// SPDX-License-Identifier: GPL-2.0+ /* * User-space Probes (UProbes) * * Copyright (C) IBM Corporation, 2008-2012 * Authors: * Srikar Dronamraju * Jim Keniston * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra */ #include #include #include /* read_mapping_page */ #include #include #include #include #include /* anon_vma_prepare */ #include #include /* folio_free_swap */ #include /* user_enable_single_step */ #include /* notifier mechanism */ #include #include #include #include #include #include #include #include #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES) #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE static struct rb_root uprobes_tree = RB_ROOT; /* * allows us to skip the uprobe_mmap if there are no uprobe events active * at this time. Probably a fine grained per inode count is better? */ #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree) static DEFINE_RWLOCK(uprobes_treelock); /* serialize rbtree access */ static seqcount_rwlock_t uprobes_seqcount = SEQCNT_RWLOCK_ZERO(uprobes_seqcount, &uprobes_treelock); #define UPROBES_HASH_SZ 13 /* serialize uprobe->pending_list */ static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ]; #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ]) DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem); /* Covers return_instance's uprobe lifetime. */ DEFINE_STATIC_SRCU(uretprobes_srcu); /* Have a copy of original instruction */ #define UPROBE_COPY_INSN 0 struct uprobe { struct rb_node rb_node; /* node in the rb tree */ refcount_t ref; struct rw_semaphore register_rwsem; struct rw_semaphore consumer_rwsem; struct list_head pending_list; struct list_head consumers; struct inode *inode; /* Also hold a ref to inode */ union { struct rcu_head rcu; struct work_struct work; }; loff_t offset; loff_t ref_ctr_offset; unsigned long flags; /* "unsigned long" so bitops work */ /* * The generic code assumes that it has two members of unknown type * owned by the arch-specific code: * * insn - copy_insn() saves the original instruction here for * arch_uprobe_analyze_insn(). * * ixol - potentially modified instruction to execute out of * line, copied to xol_area by xol_get_insn_slot(). */ struct arch_uprobe arch; }; struct delayed_uprobe { struct list_head list; struct uprobe *uprobe; struct mm_struct *mm; }; static DEFINE_MUTEX(delayed_uprobe_lock); static LIST_HEAD(delayed_uprobe_list); /* * Execute out of line area: anonymous executable mapping installed * by the probed task to execute the copy of the original instruction * mangled by set_swbp(). * * On a breakpoint hit, thread contests for a slot. It frees the * slot after singlestep. Currently a fixed number of slots are * allocated. */ struct xol_area { wait_queue_head_t wq; /* if all slots are busy */ unsigned long *bitmap; /* 0 = free slot */ struct page *page; /* * We keep the vma's vm_start rather than a pointer to the vma * itself. The probed process or a naughty kernel module could make * the vma go away, and we must handle that reasonably gracefully. */ unsigned long vaddr; /* Page(s) of instruction slots */ }; static void uprobe_warn(struct task_struct *t, const char *msg) { pr_warn("uprobe: %s:%d failed to %s\n", current->comm, current->pid, msg); } /* * valid_vma: Verify if the specified vma is an executable vma * Relax restrictions while unregistering: vm_flags might have * changed after breakpoint was inserted. * - is_register: indicates if we are in register context. * - Return 1 if the specified virtual address is in an * executable vma. */ static bool valid_vma(struct vm_area_struct *vma, bool is_register) { vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE; if (is_register) flags |= VM_WRITE; return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC; } static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset) { return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT); } static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr) { return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start); } /** * __replace_page - replace page in vma by new page. * based on replace_page in mm/ksm.c * * @vma: vma that holds the pte pointing to page * @addr: address the old @page is mapped at * @old_page: the page we are replacing by new_page * @new_page: the modified page we replace page by * * If @new_page is NULL, only unmap @old_page. * * Returns 0 on success, negative error code otherwise. */ static int __replace_page(struct vm_area_struct *vma, unsigned long addr, struct page *old_page, struct page *new_page) { struct folio *old_folio = page_folio(old_page); struct folio *new_folio; struct mm_struct *mm = vma->vm_mm; DEFINE_FOLIO_VMA_WALK(pvmw, old_folio, vma, addr, 0); int err; struct mmu_notifier_range range; mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr, addr + PAGE_SIZE); if (new_page) { new_folio = page_folio(new_page); err = mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL); if (err) return err; } /* For folio_free_swap() below */ folio_lock(old_folio); mmu_notifier_invalidate_range_start(&range); err = -EAGAIN; if (!page_vma_mapped_walk(&pvmw)) goto unlock; VM_BUG_ON_PAGE(addr != pvmw.address, old_page); if (new_page) { folio_get(new_folio); folio_add_new_anon_rmap(new_folio, vma, addr, RMAP_EXCLUSIVE); folio_add_lru_vma(new_folio, vma); } else /* no new page, just dec_mm_counter for old_page */ dec_mm_counter(mm, MM_ANONPAGES); if (!folio_test_anon(old_folio)) { dec_mm_counter(mm, mm_counter_file(old_folio)); inc_mm_counter(mm, MM_ANONPAGES); } flush_cache_page(vma, addr, pte_pfn(ptep_get(pvmw.pte))); ptep_clear_flush(vma, addr, pvmw.pte); if (new_page) set_pte_at(mm, addr, pvmw.pte, mk_pte(new_page, vma->vm_page_prot)); folio_remove_rmap_pte(old_folio, old_page, vma); if (!folio_mapped(old_folio)) folio_free_swap(old_folio); page_vma_mapped_walk_done(&pvmw); folio_put(old_folio); err = 0; unlock: mmu_notifier_invalidate_range_end(&range); folio_unlock(old_folio); return err; } /** * is_swbp_insn - check if instruction is breakpoint instruction. * @insn: instruction to be checked. * Default implementation of is_swbp_insn * Returns true if @insn is a breakpoint instruction. */ bool __weak is_swbp_insn(uprobe_opcode_t *insn) { return *insn == UPROBE_SWBP_INSN; } /** * is_trap_insn - check if instruction is breakpoint instruction. * @insn: instruction to be checked. * Default implementation of is_trap_insn * Returns true if @insn is a breakpoint instruction. * * This function is needed for the case where an architecture has multiple * trap instructions (like powerpc). */ bool __weak is_trap_insn(uprobe_opcode_t *insn) { return is_swbp_insn(insn); } static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len) { void *kaddr = kmap_atomic(page); memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len); kunmap_atomic(kaddr); } static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len) { void *kaddr = kmap_atomic(page); memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len); kunmap_atomic(kaddr); } static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode) { uprobe_opcode_t old_opcode; bool is_swbp; /* * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here. * We do not check if it is any other 'trap variant' which could * be conditional trap instruction such as the one powerpc supports. * * The logic is that we do not care if the underlying instruction * is a trap variant; uprobes always wins over any other (gdb) * breakpoint. */ copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE); is_swbp = is_swbp_insn(&old_opcode); if (is_swbp_insn(new_opcode)) { if (is_swbp) /* register: already installed? */ return 0; } else { if (!is_swbp) /* unregister: was it changed by us? */ return 0; } return 1; } static struct delayed_uprobe * delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm) { struct delayed_uprobe *du; list_for_each_entry(du, &delayed_uprobe_list, list) if (du->uprobe == uprobe && du->mm == mm) return du; return NULL; } static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm) { struct delayed_uprobe *du; if (delayed_uprobe_check(uprobe, mm)) return 0; du = kzalloc(sizeof(*du), GFP_KERNEL); if (!du) return -ENOMEM; du->uprobe = uprobe; du->mm = mm; list_add(&du->list, &delayed_uprobe_list); return 0; } static void delayed_uprobe_delete(struct delayed_uprobe *du) { if (WARN_ON(!du)) return; list_del(&du->list); kfree(du); } static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm) { struct list_head *pos, *q; struct delayed_uprobe *du; if (!uprobe && !mm) return; list_for_each_safe(pos, q, &delayed_uprobe_list) { du = list_entry(pos, struct delayed_uprobe, list); if (uprobe && du->uprobe != uprobe) continue; if (mm && du->mm != mm) continue; delayed_uprobe_delete(du); } } static bool valid_ref_ctr_vma(struct uprobe *uprobe, struct vm_area_struct *vma) { unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset); return uprobe->ref_ctr_offset && vma->vm_file && file_inode(vma->vm_file) == uprobe->inode && (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE && vma->vm_start <= vaddr && vma->vm_end > vaddr; } static struct vm_area_struct * find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm) { VMA_ITERATOR(vmi, mm, 0); struct vm_area_struct *tmp; for_each_vma(vmi, tmp) if (valid_ref_ctr_vma(uprobe, tmp)) return tmp; return NULL; } static int __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d) { void *kaddr; struct page *page; int ret; short *ptr; if (!vaddr || !d) return -EINVAL; ret = get_user_pages_remote(mm, vaddr, 1, FOLL_WRITE, &page, NULL); if (unlikely(ret <= 0)) { /* * We are asking for 1 page. If get_user_pages_remote() fails, * it may return 0, in that case we have to return error. */ return ret == 0 ? -EBUSY : ret; } kaddr = kmap_atomic(page); ptr = kaddr + (vaddr & ~PAGE_MASK); if (unlikely(*ptr + d < 0)) { pr_warn("ref_ctr going negative. vaddr: 0x%lx, " "curr val: %d, delta: %d\n", vaddr, *ptr, d); ret = -EINVAL; goto out; } *ptr += d; ret = 0; out: kunmap_atomic(kaddr); put_page(page); return ret; } static void update_ref_ctr_warn(struct uprobe *uprobe, struct mm_struct *mm, short d) { pr_warn("ref_ctr %s failed for inode: 0x%lx offset: " "0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n", d > 0 ? "increment" : "decrement", uprobe->inode->i_ino, (unsigned long long) uprobe->offset, (unsigned long long) uprobe->ref_ctr_offset, mm); } static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm, short d) { struct vm_area_struct *rc_vma; unsigned long rc_vaddr; int ret = 0; rc_vma = find_ref_ctr_vma(uprobe, mm); if (rc_vma) { rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset); ret = __update_ref_ctr(mm, rc_vaddr, d); if (ret) update_ref_ctr_warn(uprobe, mm, d); if (d > 0) return ret; } mutex_lock(&delayed_uprobe_lock); if (d > 0) ret = delayed_uprobe_add(uprobe, mm); else delayed_uprobe_remove(uprobe, mm); mutex_unlock(&delayed_uprobe_lock); return ret; } /* * NOTE: * Expect the breakpoint instruction to be the smallest size instruction for * the architecture. If an arch has variable length instruction and the * breakpoint instruction is not of the smallest length instruction * supported by that architecture then we need to modify is_trap_at_addr and * uprobe_write_opcode accordingly. This would never be a problem for archs * that have fixed length instructions. * * uprobe_write_opcode - write the opcode at a given virtual address. * @auprobe: arch specific probepoint information. * @mm: the probed process address space. * @vaddr: the virtual address to store the opcode. * @opcode: opcode to be written at @vaddr. * * Called with mm->mmap_lock held for read or write. * Return 0 (success) or a negative errno. */ int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr, uprobe_opcode_t opcode) { struct uprobe *uprobe; struct page *old_page, *new_page; struct vm_area_struct *vma; int ret, is_register, ref_ctr_updated = 0; bool orig_page_huge = false; unsigned int gup_flags = FOLL_FORCE; is_register = is_swbp_insn(&opcode); uprobe = container_of(auprobe, struct uprobe, arch); retry: if (is_register) gup_flags |= FOLL_SPLIT_PMD; /* Read the page with vaddr into memory */ old_page = get_user_page_vma_remote(mm, vaddr, gup_flags, &vma); if (IS_ERR(old_page)) return PTR_ERR(old_page); ret = verify_opcode(old_page, vaddr, &opcode); if (ret <= 0) goto put_old; if (WARN(!is_register && PageCompound(old_page), "uprobe unregister should never work on compound page\n")) { ret = -EINVAL; goto put_old; } /* We are going to replace instruction, update ref_ctr. */ if (!ref_ctr_updated && uprobe->ref_ctr_offset) { ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1); if (ret) goto put_old; ref_ctr_updated = 1; } ret = 0; if (!is_register && !PageAnon(old_page)) goto put_old; ret = anon_vma_prepare(vma); if (ret) goto put_old; ret = -ENOMEM; new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr); if (!new_page) goto put_old; __SetPageUptodate(new_page); copy_highpage(new_page, old_page); copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); if (!is_register) { struct page *orig_page; pgoff_t index; VM_BUG_ON_PAGE(!PageAnon(old_page), old_page); index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT; orig_page = find_get_page(vma->vm_file->f_inode->i_mapping, index); if (orig_page) { if (PageUptodate(orig_page) && pages_identical(new_page, orig_page)) { /* let go new_page */ put_page(new_page); new_page = NULL; if (PageCompound(orig_page)) orig_page_huge = true; } put_page(orig_page); } } ret = __replace_page(vma, vaddr & PAGE_MASK, old_page, new_page); if (new_page) put_page(new_page); put_old: put_page(old_page); if (unlikely(ret == -EAGAIN)) goto retry; /* Revert back reference counter if instruction update failed. */ if (ret && is_register && ref_ctr_updated) update_ref_ctr(uprobe, mm, -1); /* try collapse pmd for compound page */ if (!ret && orig_page_huge) collapse_pte_mapped_thp(mm, vaddr, false); return ret; } /** * set_swbp - store breakpoint at a given address. * @auprobe: arch specific probepoint information. * @mm: the probed process address space. * @vaddr: the virtual address to insert the opcode. * * For mm @mm, store the breakpoint instruction at @vaddr. * Return 0 (success) or a negative errno. */ int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) { return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN); } /** * set_orig_insn - Restore the original instruction. * @mm: the probed process address space. * @auprobe: arch specific probepoint information. * @vaddr: the virtual address to insert the opcode. * * For mm @mm, restore the original opcode (opcode) at @vaddr. * Return 0 (success) or a negative errno. */ int __weak set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) { return uprobe_write_opcode(auprobe, mm, vaddr, *(uprobe_opcode_t *)&auprobe->insn); } /* uprobe should have guaranteed positive refcount */ static struct uprobe *get_uprobe(struct uprobe *uprobe) { refcount_inc(&uprobe->ref); return uprobe; } /* * uprobe should have guaranteed lifetime, which can be either of: * - caller already has refcount taken (and wants an extra one); * - uprobe is RCU protected and won't be freed until after grace period; * - we are holding uprobes_treelock (for read or write, doesn't matter). */ static struct uprobe *try_get_uprobe(struct uprobe *uprobe) { if (refcount_inc_not_zero(&uprobe->ref)) return uprobe; return NULL; } static inline bool uprobe_is_active(struct uprobe *uprobe) { return !RB_EMPTY_NODE(&uprobe->rb_node); } static void uprobe_free_rcu_tasks_trace(struct rcu_head *rcu) { struct uprobe *uprobe = container_of(rcu, struct uprobe, rcu); kfree(uprobe); } static void uprobe_free_srcu(struct rcu_head *rcu) { struct uprobe *uprobe = container_of(rcu, struct uprobe, rcu); call_rcu_tasks_trace(&uprobe->rcu, uprobe_free_rcu_tasks_trace); } static void uprobe_free_deferred(struct work_struct *work) { struct uprobe *uprobe = container_of(work, struct uprobe, work); write_lock(&uprobes_treelock); if (uprobe_is_active(uprobe)) { write_seqcount_begin(&uprobes_seqcount); rb_erase(&uprobe->rb_node, &uprobes_tree); write_seqcount_end(&uprobes_seqcount); } write_unlock(&uprobes_treelock); /* * If application munmap(exec_vma) before uprobe_unregister() * gets called, we don't get a chance to remove uprobe from * delayed_uprobe_list from remove_breakpoint(). Do it here. */ mutex_lock(&delayed_uprobe_lock); delayed_uprobe_remove(uprobe, NULL); mutex_unlock(&delayed_uprobe_lock); /* start srcu -> rcu_tasks_trace -> kfree chain */ call_srcu(&uretprobes_srcu, &uprobe->rcu, uprobe_free_srcu); } static void put_uprobe(struct uprobe *uprobe) { if (!refcount_dec_and_test(&uprobe->ref)) return; INIT_WORK(&uprobe->work, uprobe_free_deferred); schedule_work(&uprobe->work); } /* Initialize hprobe as SRCU-protected "leased" uprobe */ static void hprobe_init_leased(struct hprobe *hprobe, struct uprobe *uprobe, int srcu_idx) { WARN_ON(!uprobe); hprobe->state = HPROBE_LEASED; hprobe->uprobe = uprobe; hprobe->srcu_idx = srcu_idx; } /* Initialize hprobe as refcounted ("stable") uprobe (uprobe can be NULL). */ static void hprobe_init_stable(struct hprobe *hprobe, struct uprobe *uprobe) { hprobe->state = uprobe ? HPROBE_STABLE : HPROBE_GONE; hprobe->uprobe = uprobe; hprobe->srcu_idx = -1; } /* * hprobe_consume() fetches hprobe's underlying uprobe and detects whether * uprobe is SRCU protected or is refcounted. hprobe_consume() can be * used only once for a given hprobe. * * Caller has to call hprobe_finalize() and pass previous hprobe_state, so * that hprobe_finalize() can perform SRCU unlock or put uprobe, whichever * is appropriate. */ static inline struct uprobe *hprobe_consume(struct hprobe *hprobe, enum hprobe_state *hstate) { *hstate = xchg(&hprobe->state, HPROBE_CONSUMED); switch (*hstate) { case HPROBE_LEASED: case HPROBE_STABLE: return hprobe->uprobe; case HPROBE_GONE: /* uprobe is NULL, no SRCU */ case HPROBE_CONSUMED: /* uprobe was finalized already, do nothing */ return NULL; default: WARN(1, "hprobe invalid state %d", *hstate); return NULL; } } /* * Reset hprobe state and, if hprobe was LEASED, release SRCU lock. * hprobe_finalize() can only be used from current context after * hprobe_consume() call (which determines uprobe and hstate value). */ static void hprobe_finalize(struct hprobe *hprobe, enum hprobe_state hstate) { switch (hstate) { case HPROBE_LEASED: __srcu_read_unlock(&uretprobes_srcu, hprobe->srcu_idx); break; case HPROBE_STABLE: put_uprobe(hprobe->uprobe); break; case HPROBE_GONE: case HPROBE_CONSUMED: break; default: WARN(1, "hprobe invalid state %d", hstate); break; } } /* * Attempt to switch (atomically) uprobe from being SRCU protected (LEASED) * to refcounted (STABLE) state. Competes with hprobe_consume(); only one of * them can win the race to perform SRCU unlocking. Whoever wins must perform * SRCU unlock. * * Returns underlying valid uprobe or NULL, if there was no underlying uprobe * to begin with or we failed to bump its refcount and it's going away. * * Returned non-NULL uprobe can be still safely used within an ongoing SRCU * locked region. If `get` is true, it's guaranteed that non-NULL uprobe has * an extra refcount for caller to assume and use. Otherwise, it's not * guaranteed that returned uprobe has a positive refcount, so caller has to * attempt try_get_uprobe(), if it needs to preserve uprobe beyond current * SRCU lock region. See dup_utask(). */ static struct uprobe *hprobe_expire(struct hprobe *hprobe, bool get) { enum hprobe_state hstate; /* * return_instance's hprobe is protected by RCU. * Underlying uprobe is itself protected from reuse by SRCU. */ lockdep_assert(rcu_read_lock_held() && srcu_read_lock_held(&uretprobes_srcu)); hstate = READ_ONCE(hprobe->state); switch (hstate) { case HPROBE_STABLE: /* uprobe has positive refcount, bump refcount, if necessary */ return get ? get_uprobe(hprobe->uprobe) : hprobe->uprobe; case HPROBE_GONE: /* * SRCU was unlocked earlier and we didn't manage to take * uprobe refcnt, so it's effectively NULL */ return NULL; case HPROBE_CONSUMED: /* * uprobe was consumed, so it's effectively NULL as far as * uretprobe processing logic is concerned */ return NULL; case HPROBE_LEASED: { struct uprobe *uprobe = try_get_uprobe(hprobe->uprobe); /* * Try to switch hprobe state, guarding against * hprobe_consume() or another hprobe_expire() racing with us. * Note, if we failed to get uprobe refcount, we use special * HPROBE_GONE state to signal that hprobe->uprobe shouldn't * be used as it will be freed after SRCU is unlocked. */ if (try_cmpxchg(&hprobe->state, &hstate, uprobe ? HPROBE_STABLE : HPROBE_GONE)) { /* We won the race, we are the ones to unlock SRCU */ __srcu_read_unlock(&uretprobes_srcu, hprobe->srcu_idx); return get ? get_uprobe(uprobe) : uprobe; } /* * We lost the race, undo refcount bump (if it ever happened), * unless caller would like an extra refcount anyways. */ if (uprobe && !get) put_uprobe(uprobe); /* * Even if hprobe_consume() or another hprobe_expire() wins * the state update race and unlocks SRCU from under us, we * still have a guarantee that underyling uprobe won't be * freed due to ongoing caller's SRCU lock region, so we can * return it regardless. Also, if `get` was true, we also have * an extra ref for the caller to own. This is used in dup_utask(). */ return uprobe; } default: WARN(1, "unknown hprobe state %d", hstate); return NULL; } } static __always_inline int uprobe_cmp(const struct inode *l_inode, const loff_t l_offset, const struct uprobe *r) { if (l_inode < r->inode) return -1; if (l_inode > r->inode) return 1; if (l_offset < r->offset) return -1; if (l_offset > r->offset) return 1; return 0; } #define __node_2_uprobe(node) \ rb_entry((node), struct uprobe, rb_node) struct __uprobe_key { struct inode *inode; loff_t offset; }; static inline int __uprobe_cmp_key(const void *key, const struct rb_node *b) { const struct __uprobe_key *a = key; return uprobe_cmp(a->inode, a->offset, __node_2_uprobe(b)); } static inline int __uprobe_cmp(struct rb_node *a, const struct rb_node *b) { struct uprobe *u = __node_2_uprobe(a); return uprobe_cmp(u->inode, u->offset, __node_2_uprobe(b)); } /* * Assumes being inside RCU protected region. * No refcount is taken on returned uprobe. */ static struct uprobe *find_uprobe_rcu(struct inode *inode, loff_t offset) { struct __uprobe_key key = { .inode = inode, .offset = offset, }; struct rb_node *node; unsigned int seq; lockdep_assert(rcu_read_lock_trace_held()); do { seq = read_seqcount_begin(&uprobes_seqcount); node = rb_find_rcu(&key, &uprobes_tree, __uprobe_cmp_key); /* * Lockless RB-tree lookups can result only in false negatives. * If the element is found, it is correct and can be returned * under RCU protection. If we find nothing, we need to * validate that seqcount didn't change. If it did, we have to * try again as we might have missed the element (false * negative). If seqcount is unchanged, search truly failed. */ if (node) return __node_2_uprobe(node); } while (read_seqcount_retry(&uprobes_seqcount, seq)); return NULL; } /* * Attempt to insert a new uprobe into uprobes_tree. * * If uprobe already exists (for given inode+offset), we just increment * refcount of previously existing uprobe. * * If not, a provided new instance of uprobe is inserted into the tree (with * assumed initial refcount == 1). * * In any case, we return a uprobe instance that ends up being in uprobes_tree. * Caller has to clean up new uprobe instance, if it ended up not being * inserted into the tree. * * We assume that uprobes_treelock is held for writing. */ static struct uprobe *__insert_uprobe(struct uprobe *uprobe) { struct rb_node *node; again: node = rb_find_add_rcu(&uprobe->rb_node, &uprobes_tree, __uprobe_cmp); if (node) { struct uprobe *u = __node_2_uprobe(node); if (!try_get_uprobe(u)) { rb_erase(node, &uprobes_tree); RB_CLEAR_NODE(&u->rb_node); goto again; } return u; } return uprobe; } /* * Acquire uprobes_treelock and insert uprobe into uprobes_tree * (or reuse existing one, see __insert_uprobe() comments above). */ static struct uprobe *insert_uprobe(struct uprobe *uprobe) { struct uprobe *u; write_lock(&uprobes_treelock); write_seqcount_begin(&uprobes_seqcount); u = __insert_uprobe(uprobe); write_seqcount_end(&uprobes_seqcount); write_unlock(&uprobes_treelock); return u; } static void ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe) { pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx " "ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n", uprobe->inode->i_ino, (unsigned long long) uprobe->offset, (unsigned long long) cur_uprobe->ref_ctr_offset, (unsigned long long) uprobe->ref_ctr_offset); } static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset, loff_t ref_ctr_offset) { struct uprobe *uprobe, *cur_uprobe; uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL); if (!uprobe) return ERR_PTR(-ENOMEM); uprobe->inode = inode; uprobe->offset = offset; uprobe->ref_ctr_offset = ref_ctr_offset; INIT_LIST_HEAD(&uprobe->consumers); init_rwsem(&uprobe->register_rwsem); init_rwsem(&uprobe->consumer_rwsem); RB_CLEAR_NODE(&uprobe->rb_node); refcount_set(&uprobe->ref, 1); /* add to uprobes_tree, sorted on inode:offset */ cur_uprobe = insert_uprobe(uprobe); /* a uprobe exists for this inode:offset combination */ if (cur_uprobe != uprobe) { if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) { ref_ctr_mismatch_warn(cur_uprobe, uprobe); put_uprobe(cur_uprobe); kfree(uprobe); return ERR_PTR(-EINVAL); } kfree(uprobe); uprobe = cur_uprobe; } return uprobe; } static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc) { static atomic64_t id; down_write(&uprobe->consumer_rwsem); list_add_rcu(&uc->cons_node, &uprobe->consumers); uc->id = (__u64) atomic64_inc_return(&id); up_write(&uprobe->consumer_rwsem); } /* * For uprobe @uprobe, delete the consumer @uc. * Should never be called with consumer that's not part of @uprobe->consumers. */ static void consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc) { down_write(&uprobe->consumer_rwsem); list_del_rcu(&uc->cons_node); up_write(&uprobe->consumer_rwsem); } static int __copy_insn(struct address_space *mapping, struct file *filp, void *insn, int nbytes, loff_t offset) { struct page *page; /* * Ensure that the page that has the original instruction is populated * and in page-cache. If ->read_folio == NULL it must be shmem_mapping(), * see uprobe_register(). */ if (mapping->a_ops->read_folio) page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp); else page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT); if (IS_ERR(page)) return PTR_ERR(page); copy_from_page(page, offset, insn, nbytes); put_page(page); return 0; } static int copy_insn(struct uprobe *uprobe, struct file *filp) { struct address_space *mapping = uprobe->inode->i_mapping; loff_t offs = uprobe->offset; void *insn = &uprobe->arch.insn; int size = sizeof(uprobe->arch.insn); int len, err = -EIO; /* Copy only available bytes, -EIO if nothing was read */ do { if (offs >= i_size_read(uprobe->inode)) break; len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK)); err = __copy_insn(mapping, filp, insn, len, offs); if (err) break; insn += len; offs += len; size -= len; } while (size); return err; } static int prepare_uprobe(struct uprobe *uprobe, struct file *file, struct mm_struct *mm, unsigned long vaddr) { int ret = 0; if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) return ret; /* TODO: move this into _register, until then we abuse this sem. */ down_write(&uprobe->consumer_rwsem); if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) goto out; ret = copy_insn(uprobe, file); if (ret) goto out; ret = -ENOTSUPP; if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn)) goto out; ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr); if (ret) goto out; smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */ set_bit(UPROBE_COPY_INSN, &uprobe->flags); out: up_write(&uprobe->consumer_rwsem); return ret; } static inline bool consumer_filter(struct uprobe_consumer *uc, struct mm_struct *mm) { return !uc->filter || uc->filter(uc, mm); } static bool filter_chain(struct uprobe *uprobe, struct mm_struct *mm) { struct uprobe_consumer *uc; bool ret = false; down_read(&uprobe->consumer_rwsem); list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) { ret = consumer_filter(uc, mm); if (ret) break; } up_read(&uprobe->consumer_rwsem); return ret; } static int install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, struct vm_area_struct *vma, unsigned long vaddr) { bool first_uprobe; int ret; ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr); if (ret) return ret; /* * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(), * the task can hit this breakpoint right after __replace_page(). */ first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags); if (first_uprobe) set_bit(MMF_HAS_UPROBES, &mm->flags); ret = set_swbp(&uprobe->arch, mm, vaddr); if (!ret) clear_bit(MMF_RECALC_UPROBES, &mm->flags); else if (first_uprobe) clear_bit(MMF_HAS_UPROBES, &mm->flags); return ret; } static int remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr) { set_bit(MMF_RECALC_UPROBES, &mm->flags); return set_orig_insn(&uprobe->arch, mm, vaddr); } struct map_info { struct map_info *next; struct mm_struct *mm; unsigned long vaddr; }; static inline struct map_info *free_map_info(struct map_info *info) { struct map_info *next = info->next; kfree(info); return next; } static struct map_info * build_map_info(struct address_space *mapping, loff_t offset, bool is_register) { unsigned long pgoff = offset >> PAGE_SHIFT; struct vm_area_struct *vma; struct map_info *curr = NULL; struct map_info *prev = NULL; struct map_info *info; int more = 0; again: i_mmap_lock_read(mapping); vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { if (!valid_vma(vma, is_register)) continue; if (!prev && !more) { /* * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through * reclaim. This is optimistic, no harm done if it fails. */ prev = kmalloc(sizeof(struct map_info), GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN); if (prev) prev->next = NULL; } if (!prev) { more++; continue; } if (!mmget_not_zero(vma->vm_mm)) continue; info = prev; prev = prev->next; info->next = curr; curr = info; info->mm = vma->vm_mm; info->vaddr = offset_to_vaddr(vma, offset); } i_mmap_unlock_read(mapping); if (!more) goto out; prev = curr; while (curr) { mmput(curr->mm); curr = curr->next; } do { info = kmalloc(sizeof(struct map_info), GFP_KERNEL); if (!info) { curr = ERR_PTR(-ENOMEM); goto out; } info->next = prev; prev = info; } while (--more); goto again; out: while (prev) prev = free_map_info(prev); return curr; } static int register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new) { bool is_register = !!new; struct map_info *info; int err = 0; percpu_down_write(&dup_mmap_sem); info = build_map_info(uprobe->inode->i_mapping, uprobe->offset, is_register); if (IS_ERR(info)) { err = PTR_ERR(info); goto out; } while (info) { struct mm_struct *mm = info->mm; struct vm_area_struct *vma; if (err && is_register) goto free; /* * We take mmap_lock for writing to avoid the race with * find_active_uprobe_rcu() which takes mmap_lock for reading. * Thus this install_breakpoint() can not make * is_trap_at_addr() true right after find_uprobe_rcu() * returns NULL in find_active_uprobe_rcu(). */ mmap_write_lock(mm); vma = find_vma(mm, info->vaddr); if (!vma || !valid_vma(vma, is_register) || file_inode(vma->vm_file) != uprobe->inode) goto unlock; if (vma->vm_start > info->vaddr || vaddr_to_offset(vma, info->vaddr) != uprobe->offset) goto unlock; if (is_register) { /* consult only the "caller", new consumer. */ if (consumer_filter(new, mm)) err = install_breakpoint(uprobe, mm, vma, info->vaddr); } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) { if (!filter_chain(uprobe, mm)) err |= remove_breakpoint(uprobe, mm, info->vaddr); } unlock: mmap_write_unlock(mm); free: mmput(mm); info = free_map_info(info); } out: percpu_up_write(&dup_mmap_sem); return err; } /** * uprobe_unregister_nosync - unregister an already registered probe. * @uprobe: uprobe to remove * @uc: identify which probe if multiple probes are colocated. */ void uprobe_unregister_nosync(struct uprobe *uprobe, struct uprobe_consumer *uc) { int err; down_write(&uprobe->register_rwsem); consumer_del(uprobe, uc); err = register_for_each_vma(uprobe, NULL); up_write(&uprobe->register_rwsem); /* TODO : cant unregister? schedule a worker thread */ if (unlikely(err)) { uprobe_warn(current, "unregister, leaking uprobe"); return; } put_uprobe(uprobe); } EXPORT_SYMBOL_GPL(uprobe_unregister_nosync); void uprobe_unregister_sync(void) { /* * Now that handler_chain() and handle_uretprobe_chain() iterate over * uprobe->consumers list under RCU protection without holding * uprobe->register_rwsem, we need to wait for RCU grace period to * make sure that we can't call into just unregistered * uprobe_consumer's callbacks anymore. If we don't do that, fast and * unlucky enough caller can free consumer's memory and cause * handler_chain() or handle_uretprobe_chain() to do an use-after-free. */ synchronize_rcu_tasks_trace(); synchronize_srcu(&uretprobes_srcu); } EXPORT_SYMBOL_GPL(uprobe_unregister_sync); /** * uprobe_register - register a probe * @inode: the file in which the probe has to be placed. * @offset: offset from the start of the file. * @ref_ctr_offset: offset of SDT marker / reference counter * @uc: information on howto handle the probe.. * * Apart from the access refcount, uprobe_register() takes a creation * refcount (thro alloc_uprobe) if and only if this @uprobe is getting * inserted into the rbtree (i.e first consumer for a @inode:@offset * tuple). Creation refcount stops uprobe_unregister from freeing the * @uprobe even before the register operation is complete. Creation * refcount is released when the last @uc for the @uprobe * unregisters. Caller of uprobe_register() is required to keep @inode * (and the containing mount) referenced. * * Return: pointer to the new uprobe on success or an ERR_PTR on failure. */ struct uprobe *uprobe_register(struct inode *inode, loff_t offset, loff_t ref_ctr_offset, struct uprobe_consumer *uc) { struct uprobe *uprobe; int ret; /* Uprobe must have at least one set consumer */ if (!uc->handler && !uc->ret_handler) return ERR_PTR(-EINVAL); /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */ if (!inode->i_mapping->a_ops->read_folio && !shmem_mapping(inode->i_mapping)) return ERR_PTR(-EIO); /* Racy, just to catch the obvious mistakes */ if (offset > i_size_read(inode)) return ERR_PTR(-EINVAL); /* * This ensures that copy_from_page(), copy_to_page() and * __update_ref_ctr() can't cross page boundary. */ if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE)) return ERR_PTR(-EINVAL); if (!IS_ALIGNED(ref_ctr_offset, sizeof(short))) return ERR_PTR(-EINVAL); uprobe = alloc_uprobe(inode, offset, ref_ctr_offset); if (IS_ERR(uprobe)) return uprobe; down_write(&uprobe->register_rwsem); consumer_add(uprobe, uc); ret = register_for_each_vma(uprobe, uc); up_write(&uprobe->register_rwsem); if (ret) { uprobe_unregister_nosync(uprobe, uc); /* * Registration might have partially succeeded, so we can have * this consumer being called right at this time. We need to * sync here. It's ok, it's unlikely slow path. */ uprobe_unregister_sync(); return ERR_PTR(ret); } return uprobe; } EXPORT_SYMBOL_GPL(uprobe_register); /** * uprobe_apply - add or remove the breakpoints according to @uc->filter * @uprobe: uprobe which "owns" the breakpoint * @uc: consumer which wants to add more or remove some breakpoints * @add: add or remove the breakpoints * Return: 0 on success or negative error code. */ int uprobe_apply(struct uprobe *uprobe, struct uprobe_consumer *uc, bool add) { struct uprobe_consumer *con; int ret = -ENOENT; down_write(&uprobe->register_rwsem); rcu_read_lock_trace(); list_for_each_entry_rcu(con, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) { if (con == uc) { ret = register_for_each_vma(uprobe, add ? uc : NULL); break; } } rcu_read_unlock_trace(); up_write(&uprobe->register_rwsem); return ret; } static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm) { VMA_ITERATOR(vmi, mm, 0); struct vm_area_struct *vma; int err = 0; mmap_read_lock(mm); for_each_vma(vmi, vma) { unsigned long vaddr; loff_t offset; if (!valid_vma(vma, false) || file_inode(vma->vm_file) != uprobe->inode) continue; offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT; if (uprobe->offset < offset || uprobe->offset >= offset + vma->vm_end - vma->vm_start) continue; vaddr = offset_to_vaddr(vma, uprobe->offset); err |= remove_breakpoint(uprobe, mm, vaddr); } mmap_read_unlock(mm); return err; } static struct rb_node * find_node_in_range(struct inode *inode, loff_t min, loff_t max) { struct rb_node *n = uprobes_tree.rb_node; while (n) { struct uprobe *u = rb_entry(n, struct uprobe, rb_node); if (inode < u->inode) { n = n->rb_left; } else if (inode > u->inode) { n = n->rb_right; } else { if (max < u->offset) n = n->rb_left; else if (min > u->offset) n = n->rb_right; else break; } } return n; } /* * For a given range in vma, build a list of probes that need to be inserted. */ static void build_probe_list(struct inode *inode, struct vm_area_struct *vma, unsigned long start, unsigned long end, struct list_head *head) { loff_t min, max; struct rb_node *n, *t; struct uprobe *u; INIT_LIST_HEAD(head); min = vaddr_to_offset(vma, start); max = min + (end - start) - 1; read_lock(&uprobes_treelock); n = find_node_in_range(inode, min, max); if (n) { for (t = n; t; t = rb_prev(t)) { u = rb_entry(t, struct uprobe, rb_node); if (u->inode != inode || u->offset < min) break; /* if uprobe went away, it's safe to ignore it */ if (try_get_uprobe(u)) list_add(&u->pending_list, head); } for (t = n; (t = rb_next(t)); ) { u = rb_entry(t, struct uprobe, rb_node); if (u->inode != inode || u->offset > max) break; /* if uprobe went away, it's safe to ignore it */ if (try_get_uprobe(u)) list_add(&u->pending_list, head); } } read_unlock(&uprobes_treelock); } /* @vma contains reference counter, not the probed instruction. */ static int delayed_ref_ctr_inc(struct vm_area_struct *vma) { struct list_head *pos, *q; struct delayed_uprobe *du; unsigned long vaddr; int ret = 0, err = 0; mutex_lock(&delayed_uprobe_lock); list_for_each_safe(pos, q, &delayed_uprobe_list) { du = list_entry(pos, struct delayed_uprobe, list); if (du->mm != vma->vm_mm || !valid_ref_ctr_vma(du->uprobe, vma)) continue; vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset); ret = __update_ref_ctr(vma->vm_mm, vaddr, 1); if (ret) { update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1); if (!err) err = ret; } delayed_uprobe_delete(du); } mutex_unlock(&delayed_uprobe_lock); return err; } /* * Called from mmap_region/vma_merge with mm->mmap_lock acquired. * * Currently we ignore all errors and always return 0, the callers * can't handle the failure anyway. */ int uprobe_mmap(struct vm_area_struct *vma) { struct list_head tmp_list; struct uprobe *uprobe, *u; struct inode *inode; if (no_uprobe_events()) return 0; if (vma->vm_file && (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE && test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags)) delayed_ref_ctr_inc(vma); if (!valid_vma(vma, true)) return 0; inode = file_inode(vma->vm_file); if (!inode) return 0; mutex_lock(uprobes_mmap_hash(inode)); build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list); /* * We can race with uprobe_unregister(), this uprobe can be already * removed. But in this case filter_chain() must return false, all * consumers have gone away. */ list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) { if (!fatal_signal_pending(current) && filter_chain(uprobe, vma->vm_mm)) { unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset); install_breakpoint(uprobe, vma->vm_mm, vma, vaddr); } put_uprobe(uprobe); } mutex_unlock(uprobes_mmap_hash(inode)); return 0; } static bool vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end) { loff_t min, max; struct inode *inode; struct rb_node *n; inode = file_inode(vma->vm_file); min = vaddr_to_offset(vma, start); max = min + (end - start) - 1; read_lock(&uprobes_treelock); n = find_node_in_range(inode, min, max); read_unlock(&uprobes_treelock); return !!n; } /* * Called in context of a munmap of a vma. */ void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end) { if (no_uprobe_events() || !valid_vma(vma, false)) return; if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */ return; if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) || test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags)) return; if (vma_has_uprobes(vma, start, end)) set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags); } static vm_fault_t xol_fault(const struct vm_special_mapping *sm, struct vm_area_struct *vma, struct vm_fault *vmf) { struct xol_area *area = vma->vm_mm->uprobes_state.xol_area; vmf->page = area->page; get_page(vmf->page); return 0; } static int xol_mremap(const struct vm_special_mapping *sm, struct vm_area_struct *new_vma) { return -EPERM; } static const struct vm_special_mapping xol_mapping = { .name = "[uprobes]", .fault = xol_fault, .mremap = xol_mremap, }; /* Slot allocation for XOL */ static int xol_add_vma(struct mm_struct *mm, struct xol_area *area) { struct vm_area_struct *vma; int ret; if (mmap_write_lock_killable(mm)) return -EINTR; if (mm->uprobes_state.xol_area) { ret = -EALREADY; goto fail; } if (!area->vaddr) { /* Try to map as high as possible, this is only a hint. */ area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0); if (IS_ERR_VALUE(area->vaddr)) { ret = area->vaddr; goto fail; } } vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE, VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &xol_mapping); if (IS_ERR(vma)) { ret = PTR_ERR(vma); goto fail; } ret = 0; /* pairs with get_xol_area() */ smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */ fail: mmap_write_unlock(mm); return ret; } void * __weak arch_uprobe_trampoline(unsigned long *psize) { static uprobe_opcode_t insn = UPROBE_SWBP_INSN; *psize = UPROBE_SWBP_INSN_SIZE; return &insn; } static struct xol_area *__create_xol_area(unsigned long vaddr) { struct mm_struct *mm = current->mm; unsigned long insns_size; struct xol_area *area; void *insns; area = kzalloc(sizeof(*area), GFP_KERNEL); if (unlikely(!area)) goto out; area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long), GFP_KERNEL); if (!area->bitmap) goto free_area; area->page = alloc_page(GFP_HIGHUSER | __GFP_ZERO); if (!area->page) goto free_bitmap; area->vaddr = vaddr; init_waitqueue_head(&area->wq); /* Reserve the 1st slot for get_trampoline_vaddr() */ set_bit(0, area->bitmap); insns = arch_uprobe_trampoline(&insns_size); arch_uprobe_copy_ixol(area->page, 0, insns, insns_size); if (!xol_add_vma(mm, area)) return area; __free_page(area->page); free_bitmap: kfree(area->bitmap); free_area: kfree(area); out: return NULL; } /* * get_xol_area - Allocate process's xol_area if necessary. * This area will be used for storing instructions for execution out of line. * * Returns the allocated area or NULL. */ static struct xol_area *get_xol_area(void) { struct mm_struct *mm = current->mm; struct xol_area *area; if (!mm->uprobes_state.xol_area) __create_xol_area(0); /* Pairs with xol_add_vma() smp_store_release() */ area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */ return area; } /* * uprobe_clear_state - Free the area allocated for slots. */ void uprobe_clear_state(struct mm_struct *mm) { struct xol_area *area = mm->uprobes_state.xol_area; mutex_lock(&delayed_uprobe_lock); delayed_uprobe_remove(NULL, mm); mutex_unlock(&delayed_uprobe_lock); if (!area) return; put_page(area->page); kfree(area->bitmap); kfree(area); } void uprobe_start_dup_mmap(void) { percpu_down_read(&dup_mmap_sem); } void uprobe_end_dup_mmap(void) { percpu_up_read(&dup_mmap_sem); } void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm) { if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) { set_bit(MMF_HAS_UPROBES, &newmm->flags); /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */ set_bit(MMF_RECALC_UPROBES, &newmm->flags); } } static unsigned long xol_get_slot_nr(struct xol_area *area) { unsigned long slot_nr; slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE); if (slot_nr < UINSNS_PER_PAGE) { if (!test_and_set_bit(slot_nr, area->bitmap)) return slot_nr; } return UINSNS_PER_PAGE; } /* * xol_get_insn_slot - allocate a slot for xol. */ static bool xol_get_insn_slot(struct uprobe *uprobe, struct uprobe_task *utask) { struct xol_area *area = get_xol_area(); unsigned long slot_nr; if (!area) return false; wait_event(area->wq, (slot_nr = xol_get_slot_nr(area)) < UINSNS_PER_PAGE); utask->xol_vaddr = area->vaddr + slot_nr * UPROBE_XOL_SLOT_BYTES; arch_uprobe_copy_ixol(area->page, utask->xol_vaddr, &uprobe->arch.ixol, sizeof(uprobe->arch.ixol)); return true; } /* * xol_free_insn_slot - free the slot allocated by xol_get_insn_slot() */ static void xol_free_insn_slot(struct uprobe_task *utask) { struct xol_area *area = current->mm->uprobes_state.xol_area; unsigned long offset = utask->xol_vaddr - area->vaddr; unsigned int slot_nr; utask->xol_vaddr = 0; /* xol_vaddr must fit into [area->vaddr, area->vaddr + PAGE_SIZE) */ if (WARN_ON_ONCE(offset >= PAGE_SIZE)) return; slot_nr = offset / UPROBE_XOL_SLOT_BYTES; clear_bit(slot_nr, area->bitmap); smp_mb__after_atomic(); /* pairs with prepare_to_wait() */ if (waitqueue_active(&area->wq)) wake_up(&area->wq); } void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr, void *src, unsigned long len) { /* Initialize the slot */ copy_to_page(page, vaddr, src, len); /* * We probably need flush_icache_user_page() but it needs vma. * This should work on most of architectures by default. If * architecture needs to do something different it can define * its own version of the function. */ flush_dcache_page(page); } /** * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs * @regs: Reflects the saved state of the task after it has hit a breakpoint * instruction. * Return the address of the breakpoint instruction. */ unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs) { return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE; } unsigned long uprobe_get_trap_addr(struct pt_regs *regs) { struct uprobe_task *utask = current->utask; if (unlikely(utask && utask->active_uprobe)) return utask->vaddr; return instruction_pointer(regs); } static struct return_instance *free_ret_instance(struct return_instance *ri, bool cleanup_hprobe) { struct return_instance *next = ri->next; if (cleanup_hprobe) { enum hprobe_state hstate; (void)hprobe_consume(&ri->hprobe, &hstate); hprobe_finalize(&ri->hprobe, hstate); } kfree_rcu(ri, rcu); return next; } /* * Called with no locks held. * Called in context of an exiting or an exec-ing thread. */ void uprobe_free_utask(struct task_struct *t) { struct uprobe_task *utask = t->utask; struct return_instance *ri; if (!utask) return; WARN_ON_ONCE(utask->active_uprobe || utask->xol_vaddr); timer_delete_sync(&utask->ri_timer); ri = utask->return_instances; while (ri) ri = free_ret_instance(ri, true /* cleanup_hprobe */); kfree(utask); t->utask = NULL; } #define RI_TIMER_PERIOD (HZ / 10) /* 100 ms */ #define for_each_ret_instance_rcu(pos, head) \ for (pos = rcu_dereference_raw(head); pos; pos = rcu_dereference_raw(pos->next)) static void ri_timer(struct timer_list *timer) { struct uprobe_task *utask = container_of(timer, struct uprobe_task, ri_timer); struct return_instance *ri; /* SRCU protects uprobe from reuse for the cmpxchg() inside hprobe_expire(). */ guard(srcu)(&uretprobes_srcu); /* RCU protects return_instance from freeing. */ guard(rcu)(); for_each_ret_instance_rcu(ri, utask->return_instances) hprobe_expire(&ri->hprobe, false); } static struct uprobe_task *alloc_utask(void) { struct uprobe_task *utask; utask = kzalloc(sizeof(*utask), GFP_KERNEL); if (!utask) return NULL; timer_setup(&utask->ri_timer, ri_timer, 0); return utask; } /* * Allocate a uprobe_task object for the task if necessary. * Called when the thread hits a breakpoint. * * Returns: * - pointer to new uprobe_task on success * - NULL otherwise */ static struct uprobe_task *get_utask(void) { if (!current->utask) current->utask = alloc_utask(); return current->utask; } static size_t ri_size(int consumers_cnt) { struct return_instance *ri; return sizeof(*ri) + sizeof(ri->consumers[0]) * consumers_cnt; } #define DEF_CNT 4 static struct return_instance *alloc_return_instance(void) { struct return_instance *ri; ri = kzalloc(ri_size(DEF_CNT), GFP_KERNEL); if (!ri) return ZERO_SIZE_PTR; ri->consumers_cnt = DEF_CNT; return ri; } static struct return_instance *dup_return_instance(struct return_instance *old) { size_t size = ri_size(old->consumers_cnt); return kmemdup(old, size, GFP_KERNEL); } static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask) { struct uprobe_task *n_utask; struct return_instance **p, *o, *n; struct uprobe *uprobe; n_utask = alloc_utask(); if (!n_utask) return -ENOMEM; t->utask = n_utask; /* protect uprobes from freeing, we'll need try_get_uprobe() them */ guard(srcu)(&uretprobes_srcu); p = &n_utask->return_instances; for (o = o_utask->return_instances; o; o = o->next) { n = dup_return_instance(o); if (!n) return -ENOMEM; /* if uprobe is non-NULL, we'll have an extra refcount for uprobe */ uprobe = hprobe_expire(&o->hprobe, true); /* * New utask will have stable properly refcounted uprobe or * NULL. Even if we failed to get refcounted uprobe, we still * need to preserve full set of return_instances for proper * uretprobe handling and nesting in forked task. */ hprobe_init_stable(&n->hprobe, uprobe); n->next = NULL; rcu_assign_pointer(*p, n); p = &n->next; n_utask->depth++; } return 0; } static void dup_xol_work(struct callback_head *work) { if (current->flags & PF_EXITING) return; if (!__create_xol_area(current->utask->dup_xol_addr) && !fatal_signal_pending(current)) uprobe_warn(current, "dup xol area"); } /* * Called in context of a new clone/fork from copy_process. */ void uprobe_copy_process(struct task_struct *t, unsigned long flags) { struct uprobe_task *utask = current->utask; struct mm_struct *mm = current->mm; struct xol_area *area; t->utask = NULL; if (!utask || !utask->return_instances) return; if (mm == t->mm && !(flags & CLONE_VFORK)) return; if (dup_utask(t, utask)) return uprobe_warn(t, "dup ret instances"); /* The task can fork() after dup_xol_work() fails */ area = mm->uprobes_state.xol_area; if (!area) return uprobe_warn(t, "dup xol area"); if (mm == t->mm) return; t->utask->dup_xol_addr = area->vaddr; init_task_work(&t->utask->dup_xol_work, dup_xol_work); task_work_add(t, &t->utask->dup_xol_work, TWA_RESUME); } /* * Current area->vaddr notion assume the trampoline address is always * equal area->vaddr. * * Returns -1 in case the xol_area is not allocated. */ unsigned long uprobe_get_trampoline_vaddr(void) { struct xol_area *area; unsigned long trampoline_vaddr = -1; /* Pairs with xol_add_vma() smp_store_release() */ area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */ if (area) trampoline_vaddr = area->vaddr; return trampoline_vaddr; } static void cleanup_return_instances(struct uprobe_task *utask, bool chained, struct pt_regs *regs) { struct return_instance *ri = utask->return_instances; enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL; while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) { ri = free_ret_instance(ri, true /* cleanup_hprobe */); utask->depth--; } rcu_assign_pointer(utask->return_instances, ri); } static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs, struct return_instance *ri) { struct uprobe_task *utask = current->utask; unsigned long orig_ret_vaddr, trampoline_vaddr; bool chained; int srcu_idx; if (!get_xol_area()) goto free; if (utask->depth >= MAX_URETPROBE_DEPTH) { printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to" " nestedness limit pid/tgid=%d/%d\n", current->pid, current->tgid); goto free; } trampoline_vaddr = uprobe_get_trampoline_vaddr(); orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs); if (orig_ret_vaddr == -1) goto free; /* drop the entries invalidated by longjmp() */ chained = (orig_ret_vaddr == trampoline_vaddr); cleanup_return_instances(utask, chained, regs); /* * We don't want to keep trampoline address in stack, rather keep the * original return address of first caller thru all the consequent * instances. This also makes breakpoint unwrapping easier. */ if (chained) { if (!utask->return_instances) { /* * This situation is not possible. Likely we have an * attack from user-space. */ uprobe_warn(current, "handle tail call"); goto free; } orig_ret_vaddr = utask->return_instances->orig_ret_vaddr; } /* __srcu_read_lock() because SRCU lock survives switch to user space */ srcu_idx = __srcu_read_lock(&uretprobes_srcu); ri->func = instruction_pointer(regs); ri->stack = user_stack_pointer(regs); ri->orig_ret_vaddr = orig_ret_vaddr; ri->chained = chained; utask->depth++; hprobe_init_leased(&ri->hprobe, uprobe, srcu_idx); ri->next = utask->return_instances; rcu_assign_pointer(utask->return_instances, ri); mod_timer(&utask->ri_timer, jiffies + RI_TIMER_PERIOD); return; free: kfree(ri); } /* Prepare to single-step probed instruction out of line. */ static int pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr) { struct uprobe_task *utask = current->utask; int err; if (!try_get_uprobe(uprobe)) return -EINVAL; if (!xol_get_insn_slot(uprobe, utask)) { err = -ENOMEM; goto err_out; } utask->vaddr = bp_vaddr; err = arch_uprobe_pre_xol(&uprobe->arch, regs); if (unlikely(err)) { xol_free_insn_slot(utask); goto err_out; } utask->active_uprobe = uprobe; utask->state = UTASK_SSTEP; return 0; err_out: put_uprobe(uprobe); return err; } /* * If we are singlestepping, then ensure this thread is not connected to * non-fatal signals until completion of singlestep. When xol insn itself * triggers the signal, restart the original insn even if the task is * already SIGKILL'ed (since coredump should report the correct ip). This * is even more important if the task has a handler for SIGSEGV/etc, The * _same_ instruction should be repeated again after return from the signal * handler, and SSTEP can never finish in this case. */ bool uprobe_deny_signal(void) { struct task_struct *t = current; struct uprobe_task *utask = t->utask; if (likely(!utask || !utask->active_uprobe)) return false; WARN_ON_ONCE(utask->state != UTASK_SSTEP); if (task_sigpending(t)) { spin_lock_irq(&t->sighand->siglock); clear_tsk_thread_flag(t, TIF_SIGPENDING); spin_unlock_irq(&t->sighand->siglock); if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) { utask->state = UTASK_SSTEP_TRAPPED; set_tsk_thread_flag(t, TIF_UPROBE); } } return true; } static void mmf_recalc_uprobes(struct mm_struct *mm) { VMA_ITERATOR(vmi, mm, 0); struct vm_area_struct *vma; for_each_vma(vmi, vma) { if (!valid_vma(vma, false)) continue; /* * This is not strictly accurate, we can race with * uprobe_unregister() and see the already removed * uprobe if delete_uprobe() was not yet called. * Or this uprobe can be filtered out. */ if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end)) return; } clear_bit(MMF_HAS_UPROBES, &mm->flags); } static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr) { struct page *page; uprobe_opcode_t opcode; int result; if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE))) return -EINVAL; pagefault_disable(); result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr); pagefault_enable(); if (likely(result == 0)) goto out; result = get_user_pages(vaddr, 1, FOLL_FORCE, &page); if (result < 0) return result; copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); put_page(page); out: /* This needs to return true for any variant of the trap insn */ return is_trap_insn(&opcode); } /* assumes being inside RCU protected region */ static struct uprobe *find_active_uprobe_rcu(unsigned long bp_vaddr, int *is_swbp) { struct mm_struct *mm = current->mm; struct uprobe *uprobe = NULL; struct vm_area_struct *vma; mmap_read_lock(mm); vma = vma_lookup(mm, bp_vaddr); if (vma) { if (valid_vma(vma, false)) { struct inode *inode = file_inode(vma->vm_file); loff_t offset = vaddr_to_offset(vma, bp_vaddr); uprobe = find_uprobe_rcu(inode, offset); } if (!uprobe) *is_swbp = is_trap_at_addr(mm, bp_vaddr); } else { *is_swbp = -EFAULT; } if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags)) mmf_recalc_uprobes(mm); mmap_read_unlock(mm); return uprobe; } static struct return_instance* push_consumer(struct return_instance *ri, int idx, __u64 id, __u64 cookie) { if (unlikely(ri == ZERO_SIZE_PTR)) return ri; if (unlikely(idx >= ri->consumers_cnt)) { struct return_instance *old_ri = ri; ri->consumers_cnt += DEF_CNT; ri = krealloc(old_ri, ri_size(old_ri->consumers_cnt), GFP_KERNEL); if (!ri) { kfree(old_ri); return ZERO_SIZE_PTR; } } ri->consumers[idx].id = id; ri->consumers[idx].cookie = cookie; return ri; } static struct return_consumer * return_consumer_find(struct return_instance *ri, int *iter, int id) { struct return_consumer *ric; int idx = *iter; for (ric = &ri->consumers[idx]; idx < ri->consumers_cnt; idx++, ric++) { if (ric->id == id) { *iter = idx + 1; return ric; } } return NULL; } static bool ignore_ret_handler(int rc) { return rc == UPROBE_HANDLER_REMOVE || rc == UPROBE_HANDLER_IGNORE; } static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs) { struct uprobe_consumer *uc; bool has_consumers = false, remove = true; struct return_instance *ri = NULL; int push_idx = 0; current->utask->auprobe = &uprobe->arch; list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) { bool session = uc->handler && uc->ret_handler; __u64 cookie = 0; int rc = 0; if (uc->handler) { rc = uc->handler(uc, regs, &cookie); WARN(rc < 0 || rc > 2, "bad rc=0x%x from %ps()\n", rc, uc->handler); } remove &= rc == UPROBE_HANDLER_REMOVE; has_consumers = true; if (!uc->ret_handler || ignore_ret_handler(rc)) continue; if (!ri) ri = alloc_return_instance(); if (session) ri = push_consumer(ri, push_idx++, uc->id, cookie); } current->utask->auprobe = NULL; if (!ZERO_OR_NULL_PTR(ri)) { /* * The push_idx value has the final number of return consumers, * and ri->consumers_cnt has number of allocated consumers. */ ri->consumers_cnt = push_idx; prepare_uretprobe(uprobe, regs, ri); } if (remove && has_consumers) { down_read(&uprobe->register_rwsem); /* re-check that removal is still required, this time under lock */ if (!filter_chain(uprobe, current->mm)) { WARN_ON(!uprobe_is_active(uprobe)); unapply_uprobe(uprobe, current->mm); } up_read(&uprobe->register_rwsem); } } static void handle_uretprobe_chain(struct return_instance *ri, struct uprobe *uprobe, struct pt_regs *regs) { struct return_consumer *ric; struct uprobe_consumer *uc; int ric_idx = 0; /* all consumers unsubscribed meanwhile */ if (unlikely(!uprobe)) return; rcu_read_lock_trace(); list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) { bool session = uc->handler && uc->ret_handler; if (uc->ret_handler) { ric = return_consumer_find(ri, &ric_idx, uc->id); if (!session || ric) uc->ret_handler(uc, ri->func, regs, ric ? &ric->cookie : NULL); } } rcu_read_unlock_trace(); } static struct return_instance *find_next_ret_chain(struct return_instance *ri) { bool chained; do { chained = ri->chained; ri = ri->next; /* can't be NULL if chained */ } while (chained); return ri; } void uprobe_handle_trampoline(struct pt_regs *regs) { struct uprobe_task *utask; struct return_instance *ri, *next; struct uprobe *uprobe; enum hprobe_state hstate; bool valid; utask = current->utask; if (!utask) goto sigill; ri = utask->return_instances; if (!ri) goto sigill; do { /* * We should throw out the frames invalidated by longjmp(). * If this chain is valid, then the next one should be alive * or NULL; the latter case means that nobody but ri->func * could hit this trampoline on return. TODO: sigaltstack(). */ next = find_next_ret_chain(ri); valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs); instruction_pointer_set(regs, ri->orig_ret_vaddr); do { /* pop current instance from the stack of pending return instances, * as it's not pending anymore: we just fixed up original * instruction pointer in regs and are about to call handlers; * this allows fixup_uretprobe_trampoline_entries() to properly fix up * captured stack traces from uretprobe handlers, in which pending * trampoline addresses on the stack are replaced with correct * original return addresses */ rcu_assign_pointer(utask->return_instances, ri->next); uprobe = hprobe_consume(&ri->hprobe, &hstate); if (valid) handle_uretprobe_chain(ri, uprobe, regs); hprobe_finalize(&ri->hprobe, hstate); /* We already took care of hprobe, no need to waste more time on that. */ ri = free_ret_instance(ri, false /* !cleanup_hprobe */); utask->depth--; } while (ri != next); } while (!valid); return; sigill: uprobe_warn(current, "handle uretprobe, sending SIGILL."); force_sig(SIGILL); } bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs) { return false; } bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx, struct pt_regs *regs) { return true; } /* * Run handler and ask thread to singlestep. * Ensure all non-fatal signals cannot interrupt thread while it singlesteps. */ static void handle_swbp(struct pt_regs *regs) { struct uprobe *uprobe; unsigned long bp_vaddr; int is_swbp; bp_vaddr = uprobe_get_swbp_addr(regs); if (bp_vaddr == uprobe_get_trampoline_vaddr()) return uprobe_handle_trampoline(regs); rcu_read_lock_trace(); uprobe = find_active_uprobe_rcu(bp_vaddr, &is_swbp); if (!uprobe) { if (is_swbp > 0) { /* No matching uprobe; signal SIGTRAP. */ force_sig(SIGTRAP); } else { /* * Either we raced with uprobe_unregister() or we can't * access this memory. The latter is only possible if * another thread plays with our ->mm. In both cases * we can simply restart. If this vma was unmapped we * can pretend this insn was not executed yet and get * the (correct) SIGSEGV after restart. */ instruction_pointer_set(regs, bp_vaddr); } goto out; } /* change it in advance for ->handler() and restart */ instruction_pointer_set(regs, bp_vaddr); /* * TODO: move copy_insn/etc into _register and remove this hack. * After we hit the bp, _unregister + _register can install the * new and not-yet-analyzed uprobe at the same address, restart. */ if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags))) goto out; /* * Pairs with the smp_wmb() in prepare_uprobe(). * * Guarantees that if we see the UPROBE_COPY_INSN bit set, then * we must also see the stores to &uprobe->arch performed by the * prepare_uprobe() call. */ smp_rmb(); /* Tracing handlers use ->utask to communicate with fetch methods */ if (!get_utask()) goto out; if (arch_uprobe_ignore(&uprobe->arch, regs)) goto out; handler_chain(uprobe, regs); if (arch_uprobe_skip_sstep(&uprobe->arch, regs)) goto out; if (pre_ssout(uprobe, regs, bp_vaddr)) goto out; out: /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */ rcu_read_unlock_trace(); } /* * Perform required fix-ups and disable singlestep. * Allow pending signals to take effect. */ static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs) { struct uprobe *uprobe; int err = 0; uprobe = utask->active_uprobe; if (utask->state == UTASK_SSTEP_ACK) err = arch_uprobe_post_xol(&uprobe->arch, regs); else if (utask->state == UTASK_SSTEP_TRAPPED) arch_uprobe_abort_xol(&uprobe->arch, regs); else WARN_ON_ONCE(1); put_uprobe(uprobe); utask->active_uprobe = NULL; utask->state = UTASK_RUNNING; xol_free_insn_slot(utask); spin_lock_irq(¤t->sighand->siglock); recalc_sigpending(); /* see uprobe_deny_signal() */ spin_unlock_irq(¤t->sighand->siglock); if (unlikely(err)) { uprobe_warn(current, "execute the probed insn, sending SIGILL."); force_sig(SIGILL); } } /* * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and * allows the thread to return from interrupt. After that handle_swbp() * sets utask->active_uprobe. * * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag * and allows the thread to return from interrupt. * * While returning to userspace, thread notices the TIF_UPROBE flag and calls * uprobe_notify_resume(). */ void uprobe_notify_resume(struct pt_regs *regs) { struct uprobe_task *utask; clear_thread_flag(TIF_UPROBE); utask = current->utask; if (utask && utask->active_uprobe) handle_singlestep(utask, regs); else handle_swbp(regs); } /* * uprobe_pre_sstep_notifier gets called from interrupt context as part of * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit. */ int uprobe_pre_sstep_notifier(struct pt_regs *regs) { if (!current->mm) return 0; if (!test_bit(MMF_HAS_UPROBES, ¤t->mm->flags) && (!current->utask || !current->utask->return_instances)) return 0; set_thread_flag(TIF_UPROBE); return 1; } /* * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep. */ int uprobe_post_sstep_notifier(struct pt_regs *regs) { struct uprobe_task *utask = current->utask; if (!current->mm || !utask || !utask->active_uprobe) /* task is currently not uprobed */ return 0; utask->state = UTASK_SSTEP_ACK; set_thread_flag(TIF_UPROBE); return 1; } static struct notifier_block uprobe_exception_nb = { .notifier_call = arch_uprobe_exception_notify, .priority = INT_MAX-1, /* notified after kprobes, kgdb */ }; void __init uprobes_init(void) { int i; for (i = 0; i < UPROBES_HASH_SZ; i++) mutex_init(&uprobes_mmap_mutex[i]); BUG_ON(register_die_notifier(&uprobe_exception_nb)); }