// SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2024 Meta Platforms, Inc. and affiliates. */ #include #include #include #include #include "range_tree.h" /* * struct range_tree is a data structure used to allocate contiguous memory * ranges in bpf arena. It's a large bitmap. The contiguous sequence of bits is * represented by struct range_node or 'rn' for short. * rn->rn_rbnode links it into an interval tree while * rn->rb_range_size links it into a second rbtree sorted by size of the range. * __find_range() performs binary search and best fit algorithm to find the * range less or equal requested size. * range_tree_clear/set() clears or sets a range of bits in this bitmap. The * adjacent ranges are merged or split at the same time. * * The split/merge logic is based/borrowed from XFS's xbitmap32 added * in commit 6772fcc8890a ("xfs: convert xbitmap to interval tree"). * * The implementation relies on external lock to protect rbtree-s. * The alloc/free of range_node-s is done via bpf_mem_alloc. * * bpf arena is using range_tree to represent unallocated slots. * At init time: * range_tree_set(rt, 0, max); * Then: * start = range_tree_find(rt, len); * if (start >= 0) * range_tree_clear(rt, start, len); * to find free range and mark slots as allocated and later: * range_tree_set(rt, start, len); * to mark as unallocated after use. */ struct range_node { struct rb_node rn_rbnode; struct rb_node rb_range_size; u32 rn_start; u32 rn_last; /* inclusive */ u32 __rn_subtree_last; }; static struct range_node *rb_to_range_node(struct rb_node *rb) { return rb_entry(rb, struct range_node, rb_range_size); } static u32 rn_size(struct range_node *rn) { return rn->rn_last - rn->rn_start + 1; } /* Find range that fits best to requested size */ static inline struct range_node *__find_range(struct range_tree *rt, u32 len) { struct rb_node *rb = rt->range_size_root.rb_root.rb_node; struct range_node *best = NULL; while (rb) { struct range_node *rn = rb_to_range_node(rb); if (len <= rn_size(rn)) { best = rn; rb = rb->rb_right; } else { rb = rb->rb_left; } } return best; } s64 range_tree_find(struct range_tree *rt, u32 len) { struct range_node *rn; rn = __find_range(rt, len); if (!rn) return -ENOENT; return rn->rn_start; } /* Insert the range into rbtree sorted by the range size */ static inline void __range_size_insert(struct range_node *rn, struct rb_root_cached *root) { struct rb_node **link = &root->rb_root.rb_node, *rb = NULL; u64 size = rn_size(rn); bool leftmost = true; while (*link) { rb = *link; if (size > rn_size(rb_to_range_node(rb))) { link = &rb->rb_left; } else { link = &rb->rb_right; leftmost = false; } } rb_link_node(&rn->rb_range_size, rb, link); rb_insert_color_cached(&rn->rb_range_size, root, leftmost); } #define START(node) ((node)->rn_start) #define LAST(node) ((node)->rn_last) INTERVAL_TREE_DEFINE(struct range_node, rn_rbnode, u32, __rn_subtree_last, START, LAST, static inline __maybe_unused, __range_it) static inline __maybe_unused void range_it_insert(struct range_node *rn, struct range_tree *rt) { __range_size_insert(rn, &rt->range_size_root); __range_it_insert(rn, &rt->it_root); } static inline __maybe_unused void range_it_remove(struct range_node *rn, struct range_tree *rt) { rb_erase_cached(&rn->rb_range_size, &rt->range_size_root); RB_CLEAR_NODE(&rn->rb_range_size); __range_it_remove(rn, &rt->it_root); } static inline __maybe_unused struct range_node * range_it_iter_first(struct range_tree *rt, u32 start, u32 last) { return __range_it_iter_first(&rt->it_root, start, last); } /* Clear the range in this range tree */ int range_tree_clear(struct range_tree *rt, u32 start, u32 len) { u32 last = start + len - 1; struct range_node *new_rn; struct range_node *rn; while ((rn = range_it_iter_first(rt, start, last))) { if (rn->rn_start < start && rn->rn_last > last) { u32 old_last = rn->rn_last; /* Overlaps with the entire clearing range */ range_it_remove(rn, rt); rn->rn_last = start - 1; range_it_insert(rn, rt); /* Add a range */ migrate_disable(); new_rn = bpf_mem_alloc(&bpf_global_ma, sizeof(struct range_node)); migrate_enable(); if (!new_rn) return -ENOMEM; new_rn->rn_start = last + 1; new_rn->rn_last = old_last; range_it_insert(new_rn, rt); } else if (rn->rn_start < start) { /* Overlaps with the left side of the clearing range */ range_it_remove(rn, rt); rn->rn_last = start - 1; range_it_insert(rn, rt); } else if (rn->rn_last > last) { /* Overlaps with the right side of the clearing range */ range_it_remove(rn, rt); rn->rn_start = last + 1; range_it_insert(rn, rt); break; } else { /* in the middle of the clearing range */ range_it_remove(rn, rt); migrate_disable(); bpf_mem_free(&bpf_global_ma, rn); migrate_enable(); } } return 0; } /* Is the whole range set ? */ int is_range_tree_set(struct range_tree *rt, u32 start, u32 len) { u32 last = start + len - 1; struct range_node *left; /* Is this whole range set ? */ left = range_it_iter_first(rt, start, last); if (left && left->rn_start <= start && left->rn_last >= last) return 0; return -ESRCH; } /* Set the range in this range tree */ int range_tree_set(struct range_tree *rt, u32 start, u32 len) { u32 last = start + len - 1; struct range_node *right; struct range_node *left; int err; /* Is this whole range already set ? */ left = range_it_iter_first(rt, start, last); if (left && left->rn_start <= start && left->rn_last >= last) return 0; /* Clear out everything in the range we want to set. */ err = range_tree_clear(rt, start, len); if (err) return err; /* Do we have a left-adjacent range ? */ left = range_it_iter_first(rt, start - 1, start - 1); if (left && left->rn_last + 1 != start) return -EFAULT; /* Do we have a right-adjacent range ? */ right = range_it_iter_first(rt, last + 1, last + 1); if (right && right->rn_start != last + 1) return -EFAULT; if (left && right) { /* Combine left and right adjacent ranges */ range_it_remove(left, rt); range_it_remove(right, rt); left->rn_last = right->rn_last; range_it_insert(left, rt); migrate_disable(); bpf_mem_free(&bpf_global_ma, right); migrate_enable(); } else if (left) { /* Combine with the left range */ range_it_remove(left, rt); left->rn_last = last; range_it_insert(left, rt); } else if (right) { /* Combine with the right range */ range_it_remove(right, rt); right->rn_start = start; range_it_insert(right, rt); } else { migrate_disable(); left = bpf_mem_alloc(&bpf_global_ma, sizeof(struct range_node)); migrate_enable(); if (!left) return -ENOMEM; left->rn_start = start; left->rn_last = last; range_it_insert(left, rt); } return 0; } void range_tree_destroy(struct range_tree *rt) { struct range_node *rn; while ((rn = range_it_iter_first(rt, 0, -1U))) { range_it_remove(rn, rt); migrate_disable(); bpf_mem_free(&bpf_global_ma, rn); migrate_enable(); } } void range_tree_init(struct range_tree *rt) { rt->it_root = RB_ROOT_CACHED; rt->range_size_root = RB_ROOT_CACHED; }