/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _KERNEL_STATS_H #define _KERNEL_STATS_H #ifdef CONFIG_SCHEDSTATS extern struct static_key_false sched_schedstats; /* * Expects runqueue lock to be held for atomicity of update */ static inline void rq_sched_info_arrive(struct rq *rq, unsigned long long delta) { if (rq) { rq->rq_sched_info.run_delay += delta; rq->rq_sched_info.pcount++; } } /* * Expects runqueue lock to be held for atomicity of update */ static inline void rq_sched_info_depart(struct rq *rq, unsigned long long delta) { if (rq) rq->rq_cpu_time += delta; } static inline void rq_sched_info_dequeue(struct rq *rq, unsigned long long delta) { if (rq) rq->rq_sched_info.run_delay += delta; } #define schedstat_enabled() static_branch_unlikely(&sched_schedstats) #define __schedstat_inc(var) do { var++; } while (0) #define schedstat_inc(var) do { if (schedstat_enabled()) { var++; } } while (0) #define __schedstat_add(var, amt) do { var += (amt); } while (0) #define schedstat_add(var, amt) do { if (schedstat_enabled()) { var += (amt); } } while (0) #define __schedstat_set(var, val) do { var = (val); } while (0) #define schedstat_set(var, val) do { if (schedstat_enabled()) { var = (val); } } while (0) #define schedstat_val(var) (var) #define schedstat_val_or_zero(var) ((schedstat_enabled()) ? (var) : 0) void __update_stats_wait_start(struct rq *rq, struct task_struct *p, struct sched_statistics *stats); void __update_stats_wait_end(struct rq *rq, struct task_struct *p, struct sched_statistics *stats); void __update_stats_enqueue_sleeper(struct rq *rq, struct task_struct *p, struct sched_statistics *stats); static inline void check_schedstat_required(void) { if (schedstat_enabled()) return; /* Force schedstat enabled if a dependent tracepoint is active */ if (trace_sched_stat_wait_enabled() || trace_sched_stat_sleep_enabled() || trace_sched_stat_iowait_enabled() || trace_sched_stat_blocked_enabled() || trace_sched_stat_runtime_enabled()) printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, stat_blocked and stat_runtime require the kernel parameter schedstats=enable or kernel.sched_schedstats=1\n"); } #else /* !CONFIG_SCHEDSTATS: */ static inline void rq_sched_info_arrive (struct rq *rq, unsigned long long delta) { } static inline void rq_sched_info_dequeue(struct rq *rq, unsigned long long delta) { } static inline void rq_sched_info_depart (struct rq *rq, unsigned long long delta) { } # define schedstat_enabled() 0 # define __schedstat_inc(var) do { } while (0) # define schedstat_inc(var) do { } while (0) # define __schedstat_add(var, amt) do { } while (0) # define schedstat_add(var, amt) do { } while (0) # define __schedstat_set(var, val) do { } while (0) # define schedstat_set(var, val) do { } while (0) # define schedstat_val(var) 0 # define schedstat_val_or_zero(var) 0 # define __update_stats_wait_start(rq, p, stats) do { } while (0) # define __update_stats_wait_end(rq, p, stats) do { } while (0) # define __update_stats_enqueue_sleeper(rq, p, stats) do { } while (0) # define check_schedstat_required() do { } while (0) #endif /* CONFIG_SCHEDSTATS */ #ifdef CONFIG_FAIR_GROUP_SCHED struct sched_entity_stats { struct sched_entity se; struct sched_statistics stats; } __no_randomize_layout; #endif static inline struct sched_statistics * __schedstats_from_se(struct sched_entity *se) { #ifdef CONFIG_FAIR_GROUP_SCHED if (!entity_is_task(se)) return &container_of(se, struct sched_entity_stats, se)->stats; #endif return &task_of(se)->stats; } #ifdef CONFIG_PSI void psi_task_change(struct task_struct *task, int clear, int set); void psi_task_switch(struct task_struct *prev, struct task_struct *next, bool sleep); #ifdef CONFIG_IRQ_TIME_ACCOUNTING void psi_account_irqtime(struct rq *rq, struct task_struct *curr, struct task_struct *prev); #else static inline void psi_account_irqtime(struct rq *rq, struct task_struct *curr, struct task_struct *prev) {} #endif /*CONFIG_IRQ_TIME_ACCOUNTING */ /* * PSI tracks state that persists across sleeps, such as iowaits and * memory stalls. As a result, it has to distinguish between sleeps, * where a task's runnable state changes, and migrations, where a task * and its runnable state are being moved between CPUs and runqueues. * * A notable case is a task whose dequeue is delayed. PSI considers * those sleeping, but because they are still on the runqueue they can * go through migration requeues. In this case, *sleeping* states need * to be transferred. */ static inline void psi_enqueue(struct task_struct *p, int flags) { int clear = 0, set = 0; if (static_branch_likely(&psi_disabled)) return; /* Same runqueue, nothing changed for psi */ if (flags & ENQUEUE_RESTORE) return; if (p->se.sched_delayed) { /* CPU migration of "sleeping" task */ SCHED_WARN_ON(!(flags & ENQUEUE_MIGRATED)); if (p->in_memstall) set |= TSK_MEMSTALL; if (p->in_iowait) set |= TSK_IOWAIT; } else if (flags & ENQUEUE_MIGRATED) { /* CPU migration of runnable task */ set = TSK_RUNNING; if (p->in_memstall) set |= TSK_MEMSTALL | TSK_MEMSTALL_RUNNING; } else { /* Wakeup of new or sleeping task */ if (p->in_iowait) clear |= TSK_IOWAIT; set = TSK_RUNNING; if (p->in_memstall) set |= TSK_MEMSTALL_RUNNING; } psi_task_change(p, clear, set); } static inline void psi_dequeue(struct task_struct *p, int flags) { if (static_branch_likely(&psi_disabled)) return; /* Same runqueue, nothing changed for psi */ if (flags & DEQUEUE_SAVE) return; /* * A voluntary sleep is a dequeue followed by a task switch. To * avoid walking all ancestors twice, psi_task_switch() handles * TSK_RUNNING and TSK_IOWAIT for us when it moves TSK_ONCPU. * Do nothing here. */ if (flags & DEQUEUE_SLEEP) return; /* * When migrating a task to another CPU, clear all psi * state. The enqueue callback above will work it out. */ psi_task_change(p, p->psi_flags, 0); } static inline void psi_ttwu_dequeue(struct task_struct *p) { if (static_branch_likely(&psi_disabled)) return; /* * Is the task being migrated during a wakeup? Make sure to * deregister its sleep-persistent psi states from the old * queue, and let psi_enqueue() know it has to requeue. */ if (unlikely(p->psi_flags)) { struct rq_flags rf; struct rq *rq; rq = __task_rq_lock(p, &rf); psi_task_change(p, p->psi_flags, 0); __task_rq_unlock(rq, &rf); } } static inline void psi_sched_switch(struct task_struct *prev, struct task_struct *next, bool sleep) { if (static_branch_likely(&psi_disabled)) return; psi_task_switch(prev, next, sleep); } #else /* CONFIG_PSI */ static inline void psi_enqueue(struct task_struct *p, bool migrate) {} static inline void psi_dequeue(struct task_struct *p, bool migrate) {} static inline void psi_ttwu_dequeue(struct task_struct *p) {} static inline void psi_sched_switch(struct task_struct *prev, struct task_struct *next, bool sleep) {} static inline void psi_account_irqtime(struct rq *rq, struct task_struct *curr, struct task_struct *prev) {} #endif /* CONFIG_PSI */ #ifdef CONFIG_SCHED_INFO /* * We are interested in knowing how long it was from the *first* time a * task was queued to the time that it finally hit a CPU, we call this routine * from dequeue_task() to account for possible rq->clock skew across CPUs. The * delta taken on each CPU would annul the skew. */ static inline void sched_info_dequeue(struct rq *rq, struct task_struct *t) { unsigned long long delta = 0; if (!t->sched_info.last_queued) return; delta = rq_clock(rq) - t->sched_info.last_queued; t->sched_info.last_queued = 0; t->sched_info.run_delay += delta; rq_sched_info_dequeue(rq, delta); } /* * Called when a task finally hits the CPU. We can now calculate how * long it was waiting to run. We also note when it began so that we * can keep stats on how long its time-slice is. */ static void sched_info_arrive(struct rq *rq, struct task_struct *t) { unsigned long long now, delta = 0; if (!t->sched_info.last_queued) return; now = rq_clock(rq); delta = now - t->sched_info.last_queued; t->sched_info.last_queued = 0; t->sched_info.run_delay += delta; t->sched_info.last_arrival = now; t->sched_info.pcount++; rq_sched_info_arrive(rq, delta); } /* * This function is only called from enqueue_task(), but also only updates * the timestamp if it is already not set. It's assumed that * sched_info_dequeue() will clear that stamp when appropriate. */ static inline void sched_info_enqueue(struct rq *rq, struct task_struct *t) { if (!t->sched_info.last_queued) t->sched_info.last_queued = rq_clock(rq); } /* * Called when a process ceases being the active-running process involuntarily * due, typically, to expiring its time slice (this may also be called when * switching to the idle task). Now we can calculate how long we ran. * Also, if the process is still in the TASK_RUNNING state, call * sched_info_enqueue() to mark that it has now again started waiting on * the runqueue. */ static inline void sched_info_depart(struct rq *rq, struct task_struct *t) { unsigned long long delta = rq_clock(rq) - t->sched_info.last_arrival; rq_sched_info_depart(rq, delta); if (task_is_running(t)) sched_info_enqueue(rq, t); } /* * Called when tasks are switched involuntarily due, typically, to expiring * their time slice. (This may also be called when switching to or from * the idle task.) We are only called when prev != next. */ static inline void sched_info_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next) { /* * prev now departs the CPU. It's not interesting to record * stats about how efficient we were at scheduling the idle * process, however. */ if (prev != rq->idle) sched_info_depart(rq, prev); if (next != rq->idle) sched_info_arrive(rq, next); } #else /* !CONFIG_SCHED_INFO: */ # define sched_info_enqueue(rq, t) do { } while (0) # define sched_info_dequeue(rq, t) do { } while (0) # define sched_info_switch(rq, t, next) do { } while (0) #endif /* CONFIG_SCHED_INFO */ #endif /* _KERNEL_STATS_H */