; } if (record->type != PSTORE_TYPE_DMESG) return -EINVAL; /* * We could filter on record->reason here if we wanted to (which * would duplicate what happened before the "max_reason" setting * was added), but that would defeat the purpose of a system * changing printk.always_kmsg_dump, so instead log everything that * the kmsg dumper sends us, since it should be doing the filtering * based on the combination of printk.always_kmsg_dump and our * requested "max_reason". */ /* * Explicitly only take the first part of any new crash. * If our buffer is larger than kmsg_bytes, this can never happen, * and if our buffer is smaller than kmsg_bytes, we don't want the * report split across multiple records. */ if (record->part != 1) return -ENOSPC; if (!cxt->dprzs) return -ENOSPC; prz = cxt->dprzs[cxt->dump_write_cnt]; /* * Since this is a new crash dump, we need to reset the buffer in * case it still has an old dump present. Without this, the new dump * will get appended, which would seriously confuse anything trying * to check dump file contents. Specifically, ramoops_read_kmsg_hdr() * expects to find a dump header in the beginning of buffer data, so * we must to reset the buffer values, in order to ensure that the * header will be written to the beginning of the buffer. */ persistent_ram_zap(prz); /* Build header and append record contents. */ hlen = ramoops_write_kmsg_hdr(prz, record); if (!hlen) return -ENOMEM; size = record->size; if (size + hlen > prz->buffer_size) size = prz->buffer_size - hlen; persistent_ram_write(prz, record->buf, size); cxt->dump_write_cnt = (cxt->dump_write_cnt + 1) % cxt->max_dump_cnt; return 0; } static int notrace ramoops_pstore_write_user(struct pstore_record *record, const char __user *buf) { if (record->type == PSTORE_TYPE_PMSG) { struct ramoops_context *cxt = record->psi->data; if (!cxt->mprz) return -ENOMEM; return persistent_ram_write_user(cxt->mprz, buf, record->size); } return -EINVAL; } static int ramoops_pstore_erase(struct pstore_record *record) { struct ramoops_context *cxt = record->psi->data; struct persistent_ram_zone *prz; switch (record->type) { case PSTORE_TYPE_DMESG: if (record->id >= cxt->max_dump_cnt) return -EINVAL; prz = cxt->dprzs[record->id]; break; case PSTORE_TYPE_CONSOLE: prz = cxt->cprz; break; case PSTORE_TYPE_FTRACE: if (record->id >= cxt->max_ftrace_cnt) return -EINVAL; prz = cxt->fprzs[record->id]; break; case PSTORE_TYPE_PMSG: prz = cxt->mprz; break; default: return -EINVAL; } persistent_ram_free_old(prz); persistent_ram_zap(prz); return 0; } static struct ramoops_context oops_cxt = { .pstore = { .owner = THIS_MODULE, .name = "ramoops", .open = ramoops_pstore_open, .read = ramoops_pstore_read, .write = ramoops_pstore_write, .write_user = ramoops_pstore_write_user, .erase = ramoops_pstore_erase, }, }; static void ramoops_free_przs(struct ramoops_context *cxt) { int i; /* Free pmsg PRZ */ persistent_ram_free(&cxt->mprz); /* Free console PRZ */ persistent_ram_free(&cxt->cprz); /* Free dump PRZs */ if (cxt->dprzs) { for (i = 0; i < cxt->max_dump_cnt; i++) persistent_ram_free(&cxt->dprzs[i]); kfree(cxt->dprzs); cxt->dprzs = NULL; cxt->max_dump_cnt = 0; } /* Free ftrace PRZs */ if (cxt->fprzs) { for (i = 0; i < cxt->max_ftrace_cnt; i++) persistent_ram_free(&cxt->fprzs[i]); kfree(cxt->fprzs); cxt->fprzs = NULL; cxt->max_ftrace_cnt = 0; } } static int ramoops_init_przs(const char *name, struct device *dev, struct ramoops_context *cxt, struct persistent_ram_zone ***przs, phys_addr_t *paddr, size_t mem_sz, ssize_t record_size, unsigned int *cnt, u32 sig, u32 flags) { int err = -ENOMEM; int i; size_t zone_sz; struct persistent_ram_zone **prz_ar; /* Allocate nothing for 0 mem_sz or 0 record_size. */ if (mem_sz == 0 || record_size == 0) { *cnt = 0; return 0; } /* * If we have a negative record size, calculate it based on * mem_sz / *cnt. If we have a positive record size, calculate * cnt from mem_sz / record_size. */ if (record_size < 0) { if (*cnt == 0) return 0; record_size = mem_sz / *cnt; if (record_size == 0) { dev_err(dev, "%s record size == 0 (%zu / %u)\n", name, mem_sz, *cnt); goto fail; } } else { *cnt = mem_sz / record_size; if (*cnt == 0) { dev_err(dev, "%s record count == 0 (%zu / %zu)\n", name, mem_sz, record_size); goto fail; } } if (*paddr + mem_sz - cxt->phys_addr > cxt->size) { dev_err(dev, "no room for %s mem region (0x%zx@0x%llx) in (0x%lx@0x%llx)\n", name, mem_sz, (unsigned long long)*paddr, cxt->size, (unsigned long long)cxt->phys_addr); goto fail; } zone_sz = mem_sz / *cnt; zone_sz = ALIGN_DOWN(zone_sz, 2); if (!zone_sz) { dev_err(dev, "%s zone size == 0\n", name); goto fail; } prz_ar = kcalloc(*cnt, sizeof(**przs), GFP_KERNEL); if (!prz_ar) goto fail; for (i = 0; i < *cnt; i++) { char *label; if (*cnt == 1) label = kasprintf(GFP_KERNEL, "ramoops:%s", name); else label = kasprintf(GFP_KERNEL, "ramoops:%s(%d/%d)", name, i, *cnt - 1); prz_ar[i] = persistent_ram_new(*paddr, zone_sz, sig, &cxt->ecc_info, cxt->memtype, flags, label); kfree(label); if (IS_ERR(prz_ar[i])) { err = PTR_ERR(prz_ar[i]); dev_err(dev, "failed to request %s mem region (0x%zx@0x%llx): %d\n", name, record_size, (unsigned long long)*paddr, err); while (i > 0) { i--; persistent_ram_free(&prz_ar[i]); } kfree(prz_ar); prz_ar = NULL; goto fail; } *paddr += zone_sz; prz_ar[i]->type = pstore_name_to_type(name); } *przs = prz_ar; return 0; fail: *cnt = 0; return err; } static int ramoops_init_prz(const char *name, struct device *dev, struct ramoops_context *cxt, struct persistent_ram_zone **prz, phys_addr_t *paddr, size_t sz, u32 sig) { char *label; if (!sz) return 0; if (*paddr + sz - cxt->phys_addr > cxt->size) { dev_err(dev, "no room for %s mem region (0x%zx@0x%llx) in (0x%lx@0x%llx)\n", name, sz, (unsigned long long)*paddr, cxt->size, (unsigned long long)cxt->phys_addr); return -ENOMEM; } label = kasprintf(GFP_KERNEL, "ramoops:%s", name); *prz = persistent_ram_new(*paddr, sz, sig, &cxt->ecc_info, cxt->memtype, PRZ_FLAG_ZAP_OLD, label); kfree(label); if (IS_ERR(*prz)) { int err = PTR_ERR(*prz); dev_err(dev, "failed to request %s mem region (0x%zx@0x%llx): %d\n", name, sz, (unsigned long long)*paddr, err); return err; } *paddr += sz; (*prz)->type = pstore_name_to_type(name); return 0; } /* Read a u32 from a dt property and make sure it's safe for an int. */ static int ramoops_parse_dt_u32(struct platform_device *pdev, const char *propname, u32 default_value, u32 *value) { u32 val32 = 0; int ret; ret = of_property_read_u32(pdev->dev.of_node, propname, &val32); if (ret == -EINVAL) { /* field is missing, use default value. */ val32 = default_value; } else if (ret < 0) { dev_err(&pdev->dev, "failed to parse property %s: %d\n", propname, ret); return ret; } /* Sanity check our results. */ if (val32 > INT_MAX) { dev_err(&pdev->dev, "%s %u > INT_MAX\n", propname, val32); return -EOVERFLOW; } *value = val32; return 0; } static int ramoops_parse_dt(struct platform_device *pdev, struct ramoops_platform_data *pdata) { struct device_node *of_node = pdev->dev.of_node; struct device_node *parent_node; struct resource *res; u32 value; int ret; dev_dbg(&pdev->dev, "using Device Tree\n"); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) { dev_err(&pdev->dev, "failed to locate DT /reserved-memory resource\n"); return -EINVAL; } pdata->mem_size = resource_size(res); pdata->mem_address = res->start; /* * Setting "unbuffered" is deprecated and will be ignored if * "mem_type" is also specified. */ pdata->mem_type = of_property_read_bool(of_node, "unbuffered"); /* * Setting "no-dump-oops" is deprecated and will be ignored if * "max_reason" is also specified. */ if (of_property_read_bool(of_node, "no-dump-oops")) pdata->max_reason = KMSG_DUMP_PANIC; else pdata->max_reason = KMSG_DUMP_OOPS; #define parse_u32(name, field, default_value) { \ ret = ramoops_parse_dt_u32(pdev, name, default_value, \ &value); \ if (ret < 0) \ return ret; \ field = value; \ } parse_u32("mem-type", pdata->mem_type, pdata->mem_type); parse_u32("record-size", pdata->record_size, 0); parse_u32("console-size", pdata->console_size, 0); parse_u32("ftrace-size", pdata->ftrace_size, 0); parse_u32("pmsg-size", pdata->pmsg_size, 0); parse_u32("ecc-size", pdata->ecc_info.ecc_size, 0); parse_u32("flags", pdata->flags, 0); parse_u32("max-reason", pdata->max_reason, pdata->max_reason); #undef parse_u32 /* * Some old Chromebooks relied on the kernel setting the * console_size and pmsg_size to the record size since that's * what the downstream kernel did. These same Chromebooks had * "ramoops" straight under the root node which isn't * according to the current upstream bindings (though it was * arguably acceptable under a prior version of the bindings). * Let's make those old Chromebooks work by detecting that * we're not a child of "reserved-memory" and mimicking the * expected behavior. */ parent_node = of_get_parent(of_node); if (!of_node_name_eq(parent_node, "reserved-memory") && !pdata->console_size && !pdata->ftrace_size && !pdata->pmsg_size && !pdata->ecc_info.ecc_size) { pdata->console_size = pdata->record_size; pdata->pmsg_size = pdata->record_size; } of_node_put(parent_node); return 0; } static int ramoops_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct ramoops_platform_data *pdata = dev->platform_data; struct ramoops_platform_data pdata_local; struct ramoops_context *cxt = &oops_cxt; size_t dump_mem_sz; phys_addr_t paddr; int err = -EINVAL; /* * Only a single ramoops area allowed at a time, so fail extra * probes. */ if (cxt->max_dump_cnt) { pr_err("already initialized\n"); goto fail_out; } if (dev_of_node(dev) && !pdata) { pdata = &pdata_local; memset(pdata, 0, sizeof(*pdata)); err = ramoops_parse_dt(pdev, pdata); if (err < 0) goto fail_out; } /* Make sure we didn't get bogus platform data pointer. */ if (!pdata) { pr_err("NULL platform data\n"); err = -EINVAL; goto fail_out; } if (!pdata->mem_size || (!pdata->record_size && !pdata->console_size && !pdata->ftrace_size && !pdata->pmsg_size)) { pr_err("The memory size and the record/console size must be " "non-zero\n"); err = -EINVAL; goto fail_out; } if (pdata->record_size && !is_power_of_2(pdata->record_size)) pdata->record_size = rounddown_pow_of_two(pdata->record_size); if (pdata->console_size && !is_power_of_2(pdata->console_size)) pdata->console_size = rounddown_pow_of_two(pdata->console_size); if (pdata->ftrace_size && !is_power_of_2(pdata->ftrace_size)) pdata->ftrace_size = rounddown_pow_of_two(pdata->ftrace_size); if (pdata->pmsg_size && !is_power_of_2(pdata->pmsg_size)) pdata->pmsg_size = rounddown_pow_of_two(pdata->pmsg_size); cxt->size = pdata->mem_size; cxt->phys_addr = pdata->mem_address; cxt->memtype = pdata->mem_type; cxt->record_size = pdata->record_size; cxt->console_size = pdata->console_size; cxt->ftrace_size = pdata->ftrace_size; cxt->pmsg_size = pdata->pmsg_size; cxt->flags = pdata->flags; cxt->ecc_info = pdata->ecc_info; paddr = cxt->phys_addr; dump_mem_sz = cxt->size - cxt->console_size - cxt->ftrace_size - cxt->pmsg_size; err = ramoops_init_przs("dmesg", dev, cxt, &cxt->dprzs, &paddr, dump_mem_sz, cxt->record_size, &cxt->max_dump_cnt, 0, 0); if (err) goto fail_init; err = ramoops_init_prz("console", dev, cxt, &cxt->cprz, &paddr, cxt->console_size, 0); if (err) goto fail_init; err = ramoops_init_prz("pmsg", dev, cxt, &cxt->mprz, &paddr, cxt->pmsg_size, 0); if (err) goto fail_init; cxt->max_ftrace_cnt = (cxt->flags & RAMOOPS_FLAG_FTRACE_PER_CPU) ? nr_cpu_ids : 1; err = ramoops_init_przs("ftrace", dev, cxt, &cxt->fprzs, &paddr, cxt->ftrace_size, -1, &cxt->max_ftrace_cnt, LINUX_VERSION_CODE, (cxt->flags & RAMOOPS_FLAG_FTRACE_PER_CPU) ? PRZ_FLAG_NO_LOCK : 0); if (err) goto fail_init; cxt->pstore.data = cxt; /* * Prepare frontend flags based on which areas are initialized. * For ramoops_init_przs() cases, the "max count" variable tells * if there are regions present. For ramoops_init_prz() cases, * the single region size is how to check. */ cxt->pstore.flags = 0; if (cxt->max_dump_cnt) { cxt->pstore.flags |= PSTORE_FLAGS_DMESG; cxt->pstore.max_reason = pdata->max_reason; } if (cxt->console_size) cxt->pstore.flags |= PSTORE_FLAGS_CONSOLE; if (cxt->max_ftrace_cnt) cxt->pstore.flags |= PSTORE_FLAGS_FTRACE; if (cxt->pmsg_size) cxt->pstore.flags |= PSTORE_FLAGS_PMSG; /* * Since bufsize is only used for dmesg crash dumps, it * must match the size of the dprz record (after PRZ header * and ECC bytes have been accounted for). */ if (cxt->pstore.flags & PSTORE_FLAGS_DMESG) { cxt->pstore.bufsize = cxt->dprzs[0]->buffer_size; cxt->pstore.buf = kvzalloc(cxt->pstore.bufsize, GFP_KERNEL); if (!cxt->pstore.buf) { pr_err("cannot allocate pstore crash dump buffer\n"); err = -ENOMEM; goto fail_clear; } } err = pstore_register(&cxt->pstore); if (err) { pr_err("registering with pstore failed\n"); goto fail_buf; } /* * Update the module parameter variables as well so they are visible * through /sys/module/ramoops/parameters/ */ mem_size = pdata->mem_size; mem_address = pdata->mem_address; record_size = pdata->record_size; ramoops_max_reason = pdata->max_reason; ramoops_console_size = pdata->console_size; ramoops_pmsg_size = pdata->pmsg_size; ramoops_ftrace_size = pdata->ftrace_size; pr_info("using 0x%lx@0x%llx, ecc: %d\n", cxt->size, (unsigned long long)cxt->phys_addr, cxt->ecc_info.ecc_size); return 0; fail_buf: kvfree(cxt->pstore.buf); fail_clear: cxt->pstore.bufsize = 0; fail_init: ramoops_free_przs(cxt); fail_out: return err; } static void ramoops_remove(struct platform_device *pdev) { struct ramoops_context *cxt = &oops_cxt; pstore_unregister(&cxt->pstore); kvfree(cxt->pstore.buf); cxt->pstore.bufsize = 0; ramoops_free_przs(cxt); } static const struct of_device_id dt_match[] = { { .compatible = "ramoops" }, {} }; MODULE_DEVICE_TABLE(of, dt_match); static struct platform_driver ramoops_driver = { .probe = ramoops_probe, .remove = ramoops_remove, .driver = { .name = "ramoops", .of_match_table = dt_match, }, }; static inline void ramoops_unregister_dummy(void) { platform_device_unregister(dummy); dummy = NULL; } static void __init ramoops_register_dummy(void) { struct ramoops_platform_data pdata; if (mem_name) { phys_addr_t start; phys_addr_t size; if (reserve_mem_find_by_name(mem_name, &start, &size)) { mem_address = start; mem_size = size; } } /* * Prepare a dummy platform data structure to carry the module * parameters. If mem_size isn't set, then there are no module * parameters, and we can skip this. */ if (!mem_size) return; pr_info("using module parameters\n"); memset(&pdata, 0, sizeof(pdata)); pdata.mem_size = mem_size; pdata.mem_address = mem_address; pdata.mem_type = mem_type; pdata.record_size = record_size; pdata.console_size = ramoops_console_size; pdata.ftrace_size = ramoops_ftrace_size; pdata.pmsg_size = ramoops_pmsg_size; /* If "max_reason" is set, its value has priority over "dump_oops". */ if (ramoops_max_reason >= 0) pdata.max_reason = ramoops_max_reason; /* Otherwise, if "dump_oops" is set, parse it into "max_reason". */ else if (ramoops_dump_oops != -1) pdata.max_reason = ramoops_dump_oops ? KMSG_DUMP_OOPS : KMSG_DUMP_PANIC; /* And if neither are explicitly set, use the default. */ else pdata.max_reason = KMSG_DUMP_OOPS; pdata.flags = RAMOOPS_FLAG_FTRACE_PER_CPU; /* * For backwards compatibility ramoops.ecc=1 means 16 bytes ECC * (using 1 byte for ECC isn't much of use anyway). */ pdata.ecc_info.ecc_size = ramoops_ecc == 1 ? 16 : ramoops_ecc; dummy = platform_device_register_data(NULL, "ramoops", -1, &pdata, sizeof(pdata)); if (IS_ERR(dummy)) { pr_info("could not create platform device: %ld\n", PTR_ERR(dummy)); dummy = NULL; } } static int __init ramoops_init(void) { int ret; ramoops_register_dummy(); ret = platform_driver_register(&ramoops_driver); if (ret != 0) ramoops_unregister_dummy(); return ret; } postcore_initcall(ramoops_init); static void __exit ramoops_exit(void) { platform_driver_unregister(&ramoops_driver); ramoops_unregister_dummy(); } module_exit(ramoops_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Marco Stornelli "); MODULE_DESCRIPTION("RAM Oops/Panic logger/driver");