/* SPDX-License-Identifier: GPL-2.0-only */ /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com */ #ifndef _LINUX_BPF_H #define _LINUX_BPF_H 1 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct bpf_verifier_env; struct bpf_verifier_log; struct perf_event; struct bpf_prog; struct bpf_prog_aux; struct bpf_map; struct bpf_arena; struct sock; struct seq_file; struct btf; struct btf_type; struct exception_table_entry; struct seq_operations; struct bpf_iter_aux_info; struct bpf_local_storage; struct bpf_local_storage_map; struct kobject; struct mem_cgroup; struct module; struct bpf_func_state; struct ftrace_ops; struct cgroup; struct bpf_token; struct user_namespace; struct super_block; struct inode; extern struct idr btf_idr; extern spinlock_t btf_idr_lock; extern struct kobject *btf_kobj; extern struct bpf_mem_alloc bpf_global_ma, bpf_global_percpu_ma; extern bool bpf_global_ma_set; typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64); typedef int (*bpf_iter_init_seq_priv_t)(void *private_data, struct bpf_iter_aux_info *aux); typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data); typedef unsigned int (*bpf_func_t)(const void *, const struct bpf_insn *); struct bpf_iter_seq_info { const struct seq_operations *seq_ops; bpf_iter_init_seq_priv_t init_seq_private; bpf_iter_fini_seq_priv_t fini_seq_private; u32 seq_priv_size; }; /* map is generic key/value storage optionally accessible by eBPF programs */ struct bpf_map_ops { /* funcs callable from userspace (via syscall) */ int (*map_alloc_check)(union bpf_attr *attr); struct bpf_map *(*map_alloc)(union bpf_attr *attr); void (*map_release)(struct bpf_map *map, struct file *map_file); void (*map_free)(struct bpf_map *map); int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key); void (*map_release_uref)(struct bpf_map *map); void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key); int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr, union bpf_attr __user *uattr); int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key, void *value, u64 flags); int (*map_lookup_and_delete_batch)(struct bpf_map *map, const union bpf_attr *attr, union bpf_attr __user *uattr); int (*map_update_batch)(struct bpf_map *map, struct file *map_file, const union bpf_attr *attr, union bpf_attr __user *uattr); int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr, union bpf_attr __user *uattr); /* funcs callable from userspace and from eBPF programs */ void *(*map_lookup_elem)(struct bpf_map *map, void *key); long (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags); long (*map_delete_elem)(struct bpf_map *map, void *key); long (*map_push_elem)(struct bpf_map *map, void *value, u64 flags); long (*map_pop_elem)(struct bpf_map *map, void *value); long (*map_peek_elem)(struct bpf_map *map, void *value); void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu); /* funcs called by prog_array and perf_event_array map */ void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file, int fd); /* If need_defer is true, the implementation should guarantee that * the to-be-put element is still alive before the bpf program, which * may manipulate it, exists. */ void (*map_fd_put_ptr)(struct bpf_map *map, void *ptr, bool need_defer); int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf); u32 (*map_fd_sys_lookup_elem)(void *ptr); void (*map_seq_show_elem)(struct bpf_map *map, void *key, struct seq_file *m); int (*map_check_btf)(const struct bpf_map *map, const struct btf *btf, const struct btf_type *key_type, const struct btf_type *value_type); /* Prog poke tracking helpers. */ int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux); void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux); void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old, struct bpf_prog *new); /* Direct value access helpers. */ int (*map_direct_value_addr)(const struct bpf_map *map, u64 *imm, u32 off); int (*map_direct_value_meta)(const struct bpf_map *map, u64 imm, u32 *off); int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma); __poll_t (*map_poll)(struct bpf_map *map, struct file *filp, struct poll_table_struct *pts); unsigned long (*map_get_unmapped_area)(struct file *filep, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags); /* Functions called by bpf_local_storage maps */ int (*map_local_storage_charge)(struct bpf_local_storage_map *smap, void *owner, u32 size); void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap, void *owner, u32 size); struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner); /* Misc helpers.*/ long (*map_redirect)(struct bpf_map *map, u64 key, u64 flags); /* map_meta_equal must be implemented for maps that can be * used as an inner map. It is a runtime check to ensure * an inner map can be inserted to an outer map. * * Some properties of the inner map has been used during the * verification time. When inserting an inner map at the runtime, * map_meta_equal has to ensure the inserting map has the same * properties that the verifier has used earlier. */ bool (*map_meta_equal)(const struct bpf_map *meta0, const struct bpf_map *meta1); int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env, struct bpf_func_state *caller, struct bpf_func_state *callee); long (*map_for_each_callback)(struct bpf_map *map, bpf_callback_t callback_fn, void *callback_ctx, u64 flags); u64 (*map_mem_usage)(const struct bpf_map *map); /* BTF id of struct allocated by map_alloc */ int *map_btf_id; /* bpf_iter info used to open a seq_file */ const struct bpf_iter_seq_info *iter_seq_info; }; enum { /* Support at most 11 fields in a BTF type */ BTF_FIELDS_MAX = 11, }; enum btf_field_type { BPF_SPIN_LOCK = (1 << 0), BPF_TIMER = (1 << 1), BPF_KPTR_UNREF = (1 << 2), BPF_KPTR_REF = (1 << 3), BPF_KPTR_PERCPU = (1 << 4), BPF_KPTR = BPF_KPTR_UNREF | BPF_KPTR_REF | BPF_KPTR_PERCPU, BPF_LIST_HEAD = (1 << 5), BPF_LIST_NODE = (1 << 6), BPF_RB_ROOT = (1 << 7), BPF_RB_NODE = (1 << 8), BPF_GRAPH_NODE = BPF_RB_NODE | BPF_LIST_NODE, BPF_GRAPH_ROOT = BPF_RB_ROOT | BPF_LIST_HEAD, BPF_REFCOUNT = (1 << 9), BPF_WORKQUEUE = (1 << 10), BPF_UPTR = (1 << 11), }; typedef void (*btf_dtor_kfunc_t)(void *); struct btf_field_kptr { struct btf *btf; struct module *module; /* dtor used if btf_is_kernel(btf), otherwise the type is * program-allocated, dtor is NULL, and __bpf_obj_drop_impl is used */ btf_dtor_kfunc_t dtor; u32 btf_id; }; struct btf_field_graph_root { struct btf *btf; u32 value_btf_id; u32 node_offset; struct btf_record *value_rec; }; struct btf_field { u32 offset; u32 size; enum btf_field_type type; union { struct btf_field_kptr kptr; struct btf_field_graph_root graph_root; }; }; struct btf_record { u32 cnt; u32 field_mask; int spin_lock_off; int timer_off; int wq_off; int refcount_off; struct btf_field fields[]; }; /* Non-opaque version of bpf_rb_node in uapi/linux/bpf.h */ struct bpf_rb_node_kern { struct rb_node rb_node; void *owner; } __attribute__((aligned(8))); /* Non-opaque version of bpf_list_node in uapi/linux/bpf.h */ struct bpf_list_node_kern { struct list_head list_head; void *owner; } __attribute__((aligned(8))); struct bpf_map { const struct bpf_map_ops *ops; struct bpf_map *inner_map_meta; #ifdef CONFIG_SECURITY void *security; #endif enum bpf_map_type map_type; u32 key_size; u32 value_size; u32 max_entries; u64 map_extra; /* any per-map-type extra fields */ u32 map_flags; u32 id; struct btf_record *record; int numa_node; u32 btf_key_type_id; u32 btf_value_type_id; u32 btf_vmlinux_value_type_id; struct btf *btf; #ifdef CONFIG_MEMCG struct obj_cgroup *objcg; #endif char name[BPF_OBJ_NAME_LEN]; struct mutex freeze_mutex; atomic64_t refcnt; atomic64_t usercnt; /* rcu is used before freeing and work is only used during freeing */ union { struct work_struct work; struct rcu_head rcu; }; atomic64_t writecnt; /* 'Ownership' of program-containing map is claimed by the first program * that is going to use this map or by the first program which FD is * stored in the map to make sure that all callers and callees have the * same prog type, JITed flag and xdp_has_frags flag. */ struct { const struct btf_type *attach_func_proto; spinlock_t lock; enum bpf_prog_type type; bool jited; bool xdp_has_frags; } owner; bool bypass_spec_v1; bool frozen; /* write-once; write-protected by freeze_mutex */ bool free_after_mult_rcu_gp; bool free_after_rcu_gp; atomic64_t sleepable_refcnt; s64 __percpu *elem_count; }; static inline const char *btf_field_type_name(enum btf_field_type type) { switch (type) { case BPF_SPIN_LOCK: return "bpf_spin_lock"; case BPF_TIMER: return "bpf_timer"; case BPF_WORKQUEUE: return "bpf_wq"; case BPF_KPTR_UNREF: case BPF_KPTR_REF: return "kptr"; case BPF_KPTR_PERCPU: return "percpu_kptr"; case BPF_UPTR: return "uptr"; case BPF_LIST_HEAD: return "bpf_list_head"; case BPF_LIST_NODE: return "bpf_list_node"; case BPF_RB_ROOT: return "bpf_rb_root"; case BPF_RB_NODE: return "bpf_rb_node"; case BPF_REFCOUNT: return "bpf_refcount"; default: WARN_ON_ONCE(1); return "unknown"; } } static inline u32 btf_field_type_size(enum btf_field_type type) { switch (type) { case BPF_SPIN_LOCK: return sizeof(struct bpf_spin_lock); case BPF_TIMER: return sizeof(struct bpf_timer); case BPF_WORKQUEUE: return sizeof(struct bpf_wq); case BPF_KPTR_UNREF: case BPF_KPTR_REF: case BPF_KPTR_PERCPU: case BPF_UPTR: return sizeof(u64); case BPF_LIST_HEAD: return sizeof(struct bpf_list_head); case BPF_LIST_NODE: return sizeof(struct bpf_list_node); case BPF_RB_ROOT: return sizeof(struct bpf_rb_root); case BPF_RB_NODE: return sizeof(struct bpf_rb_node); case BPF_REFCOUNT: return sizeof(struct bpf_refcount); default: WARN_ON_ONCE(1); return 0; } } static inline u32 btf_field_type_align(enum btf_field_type type) { switch (type) { case BPF_SPIN_LOCK: return __alignof__(struct bpf_spin_lock); case BPF_TIMER: return __alignof__(struct bpf_timer); case BPF_WORKQUEUE: return __alignof__(struct bpf_wq); case BPF_KPTR_UNREF: case BPF_KPTR_REF: case BPF_KPTR_PERCPU: case BPF_UPTR: return __alignof__(u64); case BPF_LIST_HEAD: return __alignof__(struct bpf_list_head); case BPF_LIST_NODE: return __alignof__(struct bpf_list_node); case BPF_RB_ROOT: return __alignof__(struct bpf_rb_root); case BPF_RB_NODE: return __alignof__(struct bpf_rb_node); case BPF_REFCOUNT: return __alignof__(struct bpf_refcount); default: WARN_ON_ONCE(1); return 0; } } static inline void bpf_obj_init_field(const struct btf_field *field, void *addr) { memset(addr, 0, field->size); switch (field->type) { case BPF_REFCOUNT: refcount_set((refcount_t *)addr, 1); break; case BPF_RB_NODE: RB_CLEAR_NODE((struct rb_node *)addr); break; case BPF_LIST_HEAD: case BPF_LIST_NODE: INIT_LIST_HEAD((struct list_head *)addr); break; case BPF_RB_ROOT: /* RB_ROOT_CACHED 0-inits, no need to do anything after memset */ case BPF_SPIN_LOCK: case BPF_TIMER: case BPF_WORKQUEUE: case BPF_KPTR_UNREF: case BPF_KPTR_REF: case BPF_KPTR_PERCPU: case BPF_UPTR: break; default: WARN_ON_ONCE(1); return; } } static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type) { if (IS_ERR_OR_NULL(rec)) return false; return rec->field_mask & type; } static inline void bpf_obj_init(const struct btf_record *rec, void *obj) { int i; if (IS_ERR_OR_NULL(rec)) return; for (i = 0; i < rec->cnt; i++) bpf_obj_init_field(&rec->fields[i], obj + rec->fields[i].offset); } /* 'dst' must be a temporary buffer and should not point to memory that is being * used in parallel by a bpf program or bpf syscall, otherwise the access from * the bpf program or bpf syscall may be corrupted by the reinitialization, * leading to weird problems. Even 'dst' is newly-allocated from bpf memory * allocator, it is still possible for 'dst' to be used in parallel by a bpf * program or bpf syscall. */ static inline void check_and_init_map_value(struct bpf_map *map, void *dst) { bpf_obj_init(map->record, dst); } /* memcpy that is used with 8-byte aligned pointers, power-of-8 size and * forced to use 'long' read/writes to try to atomically copy long counters. * Best-effort only. No barriers here, since it _will_ race with concurrent * updates from BPF programs. Called from bpf syscall and mostly used with * size 8 or 16 bytes, so ask compiler to inline it. */ static inline void bpf_long_memcpy(void *dst, const void *src, u32 size) { const long *lsrc = src; long *ldst = dst; size /= sizeof(long); while (size--) data_race(*ldst++ = *lsrc++); } /* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */ static inline void bpf_obj_memcpy(struct btf_record *rec, void *dst, void *src, u32 size, bool long_memcpy) { u32 curr_off = 0; int i; if (IS_ERR_OR_NULL(rec)) { if (long_memcpy) bpf_long_memcpy(dst, src, round_up(size, 8)); else memcpy(dst, src, size); return; } for (i = 0; i < rec->cnt; i++) { u32 next_off = rec->fields[i].offset; u32 sz = next_off - curr_off; memcpy(dst + curr_off, src + curr_off, sz); curr_off += rec->fields[i].size + sz; } memcpy(dst + curr_off, src + curr_off, size - curr_off); } static inline void copy_map_value(struct bpf_map *map, void *dst, void *src) { bpf_obj_memcpy(map->record, dst, src, map->value_size, false); } static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src) { bpf_obj_memcpy(map->record, dst, src, map->value_size, true); } static inline void bpf_obj_swap_uptrs(const struct btf_record *rec, void *dst, void *src) { unsigned long *src_uptr, *dst_uptr; const struct btf_field *field; int i; if (!btf_record_has_field(rec, BPF_UPTR)) return; for (i = 0, field = rec->fields; i < rec->cnt; i++, field++) { if (field->type != BPF_UPTR) continue; src_uptr = src + field->offset; dst_uptr = dst + field->offset; swap(*src_uptr, *dst_uptr); } } static inline void bpf_obj_memzero(struct btf_record *rec, void *dst, u32 size) { u32 curr_off = 0; int i; if (IS_ERR_OR_NULL(rec)) { memset(dst, 0, size); return; } for (i = 0; i < rec->cnt; i++) { u32 next_off = rec->fields[i].offset; u32 sz = next_off - curr_off; memset(dst + curr_off, 0, sz); curr_off += rec->fields[i].size + sz; } memset(dst + curr_off, 0, size - curr_off); } static inline void zero_map_value(struct bpf_map *map, void *dst) { bpf_obj_memzero(map->record, dst, map->value_size); } void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, bool lock_src); void bpf_timer_cancel_and_free(void *timer); void bpf_wq_cancel_and_free(void *timer); void bpf_list_head_free(const struct btf_field *field, void *list_head, struct bpf_spin_lock *spin_lock); void bpf_rb_root_free(const struct btf_field *field, void *rb_root, struct bpf_spin_lock *spin_lock); u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena); u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena); int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size); struct bpf_offload_dev; struct bpf_offloaded_map; struct bpf_map_dev_ops { int (*map_get_next_key)(struct bpf_offloaded_map *map, void *key, void *next_key); int (*map_lookup_elem)(struct bpf_offloaded_map *map, void *key, void *value); int (*map_update_elem)(struct bpf_offloaded_map *map, void *key, void *value, u64 flags); int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key); }; struct bpf_offloaded_map { struct bpf_map map; struct net_device *netdev; const struct bpf_map_dev_ops *dev_ops; void *dev_priv; struct list_head offloads; }; static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map) { return container_of(map, struct bpf_offloaded_map, map); } static inline bool bpf_map_offload_neutral(const struct bpf_map *map) { return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; } static inline bool bpf_map_support_seq_show(const struct bpf_map *map) { return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) && map->ops->map_seq_show_elem; } int map_check_no_btf(const struct bpf_map *map, const struct btf *btf, const struct btf_type *key_type, const struct btf_type *value_type); bool bpf_map_meta_equal(const struct bpf_map *meta0, const struct bpf_map *meta1); extern const struct bpf_map_ops bpf_map_offload_ops; /* bpf_type_flag contains a set of flags that are applicable to the values of * arg_type, ret_type and reg_type. For example, a pointer value may be null, * or a memory is read-only. We classify types into two categories: base types * and extended types. Extended types are base types combined with a type flag. * * Currently there are no more than 32 base types in arg_type, ret_type and * reg_types. */ #define BPF_BASE_TYPE_BITS 8 enum bpf_type_flag { /* PTR may be NULL. */ PTR_MAYBE_NULL = BIT(0 + BPF_BASE_TYPE_BITS), /* MEM is read-only. When applied on bpf_arg, it indicates the arg is * compatible with both mutable and immutable memory. */ MEM_RDONLY = BIT(1 + BPF_BASE_TYPE_BITS), /* MEM points to BPF ring buffer reservation. */ MEM_RINGBUF = BIT(2 + BPF_BASE_TYPE_BITS), /* MEM is in user address space. */ MEM_USER = BIT(3 + BPF_BASE_TYPE_BITS), /* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In * order to drop this tag, it must be passed into bpf_per_cpu_ptr() * or bpf_this_cpu_ptr(), which will return the pointer corresponding * to the specified cpu. */ MEM_PERCPU = BIT(4 + BPF_BASE_TYPE_BITS), /* Indicates that the argument will be released. */ OBJ_RELEASE = BIT(5 + BPF_BASE_TYPE_BITS), /* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark * unreferenced and referenced kptr loaded from map value using a load * instruction, so that they can only be dereferenced but not escape the * BPF program into the kernel (i.e. cannot be passed as arguments to * kfunc or bpf helpers). */ PTR_UNTRUSTED = BIT(6 + BPF_BASE_TYPE_BITS), /* MEM can be uninitialized. */ MEM_UNINIT = BIT(7 + BPF_BASE_TYPE_BITS), /* DYNPTR points to memory local to the bpf program. */ DYNPTR_TYPE_LOCAL = BIT(8 + BPF_BASE_TYPE_BITS), /* DYNPTR points to a kernel-produced ringbuf record. */ DYNPTR_TYPE_RINGBUF = BIT(9 + BPF_BASE_TYPE_BITS), /* Size is known at compile time. */ MEM_FIXED_SIZE = BIT(10 + BPF_BASE_TYPE_BITS), /* MEM is of an allocated object of type in program BTF. This is used to * tag PTR_TO_BTF_ID allocated using bpf_obj_new. */ MEM_ALLOC = BIT(11 + BPF_BASE_TYPE_BITS), /* PTR was passed from the kernel in a trusted context, and may be * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions. * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above. * PTR_UNTRUSTED refers to a kptr that was read directly from a map * without invoking bpf_kptr_xchg(). What we really need to know is * whether a pointer is safe to pass to a kfunc or BPF helper function. * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF * helpers, they do not cover all possible instances of unsafe * pointers. For example, a pointer that was obtained from walking a * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the * fact that it may be NULL, invalid, etc. This is due to backwards * compatibility requirements, as this was the behavior that was first * introduced when kptrs were added. The behavior is now considered * deprecated, and PTR_UNTRUSTED will eventually be removed. * * PTR_TRUSTED, on the other hand, is a pointer that the kernel * guarantees to be valid and safe to pass to kfuncs and BPF helpers. * For example, pointers passed to tracepoint arguments are considered * PTR_TRUSTED, as are pointers that are passed to struct_ops * callbacks. As alluded to above, pointers that are obtained from * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a * struct task_struct *task is PTR_TRUSTED, then accessing * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored * in a BPF register. Similarly, pointers passed to certain programs * types such as kretprobes are not guaranteed to be valid, as they may * for example contain an object that was recently freed. */ PTR_TRUSTED = BIT(12 + BPF_BASE_TYPE_BITS), /* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */ MEM_RCU = BIT(13 + BPF_BASE_TYPE_BITS), /* Used to tag PTR_TO_BTF_ID | MEM_ALLOC references which are non-owning. * Currently only valid for linked-list and rbtree nodes. If the nodes * have a bpf_refcount_field, they must be tagged MEM_RCU as well. */ NON_OWN_REF = BIT(14 + BPF_BASE_TYPE_BITS), /* DYNPTR points to sk_buff */ DYNPTR_TYPE_SKB = BIT(15 + BPF_BASE_TYPE_BITS), /* DYNPTR points to xdp_buff */ DYNPTR_TYPE_XDP = BIT(16 + BPF_BASE_TYPE_BITS), /* Memory must be aligned on some architectures, used in combination with * MEM_FIXED_SIZE. */ MEM_ALIGNED = BIT(17 + BPF_BASE_TYPE_BITS), /* MEM is being written to, often combined with MEM_UNINIT. Non-presence * of MEM_WRITE means that MEM is only being read. MEM_WRITE without the * MEM_UNINIT means that memory needs to be initialized since it is also * read. */ MEM_WRITE = BIT(18 + BPF_BASE_TYPE_BITS), __BPF_TYPE_FLAG_MAX, __BPF_TYPE_LAST_FLAG = __BPF_TYPE_FLAG_MAX - 1, }; #define DYNPTR_TYPE_FLAG_MASK (DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF | DYNPTR_TYPE_SKB \ | DYNPTR_TYPE_XDP) /* Max number of base types. */ #define BPF_BASE_TYPE_LIMIT (1UL << BPF_BASE_TYPE_BITS) /* Max number of all types. */ #define BPF_TYPE_LIMIT (__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1)) /* function argument constraints */ enum bpf_arg_type { ARG_DONTCARE = 0, /* unused argument in helper function */ /* the following constraints used to prototype * bpf_map_lookup/update/delete_elem() functions */ ARG_CONST_MAP_PTR, /* const argument used as pointer to bpf_map */ ARG_PTR_TO_MAP_KEY, /* pointer to stack used as map key */ ARG_PTR_TO_MAP_VALUE, /* pointer to stack used as map value */ /* Used to prototype bpf_memcmp() and other functions that access data * on eBPF program stack */ ARG_PTR_TO_MEM, /* pointer to valid memory (stack, packet, map value) */ ARG_PTR_TO_ARENA, ARG_CONST_SIZE, /* number of bytes accessed from memory */ ARG_CONST_SIZE_OR_ZERO, /* number of bytes accessed from memory or 0 */ ARG_PTR_TO_CTX, /* pointer to context */ ARG_ANYTHING, /* any (initialized) argument is ok */ ARG_PTR_TO_SPIN_LOCK, /* pointer to bpf_spin_lock */ ARG_PTR_TO_SOCK_COMMON, /* pointer to sock_common */ ARG_PTR_TO_SOCKET, /* pointer to bpf_sock (fullsock) */ ARG_PTR_TO_BTF_ID, /* pointer to in-kernel struct */ ARG_PTR_TO_RINGBUF_MEM, /* pointer to dynamically reserved ringbuf memory */ ARG_CONST_ALLOC_SIZE_OR_ZERO, /* number of allocated bytes requested */ ARG_PTR_TO_BTF_ID_SOCK_COMMON, /* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */ ARG_PTR_TO_PERCPU_BTF_ID, /* pointer to in-kernel percpu type */ ARG_PTR_TO_FUNC, /* pointer to a bpf program function */ ARG_PTR_TO_STACK, /* pointer to stack */ ARG_PTR_TO_CONST_STR, /* pointer to a null terminated read-only string */ ARG_PTR_TO_TIMER, /* pointer to bpf_timer */ ARG_KPTR_XCHG_DEST, /* pointer to destination that kptrs are bpf_kptr_xchg'd into */ ARG_PTR_TO_DYNPTR, /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */ __BPF_ARG_TYPE_MAX, /* Extended arg_types. */ ARG_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE, ARG_PTR_TO_MEM_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MEM, ARG_PTR_TO_CTX_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_CTX, ARG_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET, ARG_PTR_TO_STACK_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_STACK, ARG_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID, /* Pointer to memory does not need to be initialized, since helper function * fills all bytes or clears them in error case. */ ARG_PTR_TO_UNINIT_MEM = MEM_UNINIT | MEM_WRITE | ARG_PTR_TO_MEM, /* Pointer to valid memory of size known at compile time. */ ARG_PTR_TO_FIXED_SIZE_MEM = MEM_FIXED_SIZE | ARG_PTR_TO_MEM, /* This must be the last entry. Its purpose is to ensure the enum is * wide enough to hold the higher bits reserved for bpf_type_flag. */ __BPF_ARG_TYPE_LIMIT = BPF_TYPE_LIMIT, }; static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); /* type of values returned from helper functions */ enum bpf_return_type { RET_INTEGER, /* function returns integer */ RET_VOID, /* function doesn't return anything */ RET_PTR_TO_MAP_VALUE, /* returns a pointer to map elem value */ RET_PTR_TO_SOCKET, /* returns a pointer to a socket */ RET_PTR_TO_TCP_SOCK, /* returns a pointer to a tcp_sock */ RET_PTR_TO_SOCK_COMMON, /* returns a pointer to a sock_common */ RET_PTR_TO_MEM, /* returns a pointer to memory */ RET_PTR_TO_MEM_OR_BTF_ID, /* returns a pointer to a valid memory or a btf_id */ RET_PTR_TO_BTF_ID, /* returns a pointer to a btf_id */ __BPF_RET_TYPE_MAX, /* Extended ret_types. */ RET_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE, RET_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCKET, RET_PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK, RET_PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON, RET_PTR_TO_RINGBUF_MEM_OR_NULL = PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM, RET_PTR_TO_DYNPTR_MEM_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MEM, RET_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID, RET_PTR_TO_BTF_ID_TRUSTED = PTR_TRUSTED | RET_PTR_TO_BTF_ID, /* This must be the last entry. Its purpose is to ensure the enum is * wide enough to hold the higher bits reserved for bpf_type_flag. */ __BPF_RET_TYPE_LIMIT = BPF_TYPE_LIMIT, }; static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); /* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL * instructions after verifying */ struct bpf_func_proto { u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); bool gpl_only; bool pkt_access; bool might_sleep; /* set to true if helper follows contract for llvm * attribute bpf_fastcall: * - void functions do not scratch r0 * - functions taking N arguments scratch only registers r1-rN */ bool allow_fastcall; enum bpf_return_type ret_type; union { struct { enum bpf_arg_type arg1_type; enum bpf_arg_type arg2_type; enum bpf_arg_type arg3_type; enum bpf_arg_type arg4_type; enum bpf_arg_type arg5_type; }; enum bpf_arg_type arg_type[5]; }; union { struct { u32 *arg1_btf_id; u32 *arg2_btf_id; u32 *arg3_btf_id; u32 *arg4_btf_id; u32 *arg5_btf_id; }; u32 *arg_btf_id[5]; struct { size_t arg1_size; size_t arg2_size; size_t arg3_size; size_t arg4_size; size_t arg5_size; }; size_t arg_size[5]; }; int *ret_btf_id; /* return value btf_id */ bool (*allowed)(const struct bpf_prog *prog); }; /* bpf_context is intentionally undefined structure. Pointer to bpf_context is * the first argument to eBPF programs. * For socket filters: 'struct bpf_context *' == 'struct sk_buff *' */ struct bpf_context; enum bpf_access_type { BPF_READ = 1, BPF_WRITE = 2 }; /* types of values stored in eBPF registers */ /* Pointer types represent: * pointer * pointer + imm * pointer + (u16) var * pointer + (u16) var + imm * if (range > 0) then [ptr, ptr + range - off) is safe to access * if (id > 0) means that some 'var' was added * if (off > 0) means that 'imm' was added */ enum bpf_reg_type { NOT_INIT = 0, /* nothing was written into register */ SCALAR_VALUE, /* reg doesn't contain a valid pointer */ PTR_TO_CTX, /* reg points to bpf_context */ CONST_PTR_TO_MAP, /* reg points to struct bpf_map */ PTR_TO_MAP_VALUE, /* reg points to map element value */ PTR_TO_MAP_KEY, /* reg points to a map element key */ PTR_TO_STACK, /* reg == frame_pointer + offset */ PTR_TO_PACKET_META, /* skb->data - meta_len */ PTR_TO_PACKET, /* reg points to skb->data */ PTR_TO_PACKET_END, /* skb->data + headlen */ PTR_TO_FLOW_KEYS, /* reg points to bpf_flow_keys */ PTR_TO_SOCKET, /* reg points to struct bpf_sock */ PTR_TO_SOCK_COMMON, /* reg points to sock_common */ PTR_TO_TCP_SOCK, /* reg points to struct tcp_sock */ PTR_TO_TP_BUFFER, /* reg points to a writable raw tp's buffer */ PTR_TO_XDP_SOCK, /* reg points to struct xdp_sock */ /* PTR_TO_BTF_ID points to a kernel struct that does not need * to be null checked by the BPF program. This does not imply the * pointer is _not_ null and in practice this can easily be a null * pointer when reading pointer chains. The assumption is program * context will handle null pointer dereference typically via fault * handling. The verifier must keep this in mind and can make no * assumptions about null or non-null when doing branch analysis. * Further, when passed into helpers the helpers can not, without * additional context, assume the value is non-null. */ PTR_TO_BTF_ID, PTR_TO_MEM, /* reg points to valid memory region */ PTR_TO_ARENA, PTR_TO_BUF, /* reg points to a read/write buffer */ PTR_TO_FUNC, /* reg points to a bpf program function */ CONST_PTR_TO_DYNPTR, /* reg points to a const struct bpf_dynptr */ __BPF_REG_TYPE_MAX, /* Extended reg_types. */ PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCKET, PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON, PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | PTR_TO_TCP_SOCK, /* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not * been checked for null. Used primarily to inform the verifier * an explicit null check is required for this struct. */ PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | PTR_TO_BTF_ID, /* This must be the last entry. Its purpose is to ensure the enum is * wide enough to hold the higher bits reserved for bpf_type_flag. */ __BPF_REG_TYPE_LIMIT = BPF_TYPE_LIMIT, }; static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); /* The information passed from prog-specific *_is_valid_access * back to the verifier. */ struct bpf_insn_access_aux { enum bpf_reg_type reg_type; bool is_ldsx; union { int ctx_field_size; struct { struct btf *btf; u32 btf_id; }; }; struct bpf_verifier_log *log; /* for verbose logs */ bool is_retval; /* is accessing function return value ? */ }; static inline void bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size) { aux->ctx_field_size = size; } static bool bpf_is_ldimm64(const struct bpf_insn *insn) { return insn->code == (BPF_LD | BPF_IMM | BPF_DW); } static inline bool bpf_pseudo_func(const struct bpf_insn *insn) { return bpf_is_ldimm64(insn) && insn->src_reg == BPF_PSEUDO_FUNC; } struct bpf_prog_ops { int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr, union bpf_attr __user *uattr); }; struct bpf_reg_state; struct bpf_verifier_ops { /* return eBPF function prototype for verification */ const struct bpf_func_proto * (*get_func_proto)(enum bpf_func_id func_id, const struct bpf_prog *prog); /* return true if 'size' wide access at offset 'off' within bpf_context * with 'type' (read or write) is allowed */ bool (*is_valid_access)(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info); int (*gen_prologue)(struct bpf_insn *insn, bool direct_write, const struct bpf_prog *prog); int (*gen_epilogue)(struct bpf_insn *insn, const struct bpf_prog *prog, s16 ctx_stack_off); int (*gen_ld_abs)(const struct bpf_insn *orig, struct bpf_insn *insn_buf); u32 (*convert_ctx_access)(enum bpf_access_type type, const struct bpf_insn *src, struct bpf_insn *dst, struct bpf_prog *prog, u32 *target_size); int (*btf_struct_access)(struct bpf_verifier_log *log, const struct bpf_reg_state *reg, int off, int size); }; struct bpf_prog_offload_ops { /* verifier basic callbacks */ int (*insn_hook)(struct bpf_verifier_env *env, int insn_idx, int prev_insn_idx); int (*finalize)(struct bpf_verifier_env *env); /* verifier optimization callbacks (called after .finalize) */ int (*replace_insn)(struct bpf_verifier_env *env, u32 off, struct bpf_insn *insn); int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt); /* program management callbacks */ int (*prepare)(struct bpf_prog *prog); int (*translate)(struct bpf_prog *prog); void (*destroy)(struct bpf_prog *prog); }; struct bpf_prog_offload { struct bpf_prog *prog; struct net_device *netdev; struct bpf_offload_dev *offdev; void *dev_priv; struct list_head offloads; bool dev_state; bool opt_failed; void *jited_image; u32 jited_len; }; enum bpf_cgroup_storage_type { BPF_CGROUP_STORAGE_SHARED, BPF_CGROUP_STORAGE_PERCPU, __BPF_CGROUP_STORAGE_MAX }; #define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX /* The longest tracepoint has 12 args. * See include/trace/bpf_probe.h */ #define MAX_BPF_FUNC_ARGS 12 /* The maximum number of arguments passed through registers * a single function may have. */ #define MAX_BPF_FUNC_REG_ARGS 5 /* The argument is a structure. */ #define BTF_FMODEL_STRUCT_ARG BIT(0) /* The argument is signed. */ #define BTF_FMODEL_SIGNED_ARG BIT(1) struct btf_func_model { u8 ret_size; u8 ret_flags; u8 nr_args; u8 arg_size[MAX_BPF_FUNC_ARGS]; u8 arg_flags[MAX_BPF_FUNC_ARGS]; }; /* Restore arguments before returning from trampoline to let original function * continue executing. This flag is used for fentry progs when there are no * fexit progs. */ #define BPF_TRAMP_F_RESTORE_REGS BIT(0) /* Call original function after fentry progs, but before fexit progs. * Makes sense for fentry/fexit, normal calls and indirect calls. */ #define BPF_TRAMP_F_CALL_ORIG BIT(1) /* Skip current frame and return to parent. Makes sense for fentry/fexit * programs only. Should not be used with normal calls and indirect calls. */ #define BPF_TRAMP_F_SKIP_FRAME BIT(2) /* Store IP address of the caller on the trampoline stack, * so it's available for trampoline's programs. */ #define BPF_TRAMP_F_IP_ARG BIT(3) /* Return the return value of fentry prog. Only used by bpf_struct_ops. */ #define BPF_TRAMP_F_RET_FENTRY_RET BIT(4) /* Get original function from stack instead of from provided direct address. * Makes sense for trampolines with fexit or fmod_ret programs. */ #define BPF_TRAMP_F_ORIG_STACK BIT(5) /* This trampoline is on a function with another ftrace_ops with IPMODIFY, * e.g., a live patch. This flag is set and cleared by ftrace call backs, */ #define BPF_TRAMP_F_SHARE_IPMODIFY BIT(6) /* Indicate that current trampoline is in a tail call context. Then, it has to * cache and restore tail_call_cnt to avoid infinite tail call loop. */ #define BPF_TRAMP_F_TAIL_CALL_CTX BIT(7) /* * Indicate the trampoline should be suitable to receive indirect calls; * without this indirectly calling the generated code can result in #UD/#CP, * depending on the CFI options. * * Used by bpf_struct_ops. * * Incompatible with FENTRY usage, overloads @func_addr argument. */ #define BPF_TRAMP_F_INDIRECT BIT(8) /* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50 * bytes on x86. */ enum { #if defined(__s390x__) BPF_MAX_TRAMP_LINKS = 27, #else BPF_MAX_TRAMP_LINKS = 38, #endif }; struct bpf_tramp_links { struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS]; int nr_links; }; struct bpf_tramp_run_ctx; /* Different use cases for BPF trampoline: * 1. replace nop at the function entry (kprobe equivalent) * flags = BPF_TRAMP_F_RESTORE_REGS * fentry = a set of programs to run before returning from trampoline * * 2. replace nop at the function entry (kprobe + kretprobe equivalent) * flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME * orig_call = fentry_ip + MCOUNT_INSN_SIZE * fentry = a set of program to run before calling original function * fexit = a set of program to run after original function * * 3. replace direct call instruction anywhere in the function body * or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid) * With flags = 0 * fentry = a set of programs to run before returning from trampoline * With flags = BPF_TRAMP_F_CALL_ORIG * orig_call = original callback addr or direct function addr * fentry = a set of program to run before calling original function * fexit = a set of program to run after original function */ struct bpf_tramp_image; int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end, const struct btf_func_model *m, u32 flags, struct bpf_tramp_links *tlinks, void *func_addr); void *arch_alloc_bpf_trampoline(unsigned int size); void arch_free_bpf_trampoline(void *image, unsigned int size); int __must_check arch_protect_bpf_trampoline(void *image, unsigned int size); int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags, struct bpf_tramp_links *tlinks, void *func_addr); u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog, struct bpf_tramp_run_ctx *run_ctx); void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start, struct bpf_tramp_run_ctx *run_ctx); void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr); void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr); typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog, struct bpf_tramp_run_ctx *run_ctx); typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start, struct bpf_tramp_run_ctx *run_ctx); bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog); bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog); struct bpf_ksym { unsigned long start; unsigned long end; char name[KSYM_NAME_LEN]; struct list_head lnode; struct latch_tree_node tnode; bool prog; }; enum bpf_tramp_prog_type { BPF_TRAMP_FENTRY, BPF_TRAMP_FEXIT, BPF_TRAMP_MODIFY_RETURN, BPF_TRAMP_MAX, BPF_TRAMP_REPLACE, /* more than MAX */ }; struct bpf_tramp_image { void *image; int size; struct bpf_ksym ksym; struct percpu_ref pcref; void *ip_after_call; void *ip_epilogue; union { struct rcu_head rcu; struct work_struct work; }; }; struct bpf_trampoline { /* hlist for trampoline_table */ struct hlist_node hlist; struct ftrace_ops *fops; /* serializes access to fields of this trampoline */ struct mutex mutex; refcount_t refcnt; u32 flags; u64 key; struct { struct btf_func_model model; void *addr; bool ftrace_managed; } func; /* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF * program by replacing one of its functions. func.addr is the address * of the function it replaced. */ struct bpf_prog *extension_prog; /* list of BPF programs using this trampoline */ struct hlist_head progs_hlist[BPF_TRAMP_MAX]; /* Number of attached programs. A counter per kind. */ int progs_cnt[BPF_TRAMP_MAX]; /* Executable image of trampoline */ struct bpf_tramp_image *cur_image; }; struct bpf_attach_target_info { struct btf_func_model fmodel; long tgt_addr; struct module *tgt_mod; const char *tgt_name; const struct btf_type *tgt_type; }; #define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */ struct bpf_dispatcher_prog { struct bpf_prog *prog; refcount_t users; }; struct bpf_dispatcher { /* dispatcher mutex */ struct mutex mutex; void *func; struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX]; int num_progs; void *image; void *rw_image; u32 image_off; struct bpf_ksym ksym; #ifdef CONFIG_HAVE_STATIC_CALL struct static_call_key *sc_key; void *sc_tramp; #endif }; #ifndef __bpfcall #define __bpfcall __nocfi #endif static __always_inline __bpfcall unsigned int bpf_dispatcher_nop_func( const void *ctx, const struct bpf_insn *insnsi, bpf_func_t bpf_func) { return bpf_func(ctx, insnsi); } /* the implementation of the opaque uapi struct bpf_dynptr */ struct bpf_dynptr_kern { void *data; /* Size represents the number of usable bytes of dynptr data. * If for example the offset is at 4 for a local dynptr whose data is * of type u64, the number of usable bytes is 4. * * The upper 8 bits are reserved. It is as follows: * Bits 0 - 23 = size * Bits 24 - 30 = dynptr type * Bit 31 = whether dynptr is read-only */ u32 size; u32 offset; } __aligned(8); enum bpf_dynptr_type { BPF_DYNPTR_TYPE_INVALID, /* Points to memory that is local to the bpf program */ BPF_DYNPTR_TYPE_LOCAL, /* Underlying data is a ringbuf record */ BPF_DYNPTR_TYPE_RINGBUF, /* Underlying data is a sk_buff */ BPF_DYNPTR_TYPE_SKB, /* Underlying data is a xdp_buff */ BPF_DYNPTR_TYPE_XDP, }; int bpf_dynptr_check_size(u32 size); u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr); const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len); void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len); bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr); #ifdef CONFIG_BPF_JIT int bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr, struct bpf_prog *tgt_prog); int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr, struct bpf_prog *tgt_prog); struct bpf_trampoline *bpf_trampoline_get(u64 key, struct bpf_attach_target_info *tgt_info); void bpf_trampoline_put(struct bpf_trampoline *tr); int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs); /* * When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn * indirection with a direct call to the bpf program. If the architecture does * not have STATIC_CALL, avoid a double-indirection. */ #ifdef CONFIG_HAVE_STATIC_CALL #define __BPF_DISPATCHER_SC_INIT(_name) \ .sc_key = &STATIC_CALL_KEY(_name), \ .sc_tramp = STATIC_CALL_TRAMP_ADDR(_name), #define __BPF_DISPATCHER_SC(name) \ DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func) #define __BPF_DISPATCHER_CALL(name) \ static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func) #define __BPF_DISPATCHER_UPDATE(_d, _new) \ __static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new)) #else #define __BPF_DISPATCHER_SC_INIT(name) #define __BPF_DISPATCHER_SC(name) #define __BPF_DISPATCHER_CALL(name) bpf_func(ctx, insnsi) #define __BPF_DISPATCHER_UPDATE(_d, _new) #endif #define BPF_DISPATCHER_INIT(_name) { \ .mutex = __MUTEX_INITIALIZER(_name.mutex), \ .func = &_name##_func, \ .progs = {}, \ .num_progs = 0, \ .image = NULL, \ .image_off = 0, \ .ksym = { \ .name = #_name, \ .lnode = LIST_HEAD_INIT(_name.ksym.lnode), \ }, \ __BPF_DISPATCHER_SC_INIT(_name##_call) \ } #define DEFINE_BPF_DISPATCHER(name) \ __BPF_DISPATCHER_SC(name); \ noinline __bpfcall unsigned int bpf_dispatcher_##name##_func( \ const void *ctx, \ const struct bpf_insn *insnsi, \ bpf_func_t bpf_func) \ { \ return __BPF_DISPATCHER_CALL(name); \ } \ EXPORT_SYMBOL(bpf_dispatcher_##name##_func); \ struct bpf_dispatcher bpf_dispatcher_##name = \ BPF_DISPATCHER_INIT(bpf_dispatcher_##name); #define DECLARE_BPF_DISPATCHER(name) \ unsigned int bpf_dispatcher_##name##_func( \ const void *ctx, \ const struct bpf_insn *insnsi, \ bpf_func_t bpf_func); \ extern struct bpf_dispatcher bpf_dispatcher_##name; #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func #define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name) void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from, struct bpf_prog *to); /* Called only from JIT-enabled code, so there's no need for stubs. */ void bpf_image_ksym_init(void *data, unsigned int size, struct bpf_ksym *ksym); void bpf_image_ksym_add(struct bpf_ksym *ksym); void bpf_image_ksym_del(struct bpf_ksym *ksym); void bpf_ksym_add(struct bpf_ksym *ksym); void bpf_ksym_del(struct bpf_ksym *ksym); int bpf_jit_charge_modmem(u32 size); void bpf_jit_uncharge_modmem(u32 size); bool bpf_prog_has_trampoline(const struct bpf_prog *prog); #else static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr, struct bpf_prog *tgt_prog) { return -ENOTSUPP; } static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr, struct bpf_prog *tgt_prog) { return -ENOTSUPP; } static inline struct bpf_trampoline *bpf_trampoline_get(u64 key, struct bpf_attach_target_info *tgt_info) { return NULL; } static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {} #define DEFINE_BPF_DISPATCHER(name) #define DECLARE_BPF_DISPATCHER(name) #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func #define BPF_DISPATCHER_PTR(name) NULL static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from, struct bpf_prog *to) {} static inline bool is_bpf_image_address(unsigned long address) { return false; } static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog) { return false; } #endif struct bpf_func_info_aux { u16 linkage; bool unreliable; bool called : 1; bool verified : 1; }; enum bpf_jit_poke_reason { BPF_POKE_REASON_TAIL_CALL, }; /* Descriptor of pokes pointing /into/ the JITed image. */ struct bpf_jit_poke_descriptor { void *tailcall_target; void *tailcall_bypass; void *bypass_addr; void *aux; union { struct { struct bpf_map *map; u32 key; } tail_call; }; bool tailcall_target_stable; u8 adj_off; u16 reason; u32 insn_idx; }; /* reg_type info for ctx arguments */ struct bpf_ctx_arg_aux { u32 offset; enum bpf_reg_type reg_type; struct btf *btf; u32 btf_id; }; struct btf_mod_pair { struct btf *btf; struct module *module; }; struct bpf_kfunc_desc_tab; struct bpf_prog_aux { atomic64_t refcnt; u32 used_map_cnt; u32 used_btf_cnt; u32 max_ctx_offset; u32 max_pkt_offset; u32 max_tp_access; u32 stack_depth; u32 id; u32 func_cnt; /* used by non-func prog as the number of func progs */ u32 real_func_cnt; /* includes hidden progs, only used for JIT and freeing progs */ u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */ u32 attach_btf_id; /* in-kernel BTF type id to attach to */ u32 ctx_arg_info_size; u32 max_rdonly_access; u32 max_rdwr_access; struct btf *attach_btf; const struct bpf_ctx_arg_aux *ctx_arg_info; void __percpu *priv_stack_ptr; struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */ struct bpf_prog *dst_prog; struct bpf_trampoline *dst_trampoline; enum bpf_prog_type saved_dst_prog_type; enum bpf_attach_type saved_dst_attach_type; bool verifier_zext; /* Zero extensions has been inserted by verifier. */ bool dev_bound; /* Program is bound to the netdev. */ bool offload_requested; /* Program is bound and offloaded to the netdev. */ bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */ bool attach_tracing_prog; /* true if tracing another tracing program */ bool func_proto_unreliable; bool tail_call_reachable; bool xdp_has_frags; bool exception_cb; bool exception_boundary; bool is_extended; /* true if extended by freplace program */ bool jits_use_priv_stack; bool priv_stack_requested; bool changes_pkt_data; u64 prog_array_member_cnt; /* counts how many times as member of prog_array */ struct mutex ext_mutex; /* mutex for is_extended and prog_array_member_cnt */ struct bpf_arena *arena; void (*recursion_detected)(struct bpf_prog *prog); /* callback if recursion is detected */ /* BTF_KIND_FUNC_PROTO for valid attach_btf_id */ const struct btf_type *attach_func_proto; /* function name for valid attach_btf_id */ const char *attach_func_name; struct bpf_prog **func; void *jit_data; /* JIT specific data. arch dependent */ struct bpf_jit_poke_descriptor *poke_tab; struct bpf_kfunc_desc_tab *kfunc_tab; struct bpf_kfunc_btf_tab *kfunc_btf_tab; u32 size_poke_tab; #ifdef CONFIG_FINEIBT struct bpf_ksym ksym_prefix; #endif struct bpf_ksym ksym; const struct bpf_prog_ops *ops; struct bpf_map **used_maps; struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */ struct btf_mod_pair *used_btfs; struct bpf_prog *prog; struct user_struct *user; u64 load_time; /* ns since boottime */ u32 verified_insns; int cgroup_atype; /* enum cgroup_bpf_attach_type */ struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]; char name[BPF_OBJ_NAME_LEN]; u64 (*bpf_exception_cb)(u64 cookie, u64 sp, u64 bp, u64, u64); #ifdef CONFIG_SECURITY void *security; #endif struct bpf_token *token; struct bpf_prog_offload *offload; struct btf *btf; struct bpf_func_info *func_info; struct bpf_func_info_aux *func_info_aux; /* bpf_line_info loaded from userspace. linfo->insn_off * has the xlated insn offset. * Both the main and sub prog share the same linfo. * The subprog can access its first linfo by * using the linfo_idx. */ struct bpf_line_info *linfo; /* jited_linfo is the jited addr of the linfo. It has a * one to one mapping to linfo: * jited_linfo[i] is the jited addr for the linfo[i]->insn_off. * Both the main and sub prog share the same jited_linfo. * The subprog can access its first jited_linfo by * using the linfo_idx. */ void **jited_linfo; u32 func_info_cnt; u32 nr_linfo; /* subprog can use linfo_idx to access its first linfo and * jited_linfo. * main prog always has linfo_idx == 0 */ u32 linfo_idx; struct module *mod; u32 num_exentries; struct exception_table_entry *extable; union { struct work_struct work; struct rcu_head rcu; }; }; struct bpf_prog { u16 pages; /* Number of allocated pages */ u16 jited:1, /* Is our filter JIT'ed? */ jit_requested:1,/* archs need to JIT the prog */ gpl_compatible:1, /* Is filter GPL compatible? */ cb_access:1, /* Is control block accessed? */ dst_needed:1, /* Do we need dst entry? */ blinding_requested:1, /* needs constant blinding */ blinded:1, /* Was blinded */ is_func:1, /* program is a bpf function */ kprobe_override:1, /* Do we override a kprobe? */ has_callchain_buf:1, /* callchain buffer allocated? */ enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */ call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */ call_get_func_ip:1, /* Do we call get_func_ip() */ tstamp_type_access:1, /* Accessed __sk_buff->tstamp_type */ sleepable:1; /* BPF program is sleepable */ enum bpf_prog_type type; /* Type of BPF program */ enum bpf_attach_type expected_attach_type; /* For some prog types */ u32 len; /* Number of filter blocks */ u32 jited_len; /* Size of jited insns in bytes */ u8 tag[BPF_TAG_SIZE]; struct bpf_prog_stats __percpu *stats; int __percpu *active; unsigned int (*bpf_func)(const void *ctx, const struct bpf_insn *insn); struct bpf_prog_aux *aux; /* Auxiliary fields */ struct sock_fprog_kern *orig_prog; /* Original BPF program */ /* Instructions for interpreter */ union { DECLARE_FLEX_ARRAY(struct sock_filter, insns); DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi); }; }; struct bpf_array_aux { /* Programs with direct jumps into programs part of this array. */ struct list_head poke_progs; struct bpf_map *map; struct mutex poke_mutex; struct work_struct work; }; struct bpf_link { atomic64_t refcnt; u32 id; enum bpf_link_type type; const struct bpf_link_ops *ops; struct bpf_prog *prog; /* whether BPF link itself has "sleepable" semantics, which can differ * from underlying BPF program having a "sleepable" semantics, as BPF * link's semantics is determined by target attach hook */ bool sleepable; /* rcu is used before freeing, work can be used to schedule that * RCU-based freeing before that, so they never overlap */ union { struct rcu_head rcu; struct work_struct work; }; }; struct bpf_link_ops { void (*release)(struct bpf_link *link); /* deallocate link resources callback, called without RCU grace period * waiting */ void (*dealloc)(struct bpf_link *link); /* deallocate link resources callback, called after RCU grace period; * if either the underlying BPF program is sleepable or BPF link's * target hook is sleepable, we'll go through tasks trace RCU GP and * then "classic" RCU GP; this need for chaining tasks trace and * classic RCU GPs is designated by setting bpf_link->sleepable flag */ void (*dealloc_deferred)(struct bpf_link *link); int (*detach)(struct bpf_link *link); int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog, struct bpf_prog *old_prog); void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq); int (*fill_link_info)(const struct bpf_link *link, struct bpf_link_info *info); int (*update_map)(struct bpf_link *link, struct bpf_map *new_map, struct bpf_map *old_map); __poll_t (*poll)(struct file *file, struct poll_table_struct *pts); }; struct bpf_tramp_link { struct bpf_link link; struct hlist_node tramp_hlist; u64 cookie; }; struct bpf_shim_tramp_link { struct bpf_tramp_link link; struct bpf_trampoline *trampoline; }; struct bpf_tracing_link { struct bpf_tramp_link link; enum bpf_attach_type attach_type; struct bpf_trampoline *trampoline; struct bpf_prog *tgt_prog; }; struct bpf_raw_tp_link { struct bpf_link link; struct bpf_raw_event_map *btp; u64 cookie; }; struct bpf_link_primer { struct bpf_link *link; struct file *file; int fd; u32 id; }; struct bpf_mount_opts { kuid_t uid; kgid_t gid; umode_t mode; /* BPF token-related delegation options */ u64 delegate_cmds; u64 delegate_maps; u64 delegate_progs; u64 delegate_attachs; }; struct bpf_token { struct work_struct work; atomic64_t refcnt; struct user_namespace *userns; u64 allowed_cmds; u64 allowed_maps; u64 allowed_progs; u64 allowed_attachs; #ifdef CONFIG_SECURITY void *security; #endif }; struct bpf_struct_ops_value; struct btf_member; #define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64 /** * struct bpf_struct_ops - A structure of callbacks allowing a subsystem to * define a BPF_MAP_TYPE_STRUCT_OPS map type composed * of BPF_PROG_TYPE_STRUCT_OPS progs. * @verifier_ops: A structure of callbacks that are invoked by the verifier * when determining whether the struct_ops progs in the * struct_ops map are valid. * @init: A callback that is invoked a single time, and before any other * callback, to initialize the structure. A nonzero return value means * the subsystem could not be initialized. * @check_member: When defined, a callback invoked by the verifier to allow * the subsystem to determine if an entry in the struct_ops map * is valid. A nonzero return value means that the map is * invalid and should be rejected by the verifier. * @init_member: A callback that is invoked for each member of the struct_ops * map to allow the subsystem to initialize the member. A nonzero * value means the member could not be initialized. This callback * is exclusive with the @type, @type_id, @value_type, and * @value_id fields. * @reg: A callback that is invoked when the struct_ops map has been * initialized and is being attached to. Zero means the struct_ops map * has been successfully registered and is live. A nonzero return value * means the struct_ops map could not be registered. * @unreg: A callback that is invoked when the struct_ops map should be * unregistered. * @update: A callback that is invoked when the live struct_ops map is being * updated to contain new values. This callback is only invoked when * the struct_ops map is loaded with BPF_F_LINK. If not defined, the * it is assumed that the struct_ops map cannot be updated. * @validate: A callback that is invoked after all of the members have been * initialized. This callback should perform static checks on the * map, meaning that it should either fail or succeed * deterministically. A struct_ops map that has been validated may * not necessarily succeed in being registered if the call to @reg * fails. For example, a valid struct_ops map may be loaded, but * then fail to be registered due to there being another active * struct_ops map on the system in the subsystem already. For this * reason, if this callback is not defined, the check is skipped as * the struct_ops map will have final verification performed in * @reg. * @type: BTF type. * @value_type: Value type. * @name: The name of the struct bpf_struct_ops object. * @func_models: Func models * @type_id: BTF type id. * @value_id: BTF value id. */ struct bpf_struct_ops { const struct bpf_verifier_ops *verifier_ops; int (*init)(struct btf *btf); int (*check_member)(const struct btf_type *t, const struct btf_member *member, const struct bpf_prog *prog); int (*init_member)(const struct btf_type *t, const struct btf_member *member, void *kdata, const void *udata); int (*reg)(void *kdata, struct bpf_link *link); void (*unreg)(void *kdata, struct bpf_link *link); int (*update)(void *kdata, void *old_kdata, struct bpf_link *link); int (*validate)(void *kdata); void *cfi_stubs; struct module *owner; const char *name; struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS]; }; /* Every member of a struct_ops type has an instance even a member is not * an operator (function pointer). The "info" field will be assigned to * prog->aux->ctx_arg_info of BPF struct_ops programs to provide the * argument information required by the verifier to verify the program. * * btf_ctx_access() will lookup prog->aux->ctx_arg_info to find the * corresponding entry for an given argument. */ struct bpf_struct_ops_arg_info { struct bpf_ctx_arg_aux *info; u32 cnt; }; struct bpf_struct_ops_desc { struct bpf_struct_ops *st_ops; const struct btf_type *type; const struct btf_type *value_type; u32 type_id; u32 value_id; /* Collection of argument information for each member */ struct bpf_struct_ops_arg_info *arg_info; }; enum bpf_struct_ops_state { BPF_STRUCT_OPS_STATE_INIT, BPF_STRUCT_OPS_STATE_INUSE, BPF_STRUCT_OPS_STATE_TOBEFREE, BPF_STRUCT_OPS_STATE_READY, }; struct bpf_struct_ops_common_value { refcount_t refcnt; enum bpf_struct_ops_state state; }; #if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL) /* This macro helps developer to register a struct_ops type and generate * type information correctly. Developers should use this macro to register * a struct_ops type instead of calling __register_bpf_struct_ops() directly. */ #define register_bpf_struct_ops(st_ops, type) \ ({ \ struct bpf_struct_ops_##type { \ struct bpf_struct_ops_common_value common; \ struct type data ____cacheline_aligned_in_smp; \ }; \ BTF_TYPE_EMIT(struct bpf_struct_ops_##type); \ __register_bpf_struct_ops(st_ops); \ }) #define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA)) bool bpf_struct_ops_get(const void *kdata); void bpf_struct_ops_put(const void *kdata); int bpf_struct_ops_supported(const struct bpf_struct_ops *st_ops, u32 moff); int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key, void *value); int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks, struct bpf_tramp_link *link, const struct btf_func_model *model, void *stub_func, void **image, u32 *image_off, bool allow_alloc); void bpf_struct_ops_image_free(void *image); static inline bool bpf_try_module_get(const void *data, struct module *owner) { if (owner == BPF_MODULE_OWNER) return bpf_struct_ops_get(data); else return try_module_get(owner); } static inline void bpf_module_put(const void *data, struct module *owner) { if (owner == BPF_MODULE_OWNER) bpf_struct_ops_put(data); else module_put(owner); } int bpf_struct_ops_link_create(union bpf_attr *attr); #ifdef CONFIG_NET /* Define it here to avoid the use of forward declaration */ struct bpf_dummy_ops_state { int val; }; struct bpf_dummy_ops { int (*test_1)(struct bpf_dummy_ops_state *cb); int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2, char a3, unsigned long a4); int (*test_sleepable)(struct bpf_dummy_ops_state *cb); }; int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr, union bpf_attr __user *uattr); #endif int bpf_struct_ops_desc_init(struct bpf_struct_ops_desc *st_ops_desc, struct btf *btf, struct bpf_verifier_log *log); void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map); void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc); #else #define register_bpf_struct_ops(st_ops, type) ({ (void *)(st_ops); 0; }) static inline bool bpf_try_module_get(const void *data, struct module *owner) { return try_module_get(owner); } static inline void bpf_module_put(const void *data, struct module *owner) { module_put(owner); } static inline int bpf_struct_ops_supported(const struct bpf_struct_ops *st_ops, u32 moff) { return -ENOTSUPP; } static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key, void *value) { return -EINVAL; } static inline int bpf_struct_ops_link_create(union bpf_attr *attr) { return -EOPNOTSUPP; } static inline void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map) { } static inline void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc) { } #endif #if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM) int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, int cgroup_atype); void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog); #else static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, int cgroup_atype) { return -EOPNOTSUPP; } static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog) { } #endif struct bpf_array { struct bpf_map map; u32 elem_size; u32 index_mask; struct bpf_array_aux *aux; union { DECLARE_FLEX_ARRAY(char, value) __aligned(8); DECLARE_FLEX_ARRAY(void *, ptrs) __aligned(8); DECLARE_FLEX_ARRAY(void __percpu *, pptrs) __aligned(8); }; }; #define BPF_COMPLEXITY_LIMIT_INSNS 1000000 /* yes. 1M insns */ #define MAX_TAIL_CALL_CNT 33 /* Maximum number of loops for bpf_loop and bpf_iter_num. * It's enum to expose it (and thus make it discoverable) through BTF. */ enum { BPF_MAX_LOOPS = 8 * 1024 * 1024, }; #define BPF_F_ACCESS_MASK (BPF_F_RDONLY | \ BPF_F_RDONLY_PROG | \ BPF_F_WRONLY | \ BPF_F_WRONLY_PROG) #define BPF_MAP_CAN_READ BIT(0) #define BPF_MAP_CAN_WRITE BIT(1) /* Maximum number of user-producer ring buffer samples that can be drained in * a call to bpf_user_ringbuf_drain(). */ #define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024) static inline u32 bpf_map_flags_to_cap(struct bpf_map *map) { u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG); /* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is * not possible. */ if (access_flags & BPF_F_RDONLY_PROG) return BPF_MAP_CAN_READ; else if (access_flags & BPF_F_WRONLY_PROG) return BPF_MAP_CAN_WRITE; else return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE; } static inline bool bpf_map_flags_access_ok(u32 access_flags) { return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) != (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG); } struct bpf_event_entry { struct perf_event *event; struct file *perf_file; struct file *map_file; struct rcu_head rcu; }; static inline bool map_type_contains_progs(struct bpf_map *map) { return map->map_type == BPF_MAP_TYPE_PROG_ARRAY || map->map_type == BPF_MAP_TYPE_DEVMAP || map->map_type == BPF_MAP_TYPE_CPUMAP; } bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp); int bpf_prog_calc_tag(struct bpf_prog *fp); const struct bpf_func_proto *bpf_get_trace_printk_proto(void); const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void); typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src, unsigned long off, unsigned long len); typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type, const struct bpf_insn *src, struct bpf_insn *dst, struct bpf_prog *prog, u32 *target_size); u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy); /* an array of programs to be executed under rcu_lock. * * Typical usage: * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run); * * the structure returned by bpf_prog_array_alloc() should be populated * with program pointers and the last pointer must be NULL. * The user has to keep refcnt on the program and make sure the program * is removed from the array before bpf_prog_put(). * The 'struct bpf_prog_array *' should only be replaced with xchg() * since other cpus are walking the array of pointers in parallel. */ struct bpf_prog_array_item { struct bpf_prog *prog; union { struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]; u64 bpf_cookie; }; }; struct bpf_prog_array { struct rcu_head rcu; struct bpf_prog_array_item items[]; }; struct bpf_empty_prog_array { struct bpf_prog_array hdr; struct bpf_prog *null_prog; }; /* to avoid allocating empty bpf_prog_array for cgroups that * don't have bpf program attached use one global 'bpf_empty_prog_array' * It will not be modified the caller of bpf_prog_array_alloc() * (since caller requested prog_cnt == 0) * that pointer should be 'freed' by bpf_prog_array_free() */ extern struct bpf_empty_prog_array bpf_empty_prog_array; struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags); void bpf_prog_array_free(struct bpf_prog_array *progs); /* Use when traversal over the bpf_prog_array uses tasks_trace rcu */ void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs); int bpf_prog_array_length(struct bpf_prog_array *progs); bool bpf_prog_array_is_empty(struct bpf_prog_array *array); int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs, __u32 __user *prog_ids, u32 cnt); void bpf_prog_array_delete_safe(struct bpf_prog_array *progs, struct bpf_prog *old_prog); int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index); int bpf_prog_array_update_at(struct bpf_prog_array *array, int index, struct bpf_prog *prog); int bpf_prog_array_copy_info(struct bpf_prog_array *array, u32 *prog_ids, u32 request_cnt, u32 *prog_cnt); int bpf_prog_array_copy(struct bpf_prog_array *old_array, struct bpf_prog *exclude_prog, struct bpf_prog *include_prog, u64 bpf_cookie, struct bpf_prog_array **new_array); struct bpf_run_ctx {}; struct bpf_cg_run_ctx { struct bpf_run_ctx run_ctx; const struct bpf_prog_array_item *prog_item; int retval; }; struct bpf_trace_run_ctx { struct bpf_run_ctx run_ctx; u64 bpf_cookie; bool is_uprobe; }; struct bpf_tramp_run_ctx { struct bpf_run_ctx run_ctx; u64 bpf_cookie; struct bpf_run_ctx *saved_run_ctx; }; static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx) { struct bpf_run_ctx *old_ctx = NULL; #ifdef CONFIG_BPF_SYSCALL old_ctx = current->bpf_ctx; current->bpf_ctx = new_ctx; #endif return old_ctx; } static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx) { #ifdef CONFIG_BPF_SYSCALL current->bpf_ctx = old_ctx; #endif } /* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */ #define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE (1 << 0) /* BPF program asks to set CN on the packet. */ #define BPF_RET_SET_CN (1 << 0) typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx); static __always_inline u32 bpf_prog_run_array(const struct bpf_prog_array *array, const void *ctx, bpf_prog_run_fn run_prog) { const struct bpf_prog_array_item *item; const struct bpf_prog *prog; struct bpf_run_ctx *old_run_ctx; struct bpf_trace_run_ctx run_ctx; u32 ret = 1; RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held"); if (unlikely(!array)) return ret; run_ctx.is_uprobe = false; migrate_disable(); old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); item = &array->items[0]; while ((prog = READ_ONCE(item->prog))) { run_ctx.bpf_cookie = item->bpf_cookie; ret &= run_prog(prog, ctx); item++; } bpf_reset_run_ctx(old_run_ctx); migrate_enable(); return ret; } /* Notes on RCU design for bpf_prog_arrays containing sleepable programs: * * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array * overall. As a result, we must use the bpf_prog_array_free_sleepable * in order to use the tasks_trace rcu grace period. * * When a non-sleepable program is inside the array, we take the rcu read * section and disable preemption for that program alone, so it can access * rcu-protected dynamically sized maps. */ static __always_inline u32 bpf_prog_run_array_uprobe(const struct bpf_prog_array *array, const void *ctx, bpf_prog_run_fn run_prog) { const struct bpf_prog_array_item *item; const struct bpf_prog *prog; struct bpf_run_ctx *old_run_ctx; struct bpf_trace_run_ctx run_ctx; u32 ret = 1; might_fault(); RCU_LOCKDEP_WARN(!rcu_read_lock_trace_held(), "no rcu lock held"); if (unlikely(!array)) return ret; migrate_disable(); run_ctx.is_uprobe = true; old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); item = &array->items[0]; while ((prog = READ_ONCE(item->prog))) { if (!prog->sleepable) rcu_read_lock(); run_ctx.bpf_cookie = item->bpf_cookie; ret &= run_prog(prog, ctx); item++; if (!prog->sleepable) rcu_read_unlock(); } bpf_reset_run_ctx(old_run_ctx); migrate_enable(); return ret; } #ifdef CONFIG_BPF_SYSCALL DECLARE_PER_CPU(int, bpf_prog_active); extern struct mutex bpf_stats_enabled_mutex; /* * Block execution of BPF programs attached to instrumentation (perf, * kprobes, tracepoints) to prevent deadlocks on map operations as any of * these events can happen inside a region which holds a map bucket lock * and can deadlock on it. */ static inline void bpf_disable_instrumentation(void) { migrate_disable(); this_cpu_inc(bpf_prog_active); } static inline void bpf_enable_instrumentation(void) { this_cpu_dec(bpf_prog_active); migrate_enable(); } extern const struct super_operations bpf_super_ops; extern const struct file_operations bpf_map_fops; extern const struct file_operations bpf_prog_fops; extern const struct file_operations bpf_iter_fops; #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ extern const struct bpf_prog_ops _name ## _prog_ops; \ extern const struct bpf_verifier_ops _name ## _verifier_ops; #define BPF_MAP_TYPE(_id, _ops) \ extern const struct bpf_map_ops _ops; #define BPF_LINK_TYPE(_id, _name) #include #undef BPF_PROG_TYPE #undef BPF_MAP_TYPE #undef BPF_LINK_TYPE extern const struct bpf_prog_ops bpf_offload_prog_ops; extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops; extern const struct bpf_verifier_ops xdp_analyzer_ops; struct bpf_prog *bpf_prog_get(u32 ufd); struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type, bool attach_drv); void bpf_prog_add(struct bpf_prog *prog, int i); void bpf_prog_sub(struct bpf_prog *prog, int i); void bpf_prog_inc(struct bpf_prog *prog); struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog); void bpf_prog_put(struct bpf_prog *prog); void bpf_prog_free_id(struct bpf_prog *prog); void bpf_map_free_id(struct bpf_map *map); struct btf_field *btf_record_find(const struct btf_record *rec, u32 offset, u32 field_mask); void btf_record_free(struct btf_record *rec); void bpf_map_free_record(struct bpf_map *map); struct btf_record *btf_record_dup(const struct btf_record *rec); bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b); void bpf_obj_free_timer(const struct btf_record *rec, void *obj); void bpf_obj_free_workqueue(const struct btf_record *rec, void *obj); void bpf_obj_free_fields(const struct btf_record *rec, void *obj); void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu); struct bpf_map *bpf_map_get(u32 ufd); struct bpf_map *bpf_map_get_with_uref(u32 ufd); static inline struct bpf_map *__bpf_map_get(struct fd f) { if (fd_empty(f)) return ERR_PTR(-EBADF); if (unlikely(fd_file(f)->f_op != &bpf_map_fops)) return ERR_PTR(-EINVAL); return fd_file(f)->private_data; } void bpf_map_inc(struct bpf_map *map); void bpf_map_inc_with_uref(struct bpf_map *map); struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map, bool uref); struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map); void bpf_map_put_with_uref(struct bpf_map *map); void bpf_map_put(struct bpf_map *map); void *bpf_map_area_alloc(u64 size, int numa_node); void *bpf_map_area_mmapable_alloc(u64 size, int numa_node); void bpf_map_area_free(void *base); bool bpf_map_write_active(const struct bpf_map *map); void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr); int generic_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, union bpf_attr __user *uattr); int generic_map_update_batch(struct bpf_map *map, struct file *map_file, const union bpf_attr *attr, union bpf_attr __user *uattr); int generic_map_delete_batch(struct bpf_map *map, const union bpf_attr *attr, union bpf_attr __user *uattr); struct bpf_map *bpf_map_get_curr_or_next(u32 *id); struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id); int bpf_map_alloc_pages(const struct bpf_map *map, gfp_t gfp, int nid, unsigned long nr_pages, struct page **page_array); #ifdef CONFIG_MEMCG void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags, int node); void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags); void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size, gfp_t flags); void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, size_t align, gfp_t flags); #else /* * These specialized allocators have to be macros for their allocations to be * accounted separately (to have separate alloc_tag). */ #define bpf_map_kmalloc_node(_map, _size, _flags, _node) \ kmalloc_node(_size, _flags, _node) #define bpf_map_kzalloc(_map, _size, _flags) \ kzalloc(_size, _flags) #define bpf_map_kvcalloc(_map, _n, _size, _flags) \ kvcalloc(_n, _size, _flags) #define bpf_map_alloc_percpu(_map, _size, _align, _flags) \ __alloc_percpu_gfp(_size, _align, _flags) #endif static inline int bpf_map_init_elem_count(struct bpf_map *map) { size_t size = sizeof(*map->elem_count), align = size; gfp_t flags = GFP_USER | __GFP_NOWARN; map->elem_count = bpf_map_alloc_percpu(map, size, align, flags); if (!map->elem_count) return -ENOMEM; return 0; } static inline void bpf_map_free_elem_count(struct bpf_map *map) { free_percpu(map->elem_count); } static inline void bpf_map_inc_elem_count(struct bpf_map *map) { this_cpu_inc(*map->elem_count); } static inline void bpf_map_dec_elem_count(struct bpf_map *map) { this_cpu_dec(*map->elem_count); } extern int sysctl_unprivileged_bpf_disabled; bool bpf_token_capable(const struct bpf_token *token, int cap); static inline bool bpf_allow_ptr_leaks(const struct bpf_token *token) { return bpf_token_capable(token, CAP_PERFMON); } static inline bool bpf_allow_uninit_stack(const struct bpf_token *token) { return bpf_token_capable(token, CAP_PERFMON); } static inline bool bpf_bypass_spec_v1(const struct bpf_token *token) { return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON); } static inline bool bpf_bypass_spec_v4(const struct bpf_token *token) { return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON); } int bpf_map_new_fd(struct bpf_map *map, int flags); int bpf_prog_new_fd(struct bpf_prog *prog); void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, const struct bpf_link_ops *ops, struct bpf_prog *prog); void bpf_link_init_sleepable(struct bpf_link *link, enum bpf_link_type type, const struct bpf_link_ops *ops, struct bpf_prog *prog, bool sleepable); int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer); int bpf_link_settle(struct bpf_link_primer *primer); void bpf_link_cleanup(struct bpf_link_primer *primer); void bpf_link_inc(struct bpf_link *link); struct bpf_link *bpf_link_inc_not_zero(struct bpf_link *link); void bpf_link_put(struct bpf_link *link); int bpf_link_new_fd(struct bpf_link *link); struct bpf_link *bpf_link_get_from_fd(u32 ufd); struct bpf_link *bpf_link_get_curr_or_next(u32 *id); void bpf_token_inc(struct bpf_token *token); void bpf_token_put(struct bpf_token *token); int bpf_token_create(union bpf_attr *attr); struct bpf_token *bpf_token_get_from_fd(u32 ufd); bool bpf_token_allow_cmd(const struct bpf_token *token, enum bpf_cmd cmd); bool bpf_token_allow_map_type(const struct bpf_token *token, enum bpf_map_type type); bool bpf_token_allow_prog_type(const struct bpf_token *token, enum bpf_prog_type prog_type, enum bpf_attach_type attach_type); int bpf_obj_pin_user(u32 ufd, int path_fd, const char __user *pathname); int bpf_obj_get_user(int path_fd, const char __user *pathname, int flags); struct inode *bpf_get_inode(struct super_block *sb, const struct inode *dir, umode_t mode); #define BPF_ITER_FUNC_PREFIX "bpf_iter_" #define DEFINE_BPF_ITER_FUNC(target, args...) \ extern int bpf_iter_ ## target(args); \ int __init bpf_iter_ ## target(args) { return 0; } /* * The task type of iterators. * * For BPF task iterators, they can be parameterized with various * parameters to visit only some of tasks. * * BPF_TASK_ITER_ALL (default) * Iterate over resources of every task. * * BPF_TASK_ITER_TID * Iterate over resources of a task/tid. * * BPF_TASK_ITER_TGID * Iterate over resources of every task of a process / task group. */ enum bpf_iter_task_type { BPF_TASK_ITER_ALL = 0, BPF_TASK_ITER_TID, BPF_TASK_ITER_TGID, }; struct bpf_iter_aux_info { /* for map_elem iter */ struct bpf_map *map; /* for cgroup iter */ struct { struct cgroup *start; /* starting cgroup */ enum bpf_cgroup_iter_order order; } cgroup; struct { enum bpf_iter_task_type type; u32 pid; } task; }; typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog, union bpf_iter_link_info *linfo, struct bpf_iter_aux_info *aux); typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux); typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux, struct seq_file *seq); typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux, struct bpf_link_info *info); typedef const struct bpf_func_proto * (*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id, const struct bpf_prog *prog); enum bpf_iter_feature { BPF_ITER_RESCHED = BIT(0), }; #define BPF_ITER_CTX_ARG_MAX 2 struct bpf_iter_reg { const char *target; bpf_iter_attach_target_t attach_target; bpf_iter_detach_target_t detach_target; bpf_iter_show_fdinfo_t show_fdinfo; bpf_iter_fill_link_info_t fill_link_info; bpf_iter_get_func_proto_t get_func_proto; u32 ctx_arg_info_size; u32 feature; struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX]; const struct bpf_iter_seq_info *seq_info; }; struct bpf_iter_meta { __bpf_md_ptr(struct seq_file *, seq); u64 session_id; u64 seq_num; }; struct bpf_iter__bpf_map_elem { __bpf_md_ptr(struct bpf_iter_meta *, meta); __bpf_md_ptr(struct bpf_map *, map); __bpf_md_ptr(void *, key); __bpf_md_ptr(void *, value); }; int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info); void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info); bool bpf_iter_prog_supported(struct bpf_prog *prog); const struct bpf_func_proto * bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog); int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog); int bpf_iter_new_fd(struct bpf_link *link); bool bpf_link_is_iter(struct bpf_link *link); struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop); int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx); void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux, struct seq_file *seq); int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux, struct bpf_link_info *info); int map_set_for_each_callback_args(struct bpf_verifier_env *env, struct bpf_func_state *caller, struct bpf_func_state *callee); int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value); int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value); int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value, u64 flags); int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value, u64 flags); int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value); int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file, void *key, void *value, u64 map_flags); int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value); int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file, void *key, void *value, u64 map_flags); int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value); int bpf_get_file_flag(int flags); int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size, size_t actual_size); /* verify correctness of eBPF program */ int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size); #ifndef CONFIG_BPF_JIT_ALWAYS_ON void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth); #endif struct btf *bpf_get_btf_vmlinux(void); /* Map specifics */ struct xdp_frame; struct sk_buff; struct bpf_dtab_netdev; struct bpf_cpu_map_entry; void __dev_flush(struct list_head *flush_list); int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, struct net_device *dev_rx); int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, struct net_device *dev_rx); int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, struct bpf_map *map, bool exclude_ingress); int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, struct bpf_prog *xdp_prog); int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, struct bpf_prog *xdp_prog, struct bpf_map *map, bool exclude_ingress); void __cpu_map_flush(struct list_head *flush_list); int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf, struct net_device *dev_rx); int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, struct sk_buff *skb); /* Return map's numa specified by userspace */ static inline int bpf_map_attr_numa_node(const union bpf_attr *attr) { return (attr->map_flags & BPF_F_NUMA_NODE) ? attr->numa_node : NUMA_NO_NODE; } struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type); int array_map_alloc_check(union bpf_attr *attr); int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr, union bpf_attr __user *uattr); int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr, union bpf_attr __user *uattr); int bpf_prog_test_run_tracing(struct bpf_prog *prog, const union bpf_attr *kattr, union bpf_attr __user *uattr); int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog, const union bpf_attr *kattr, union bpf_attr __user *uattr); int bpf_prog_test_run_raw_tp(struct bpf_prog *prog, const union bpf_attr *kattr, union bpf_attr __user *uattr); int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, const union bpf_attr *kattr, union bpf_attr __user *uattr); int bpf_prog_test_run_nf(struct bpf_prog *prog, const union bpf_attr *kattr, union bpf_attr __user *uattr); bool btf_ctx_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info); static inline bool bpf_tracing_ctx_access(int off, int size, enum bpf_access_type type) { if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) return false; if (type != BPF_READ) return false; if (off % size != 0) return false; return true; } static inline bool bpf_tracing_btf_ctx_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info) { if (!bpf_tracing_ctx_access(off, size, type)) return false; return btf_ctx_access(off, size, type, prog, info); } int btf_struct_access(struct bpf_verifier_log *log, const struct bpf_reg_state *reg, int off, int size, enum bpf_access_type atype, u32 *next_btf_id, enum bpf_type_flag *flag, const char **field_name); bool btf_struct_ids_match(struct bpf_verifier_log *log, const struct btf *btf, u32 id, int off, const struct btf *need_btf, u32 need_type_id, bool strict); int btf_distill_func_proto(struct bpf_verifier_log *log, struct btf *btf, const struct btf_type *func_proto, const char *func_name, struct btf_func_model *m); struct bpf_reg_state; int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog); int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, struct btf *btf, const struct btf_type *t); const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt, int comp_idx, const char *tag_key); int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt, int comp_idx, const char *tag_key, int last_id); struct bpf_prog *bpf_prog_by_id(u32 id); struct bpf_link *bpf_link_by_id(u32 id); const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog); void bpf_task_storage_free(struct task_struct *task); void bpf_cgrp_storage_free(struct cgroup *cgroup); bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog); const struct btf_func_model * bpf_jit_find_kfunc_model(const struct bpf_prog *prog, const struct bpf_insn *insn); int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, u16 btf_fd_idx, u8 **func_addr); struct bpf_core_ctx { struct bpf_verifier_log *log; const struct btf *btf; }; bool btf_nested_type_is_trusted(struct bpf_verifier_log *log, const struct bpf_reg_state *reg, const char *field_name, u32 btf_id, const char *suffix); bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log, const struct btf *reg_btf, u32 reg_id, const struct btf *arg_btf, u32 arg_id); int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, int relo_idx, void *insn); static inline bool unprivileged_ebpf_enabled(void) { return !sysctl_unprivileged_bpf_disabled; } /* Not all bpf prog type has the bpf_ctx. * For the bpf prog type that has initialized the bpf_ctx, * this function can be used to decide if a kernel function * is called by a bpf program. */ static inline bool has_current_bpf_ctx(void) { return !!current->bpf_ctx; } void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog); void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, enum bpf_dynptr_type type, u32 offset, u32 size); void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr); void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr); #else /* !CONFIG_BPF_SYSCALL */ static inline struct bpf_prog *bpf_prog_get(u32 ufd) { return ERR_PTR(-EOPNOTSUPP); } static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type, bool attach_drv) { return ERR_PTR(-EOPNOTSUPP); } static inline void bpf_prog_add(struct bpf_prog *prog, int i) { } static inline void bpf_prog_sub(struct bpf_prog *prog, int i) { } static inline void bpf_prog_put(struct bpf_prog *prog) { } static inline void bpf_prog_inc(struct bpf_prog *prog) { } static inline struct bpf_prog *__must_check bpf_prog_inc_not_zero(struct bpf_prog *prog) { return ERR_PTR(-EOPNOTSUPP); } static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, const struct bpf_link_ops *ops, struct bpf_prog *prog) { } static inline void bpf_link_init_sleepable(struct bpf_link *link, enum bpf_link_type type, const struct bpf_link_ops *ops, struct bpf_prog *prog, bool sleepable) { } static inline int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer) { return -EOPNOTSUPP; } static inline int bpf_link_settle(struct bpf_link_primer *primer) { return -EOPNOTSUPP; } static inline void bpf_link_cleanup(struct bpf_link_primer *primer) { } static inline void bpf_link_inc(struct bpf_link *link) { } static inline struct bpf_link *bpf_link_inc_not_zero(struct bpf_link *link) { return NULL; } static inline void bpf_link_put(struct bpf_link *link) { } static inline int bpf_obj_get_user(const char __user *pathname, int flags) { return -EOPNOTSUPP; } static inline bool bpf_token_capable(const struct bpf_token *token, int cap) { return capable(cap) || (cap != CAP_SYS_ADMIN && capable(CAP_SYS_ADMIN)); } static inline void bpf_token_inc(struct bpf_token *token) { } static inline void bpf_token_put(struct bpf_token *token) { } static inline struct bpf_token *bpf_token_get_from_fd(u32 ufd) { return ERR_PTR(-EOPNOTSUPP); } static inline void __dev_flush(struct list_head *flush_list) { } struct xdp_frame; struct bpf_dtab_netdev; struct bpf_cpu_map_entry; static inline int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, struct net_device *dev_rx) { return 0; } static inline int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, struct net_device *dev_rx) { return 0; } static inline int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, struct bpf_map *map, bool exclude_ingress) { return 0; } struct sk_buff; static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, struct bpf_prog *xdp_prog) { return 0; } static inline int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, struct bpf_prog *xdp_prog, struct bpf_map *map, bool exclude_ingress) { return 0; } static inline void __cpu_map_flush(struct list_head *flush_list) { } static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf, struct net_device *dev_rx) { return 0; } static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, struct sk_buff *skb) { return -EOPNOTSUPP; } static inline struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type) { return ERR_PTR(-EOPNOTSUPP); } static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr, union bpf_attr __user *uattr) { return -ENOTSUPP; } static inline int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr, union bpf_attr __user *uattr) { return -ENOTSUPP; } static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog, const union bpf_attr *kattr, union bpf_attr __user *uattr) { return -ENOTSUPP; } static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog, const union bpf_attr *kattr, union bpf_attr __user *uattr) { return -ENOTSUPP; } static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, const union bpf_attr *kattr, union bpf_attr __user *uattr) { return -ENOTSUPP; } static inline void bpf_map_put(struct bpf_map *map) { } static inline struct bpf_prog *bpf_prog_by_id(u32 id) { return ERR_PTR(-ENOTSUPP); } static inline int btf_struct_access(struct bpf_verifier_log *log, const struct bpf_reg_state *reg, int off, int size, enum bpf_access_type atype, u32 *next_btf_id, enum bpf_type_flag *flag, const char **field_name) { return -EACCES; } static inline const struct bpf_func_proto * bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { return NULL; } static inline void bpf_task_storage_free(struct task_struct *task) { } static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) { return false; } static inline const struct btf_func_model * bpf_jit_find_kfunc_model(const struct bpf_prog *prog, const struct bpf_insn *insn) { return NULL; } static inline int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, u16 btf_fd_idx, u8 **func_addr) { return -ENOTSUPP; } static inline bool unprivileged_ebpf_enabled(void) { return false; } static inline bool has_current_bpf_ctx(void) { return false; } static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog) { } static inline void bpf_cgrp_storage_free(struct cgroup *cgroup) { } static inline void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, enum bpf_dynptr_type type, u32 offset, u32 size) { } static inline void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr) { } static inline void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr) { } #endif /* CONFIG_BPF_SYSCALL */ static __always_inline int bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr) { int ret = -EFAULT; if (IS_ENABLED(CONFIG_BPF_EVENTS)) ret = copy_from_kernel_nofault(dst, unsafe_ptr, size); if (unlikely(ret < 0)) memset(dst, 0, size); return ret; } void __bpf_free_used_btfs(struct btf_mod_pair *used_btfs, u32 len); static inline struct bpf_prog *bpf_prog_get_type(u32 ufd, enum bpf_prog_type type) { return bpf_prog_get_type_dev(ufd, type, false); } void __bpf_free_used_maps(struct bpf_prog_aux *aux, struct bpf_map **used_maps, u32 len); bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool); int bpf_prog_offload_compile(struct bpf_prog *prog); void bpf_prog_dev_bound_destroy(struct bpf_prog *prog); int bpf_prog_offload_info_fill(struct bpf_prog_info *info, struct bpf_prog *prog); int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map); int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value); int bpf_map_offload_update_elem(struct bpf_map *map, void *key, void *value, u64 flags); int bpf_map_offload_delete_elem(struct bpf_map *map, void *key); int bpf_map_offload_get_next_key(struct bpf_map *map, void *key, void *next_key); bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map); struct bpf_offload_dev * bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv); void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev); void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev); int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev, struct net_device *netdev); void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev, struct net_device *netdev); bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev); void unpriv_ebpf_notify(int new_state); #if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL) int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log, struct bpf_prog_aux *prog_aux); void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id); int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr); int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog); void bpf_dev_bound_netdev_unregister(struct net_device *dev); static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux) { return aux->dev_bound; } static inline bool bpf_prog_is_offloaded(const struct bpf_prog_aux *aux) { return aux->offload_requested; } bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs); static inline bool bpf_map_is_offloaded(struct bpf_map *map) { return unlikely(map->ops == &bpf_map_offload_ops); } struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr); void bpf_map_offload_map_free(struct bpf_map *map); u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map); int bpf_prog_test_run_syscall(struct bpf_prog *prog, const union bpf_attr *kattr, union bpf_attr __user *uattr); int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog); int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype); int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags); int sock_map_bpf_prog_query(const union bpf_attr *attr, union bpf_attr __user *uattr); int sock_map_link_create(const union bpf_attr *attr, struct bpf_prog *prog); void sock_map_unhash(struct sock *sk); void sock_map_destroy(struct sock *sk); void sock_map_close(struct sock *sk, long timeout); #else static inline int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log, struct bpf_prog_aux *prog_aux) { return -EOPNOTSUPP; } static inline void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id) { return NULL; } static inline int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr) { return -EOPNOTSUPP; } static inline int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog) { return -EOPNOTSUPP; } static inline void bpf_dev_bound_netdev_unregister(struct net_device *dev) { } static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux) { return false; } static inline bool bpf_prog_is_offloaded(struct bpf_prog_aux *aux) { return false; } static inline bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs) { return false; } static inline bool bpf_map_is_offloaded(struct bpf_map *map) { return false; } static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr) { return ERR_PTR(-EOPNOTSUPP); } static inline void bpf_map_offload_map_free(struct bpf_map *map) { } static inline u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map) { return 0; } static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog, const union bpf_attr *kattr, union bpf_attr __user *uattr) { return -ENOTSUPP; } #ifdef CONFIG_BPF_SYSCALL static inline int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog) { return -EINVAL; } static inline int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype) { return -EOPNOTSUPP; } static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags) { return -EOPNOTSUPP; } static inline int sock_map_bpf_prog_query(const union bpf_attr *attr, union bpf_attr __user *uattr) { return -EINVAL; } static inline int sock_map_link_create(const union bpf_attr *attr, struct bpf_prog *prog) { return -EOPNOTSUPP; } #endif /* CONFIG_BPF_SYSCALL */ #endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */ static __always_inline void bpf_prog_inc_misses_counters(const struct bpf_prog_array *array) { const struct bpf_prog_array_item *item; struct bpf_prog *prog; if (unlikely(!array)) return; item = &array->items[0]; while ((prog = READ_ONCE(item->prog))) { bpf_prog_inc_misses_counter(prog); item++; } } #if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) void bpf_sk_reuseport_detach(struct sock *sk); int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key, void *value); int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key, void *value, u64 map_flags); #else static inline void bpf_sk_reuseport_detach(struct sock *sk) { } #ifdef CONFIG_BPF_SYSCALL static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key, void *value) { return -EOPNOTSUPP; } static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key, void *value, u64 map_flags) { return -EOPNOTSUPP; } #endif /* CONFIG_BPF_SYSCALL */ #endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */ /* verifier prototypes for helper functions called from eBPF programs */ extern const struct bpf_func_proto bpf_map_lookup_elem_proto; extern const struct bpf_func_proto bpf_map_update_elem_proto; extern const struct bpf_func_proto bpf_map_delete_elem_proto; extern const struct bpf_func_proto bpf_map_push_elem_proto; extern const struct bpf_func_proto bpf_map_pop_elem_proto; extern const struct bpf_func_proto bpf_map_peek_elem_proto; extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto; extern const struct bpf_func_proto bpf_get_prandom_u32_proto; extern const struct bpf_func_proto bpf_get_smp_processor_id_proto; extern const struct bpf_func_proto bpf_get_numa_node_id_proto; extern const struct bpf_func_proto bpf_tail_call_proto; extern const struct bpf_func_proto bpf_ktime_get_ns_proto; extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto; extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto; extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto; extern const struct bpf_func_proto bpf_get_current_uid_gid_proto; extern const struct bpf_func_proto bpf_get_current_comm_proto; extern const struct bpf_func_proto bpf_get_stackid_proto; extern const struct bpf_func_proto bpf_get_stack_proto; extern const struct bpf_func_proto bpf_get_stack_sleepable_proto; extern const struct bpf_func_proto bpf_get_task_stack_proto; extern const struct bpf_func_proto bpf_get_task_stack_sleepable_proto; extern const struct bpf_func_proto bpf_get_stackid_proto_pe; extern const struct bpf_func_proto bpf_get_stack_proto_pe; extern const struct bpf_func_proto bpf_sock_map_update_proto; extern const struct bpf_func_proto bpf_sock_hash_update_proto; extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto; extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto; extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto; extern const struct bpf_func_proto bpf_current_task_under_cgroup_proto; extern const struct bpf_func_proto bpf_msg_redirect_hash_proto; extern const struct bpf_func_proto bpf_msg_redirect_map_proto; extern const struct bpf_func_proto bpf_sk_redirect_hash_proto; extern const struct bpf_func_proto bpf_sk_redirect_map_proto; extern const struct bpf_func_proto bpf_spin_lock_proto; extern const struct bpf_func_proto bpf_spin_unlock_proto; extern const struct bpf_func_proto bpf_get_local_storage_proto; extern const struct bpf_func_proto bpf_strtol_proto; extern const struct bpf_func_proto bpf_strtoul_proto; extern const struct bpf_func_proto bpf_tcp_sock_proto; extern const struct bpf_func_proto bpf_jiffies64_proto; extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto; extern const struct bpf_func_proto bpf_event_output_data_proto; extern const struct bpf_func_proto bpf_ringbuf_output_proto; extern const struct bpf_func_proto bpf_ringbuf_reserve_proto; extern const struct bpf_func_proto bpf_ringbuf_submit_proto; extern const struct bpf_func_proto bpf_ringbuf_discard_proto; extern const struct bpf_func_proto bpf_ringbuf_query_proto; extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto; extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto; extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto; extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto; extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto; extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto; extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto; extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto; extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto; extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto; extern const struct bpf_func_proto bpf_copy_from_user_proto; extern const struct bpf_func_proto bpf_snprintf_btf_proto; extern const struct bpf_func_proto bpf_snprintf_proto; extern const struct bpf_func_proto bpf_per_cpu_ptr_proto; extern const struct bpf_func_proto bpf_this_cpu_ptr_proto; extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto; extern const struct bpf_func_proto bpf_sock_from_file_proto; extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto; extern const struct bpf_func_proto bpf_task_storage_get_recur_proto; extern const struct bpf_func_proto bpf_task_storage_get_proto; extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto; extern const struct bpf_func_proto bpf_task_storage_delete_proto; extern const struct bpf_func_proto bpf_for_each_map_elem_proto; extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto; extern const struct bpf_func_proto bpf_sk_setsockopt_proto; extern const struct bpf_func_proto bpf_sk_getsockopt_proto; extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto; extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto; extern const struct bpf_func_proto bpf_find_vma_proto; extern const struct bpf_func_proto bpf_loop_proto; extern const struct bpf_func_proto bpf_copy_from_user_task_proto; extern const struct bpf_func_proto bpf_set_retval_proto; extern const struct bpf_func_proto bpf_get_retval_proto; extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto; extern const struct bpf_func_proto bpf_cgrp_storage_get_proto; extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto; const struct bpf_func_proto *tracing_prog_func_proto( enum bpf_func_id func_id, const struct bpf_prog *prog); /* Shared helpers among cBPF and eBPF. */ void bpf_user_rnd_init_once(void); u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); #if defined(CONFIG_NET) bool bpf_sock_common_is_valid_access(int off, int size, enum bpf_access_type type, struct bpf_insn_access_aux *info); bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type, struct bpf_insn_access_aux *info); u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, const struct bpf_insn *si, struct bpf_insn *insn_buf, struct bpf_prog *prog, u32 *target_size); int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags, struct bpf_dynptr *ptr); #else static inline bool bpf_sock_common_is_valid_access(int off, int size, enum bpf_access_type type, struct bpf_insn_access_aux *info) { return false; } static inline bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type, struct bpf_insn_access_aux *info) { return false; } static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, const struct bpf_insn *si, struct bpf_insn *insn_buf, struct bpf_prog *prog, u32 *target_size) { return 0; } static inline int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags, struct bpf_dynptr *ptr) { return -EOPNOTSUPP; } #endif #ifdef CONFIG_INET struct sk_reuseport_kern { struct sk_buff *skb; struct sock *sk; struct sock *selected_sk; struct sock *migrating_sk; void *data_end; u32 hash; u32 reuseport_id; bool bind_inany; }; bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type, struct bpf_insn_access_aux *info); u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, const struct bpf_insn *si, struct bpf_insn *insn_buf, struct bpf_prog *prog, u32 *target_size); bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type, struct bpf_insn_access_aux *info); u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, const struct bpf_insn *si, struct bpf_insn *insn_buf, struct bpf_prog *prog, u32 *target_size); #else static inline bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type, struct bpf_insn_access_aux *info) { return false; } static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, const struct bpf_insn *si, struct bpf_insn *insn_buf, struct bpf_prog *prog, u32 *target_size) { return 0; } static inline bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type, struct bpf_insn_access_aux *info) { return false; } static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, const struct bpf_insn *si, struct bpf_insn *insn_buf, struct bpf_prog *prog, u32 *target_size) { return 0; } #endif /* CONFIG_INET */ enum bpf_text_poke_type { BPF_MOD_CALL, BPF_MOD_JUMP, }; int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t, void *addr1, void *addr2); void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke, struct bpf_prog *new, struct bpf_prog *old); void *bpf_arch_text_copy(void *dst, void *src, size_t len); int bpf_arch_text_invalidate(void *dst, size_t len); struct btf_id_set; bool btf_id_set_contains(const struct btf_id_set *set, u32 id); #define MAX_BPRINTF_VARARGS 12 #define MAX_BPRINTF_BUF 1024 struct bpf_bprintf_data { u32 *bin_args; char *buf; bool get_bin_args; bool get_buf; }; int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, u32 num_args, struct bpf_bprintf_data *data); void bpf_bprintf_cleanup(struct bpf_bprintf_data *data); #ifdef CONFIG_BPF_LSM void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype); void bpf_cgroup_atype_put(int cgroup_atype); #else static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {} static inline void bpf_cgroup_atype_put(int cgroup_atype) {} #endif /* CONFIG_BPF_LSM */ struct key; #ifdef CONFIG_KEYS struct bpf_key { struct key *key; bool has_ref; }; #endif /* CONFIG_KEYS */ static inline bool type_is_alloc(u32 type) { return type & MEM_ALLOC; } static inline gfp_t bpf_memcg_flags(gfp_t flags) { if (memcg_bpf_enabled()) return flags | __GFP_ACCOUNT; return flags; } static inline bool bpf_is_subprog(const struct bpf_prog *prog) { return prog->aux->func_idx != 0; } #endif /* _LINUX_BPF_H */