// SPDX-License-Identifier: GPL-2.0 /* * Kernel timekeeping code and accessor functions. Based on code from * timer.c, moved in commit 8524070b7982. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "tick-internal.h" #include "ntp_internal.h" #include "timekeeping_internal.h" #define TK_CLEAR_NTP (1 << 0) #define TK_CLOCK_WAS_SET (1 << 1) #define TK_UPDATE_ALL (TK_CLEAR_NTP | TK_CLOCK_WAS_SET) enum timekeeping_adv_mode { /* Update timekeeper when a tick has passed */ TK_ADV_TICK, /* Update timekeeper on a direct frequency change */ TK_ADV_FREQ }; /* * The most important data for readout fits into a single 64 byte * cache line. */ struct tk_data { seqcount_raw_spinlock_t seq; struct timekeeper timekeeper; struct timekeeper shadow_timekeeper; raw_spinlock_t lock; } ____cacheline_aligned; static struct tk_data tk_core; /* flag for if timekeeping is suspended */ int __read_mostly timekeeping_suspended; /** * struct tk_fast - NMI safe timekeeper * @seq: Sequence counter for protecting updates. The lowest bit * is the index for the tk_read_base array * @base: tk_read_base array. Access is indexed by the lowest bit of * @seq. * * See @update_fast_timekeeper() below. */ struct tk_fast { seqcount_latch_t seq; struct tk_read_base base[2]; }; /* Suspend-time cycles value for halted fast timekeeper. */ static u64 cycles_at_suspend; static u64 dummy_clock_read(struct clocksource *cs) { if (timekeeping_suspended) return cycles_at_suspend; return local_clock(); } static struct clocksource dummy_clock = { .read = dummy_clock_read, }; /* * Boot time initialization which allows local_clock() to be utilized * during early boot when clocksources are not available. local_clock() * returns nanoseconds already so no conversion is required, hence mult=1 * and shift=0. When the first proper clocksource is installed then * the fast time keepers are updated with the correct values. */ #define FAST_TK_INIT \ { \ .clock = &dummy_clock, \ .mask = CLOCKSOURCE_MASK(64), \ .mult = 1, \ .shift = 0, \ } static struct tk_fast tk_fast_mono ____cacheline_aligned = { .seq = SEQCNT_LATCH_ZERO(tk_fast_mono.seq), .base[0] = FAST_TK_INIT, .base[1] = FAST_TK_INIT, }; static struct tk_fast tk_fast_raw ____cacheline_aligned = { .seq = SEQCNT_LATCH_ZERO(tk_fast_raw.seq), .base[0] = FAST_TK_INIT, .base[1] = FAST_TK_INIT, }; unsigned long timekeeper_lock_irqsave(void) { unsigned long flags; raw_spin_lock_irqsave(&tk_core.lock, flags); return flags; } void timekeeper_unlock_irqrestore(unsigned long flags) { raw_spin_unlock_irqrestore(&tk_core.lock, flags); } /* * Multigrain timestamps require tracking the latest fine-grained timestamp * that has been issued, and never returning a coarse-grained timestamp that is * earlier than that value. * * mg_floor represents the latest fine-grained time that has been handed out as * a file timestamp on the system. This is tracked as a monotonic ktime_t, and * converted to a realtime clock value on an as-needed basis. * * Maintaining mg_floor ensures the multigrain interfaces never issue a * timestamp earlier than one that has been previously issued. * * The exception to this rule is when there is a backward realtime clock jump. If * such an event occurs, a timestamp can appear to be earlier than a previous one. */ static __cacheline_aligned_in_smp atomic64_t mg_floor; static inline void tk_normalize_xtime(struct timekeeper *tk) { while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; tk->xtime_sec++; } while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) { tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift; tk->raw_sec++; } } static inline struct timespec64 tk_xtime(const struct timekeeper *tk) { struct timespec64 ts; ts.tv_sec = tk->xtime_sec; ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); return ts; } static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) { tk->xtime_sec = ts->tv_sec; tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; } static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) { tk->xtime_sec += ts->tv_sec; tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; tk_normalize_xtime(tk); } static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) { struct timespec64 tmp; /* * Verify consistency of: offset_real = -wall_to_monotonic * before modifying anything */ set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, -tk->wall_to_monotonic.tv_nsec); WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp)); tk->wall_to_monotonic = wtm; set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); /* Paired with READ_ONCE() in ktime_mono_to_any() */ WRITE_ONCE(tk->offs_real, timespec64_to_ktime(tmp)); WRITE_ONCE(tk->offs_tai, ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0))); } static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) { /* Paired with READ_ONCE() in ktime_mono_to_any() */ WRITE_ONCE(tk->offs_boot, ktime_add(tk->offs_boot, delta)); /* * Timespec representation for VDSO update to avoid 64bit division * on every update. */ tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot); } /* * tk_clock_read - atomic clocksource read() helper * * This helper is necessary to use in the read paths because, while the * seqcount ensures we don't return a bad value while structures are updated, * it doesn't protect from potential crashes. There is the possibility that * the tkr's clocksource may change between the read reference, and the * clock reference passed to the read function. This can cause crashes if * the wrong clocksource is passed to the wrong read function. * This isn't necessary to use when holding the tk_core.lock or doing * a read of the fast-timekeeper tkrs (which is protected by its own locking * and update logic). */ static inline u64 tk_clock_read(const struct tk_read_base *tkr) { struct clocksource *clock = READ_ONCE(tkr->clock); return clock->read(clock); } /** * tk_setup_internals - Set up internals to use clocksource clock. * * @tk: The target timekeeper to setup. * @clock: Pointer to clocksource. * * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment * pair and interval request. * * Unless you're the timekeeping code, you should not be using this! */ static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) { u64 interval; u64 tmp, ntpinterval; struct clocksource *old_clock; ++tk->cs_was_changed_seq; old_clock = tk->tkr_mono.clock; tk->tkr_mono.clock = clock; tk->tkr_mono.mask = clock->mask; tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono); tk->tkr_raw.clock = clock; tk->tkr_raw.mask = clock->mask; tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; /* Do the ns -> cycle conversion first, using original mult */ tmp = NTP_INTERVAL_LENGTH; tmp <<= clock->shift; ntpinterval = tmp; tmp += clock->mult/2; do_div(tmp, clock->mult); if (tmp == 0) tmp = 1; interval = (u64) tmp; tk->cycle_interval = interval; /* Go back from cycles -> shifted ns */ tk->xtime_interval = interval * clock->mult; tk->xtime_remainder = ntpinterval - tk->xtime_interval; tk->raw_interval = interval * clock->mult; /* if changing clocks, convert xtime_nsec shift units */ if (old_clock) { int shift_change = clock->shift - old_clock->shift; if (shift_change < 0) { tk->tkr_mono.xtime_nsec >>= -shift_change; tk->tkr_raw.xtime_nsec >>= -shift_change; } else { tk->tkr_mono.xtime_nsec <<= shift_change; tk->tkr_raw.xtime_nsec <<= shift_change; } } tk->tkr_mono.shift = clock->shift; tk->tkr_raw.shift = clock->shift; tk->ntp_error = 0; tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; tk->ntp_tick = ntpinterval << tk->ntp_error_shift; /* * The timekeeper keeps its own mult values for the currently * active clocksource. These value will be adjusted via NTP * to counteract clock drifting. */ tk->tkr_mono.mult = clock->mult; tk->tkr_raw.mult = clock->mult; tk->ntp_err_mult = 0; tk->skip_second_overflow = 0; } /* Timekeeper helper functions. */ static noinline u64 delta_to_ns_safe(const struct tk_read_base *tkr, u64 delta) { return mul_u64_u32_add_u64_shr(delta, tkr->mult, tkr->xtime_nsec, tkr->shift); } static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles) { /* Calculate the delta since the last update_wall_time() */ u64 mask = tkr->mask, delta = (cycles - tkr->cycle_last) & mask; /* * This detects both negative motion and the case where the delta * overflows the multiplication with tkr->mult. */ if (unlikely(delta > tkr->clock->max_cycles)) { /* * Handle clocksource inconsistency between CPUs to prevent * time from going backwards by checking for the MSB of the * mask being set in the delta. */ if (delta & ~(mask >> 1)) return tkr->xtime_nsec >> tkr->shift; return delta_to_ns_safe(tkr, delta); } return ((delta * tkr->mult) + tkr->xtime_nsec) >> tkr->shift; } static __always_inline u64 timekeeping_get_ns(const struct tk_read_base *tkr) { return timekeeping_cycles_to_ns(tkr, tk_clock_read(tkr)); } /** * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. * @tkr: Timekeeping readout base from which we take the update * @tkf: Pointer to NMI safe timekeeper * * We want to use this from any context including NMI and tracing / * instrumenting the timekeeping code itself. * * Employ the latch technique; see @write_seqcount_latch. * * So if a NMI hits the update of base[0] then it will use base[1] * which is still consistent. In the worst case this can result is a * slightly wrong timestamp (a few nanoseconds). See * @ktime_get_mono_fast_ns. */ static void update_fast_timekeeper(const struct tk_read_base *tkr, struct tk_fast *tkf) { struct tk_read_base *base = tkf->base; /* Force readers off to base[1] */ write_seqcount_latch_begin(&tkf->seq); /* Update base[0] */ memcpy(base, tkr, sizeof(*base)); /* Force readers back to base[0] */ write_seqcount_latch(&tkf->seq); /* Update base[1] */ memcpy(base + 1, base, sizeof(*base)); write_seqcount_latch_end(&tkf->seq); } static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) { struct tk_read_base *tkr; unsigned int seq; u64 now; do { seq = read_seqcount_latch(&tkf->seq); tkr = tkf->base + (seq & 0x01); now = ktime_to_ns(tkr->base); now += timekeeping_get_ns(tkr); } while (read_seqcount_latch_retry(&tkf->seq, seq)); return now; } /** * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic * * This timestamp is not guaranteed to be monotonic across an update. * The timestamp is calculated by: * * now = base_mono + clock_delta * slope * * So if the update lowers the slope, readers who are forced to the * not yet updated second array are still using the old steeper slope. * * tmono * ^ * | o n * | o n * | u * | o * |o * |12345678---> reader order * * o = old slope * u = update * n = new slope * * So reader 6 will observe time going backwards versus reader 5. * * While other CPUs are likely to be able to observe that, the only way * for a CPU local observation is when an NMI hits in the middle of * the update. Timestamps taken from that NMI context might be ahead * of the following timestamps. Callers need to be aware of that and * deal with it. */ u64 notrace ktime_get_mono_fast_ns(void) { return __ktime_get_fast_ns(&tk_fast_mono); } EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); /** * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw * * Contrary to ktime_get_mono_fast_ns() this is always correct because the * conversion factor is not affected by NTP/PTP correction. */ u64 notrace ktime_get_raw_fast_ns(void) { return __ktime_get_fast_ns(&tk_fast_raw); } EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); /** * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock. * * To keep it NMI safe since we're accessing from tracing, we're not using a * separate timekeeper with updates to monotonic clock and boot offset * protected with seqcounts. This has the following minor side effects: * * (1) Its possible that a timestamp be taken after the boot offset is updated * but before the timekeeper is updated. If this happens, the new boot offset * is added to the old timekeeping making the clock appear to update slightly * earlier: * CPU 0 CPU 1 * timekeeping_inject_sleeptime64() * __timekeeping_inject_sleeptime(tk, delta); * timestamp(); * timekeeping_update_staged(tkd, TK_CLEAR_NTP...); * * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be * partially updated. Since the tk->offs_boot update is a rare event, this * should be a rare occurrence which postprocessing should be able to handle. * * The caveats vs. timestamp ordering as documented for ktime_get_mono_fast_ns() * apply as well. */ u64 notrace ktime_get_boot_fast_ns(void) { struct timekeeper *tk = &tk_core.timekeeper; return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_boot))); } EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns); /** * ktime_get_tai_fast_ns - NMI safe and fast access to tai clock. * * The same limitations as described for ktime_get_boot_fast_ns() apply. The * mono time and the TAI offset are not read atomically which may yield wrong * readouts. However, an update of the TAI offset is an rare event e.g., caused * by settime or adjtimex with an offset. The user of this function has to deal * with the possibility of wrong timestamps in post processing. */ u64 notrace ktime_get_tai_fast_ns(void) { struct timekeeper *tk = &tk_core.timekeeper; return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_tai))); } EXPORT_SYMBOL_GPL(ktime_get_tai_fast_ns); static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono) { struct tk_read_base *tkr; u64 basem, baser, delta; unsigned int seq; do { seq = raw_read_seqcount_latch(&tkf->seq); tkr = tkf->base + (seq & 0x01); basem = ktime_to_ns(tkr->base); baser = ktime_to_ns(tkr->base_real); delta = timekeeping_get_ns(tkr); } while (raw_read_seqcount_latch_retry(&tkf->seq, seq)); if (mono) *mono = basem + delta; return baser + delta; } /** * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime. * * See ktime_get_mono_fast_ns() for documentation of the time stamp ordering. */ u64 ktime_get_real_fast_ns(void) { return __ktime_get_real_fast(&tk_fast_mono, NULL); } EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns); /** * ktime_get_fast_timestamps: - NMI safe timestamps * @snapshot: Pointer to timestamp storage * * Stores clock monotonic, boottime and realtime timestamps. * * Boot time is a racy access on 32bit systems if the sleep time injection * happens late during resume and not in timekeeping_resume(). That could * be avoided by expanding struct tk_read_base with boot offset for 32bit * and adding more overhead to the update. As this is a hard to observe * once per resume event which can be filtered with reasonable effort using * the accurate mono/real timestamps, it's probably not worth the trouble. * * Aside of that it might be possible on 32 and 64 bit to observe the * following when the sleep time injection happens late: * * CPU 0 CPU 1 * timekeeping_resume() * ktime_get_fast_timestamps() * mono, real = __ktime_get_real_fast() * inject_sleep_time() * update boot offset * boot = mono + bootoffset; * * That means that boot time already has the sleep time adjustment, but * real time does not. On the next readout both are in sync again. * * Preventing this for 64bit is not really feasible without destroying the * careful cache layout of the timekeeper because the sequence count and * struct tk_read_base would then need two cache lines instead of one. * * Access to the time keeper clock source is disabled across the innermost * steps of suspend/resume. The accessors still work, but the timestamps * are frozen until time keeping is resumed which happens very early. * * For regular suspend/resume there is no observable difference vs. sched * clock, but it might affect some of the nasty low level debug printks. * * OTOH, access to sched clock is not guaranteed across suspend/resume on * all systems either so it depends on the hardware in use. * * If that turns out to be a real problem then this could be mitigated by * using sched clock in a similar way as during early boot. But it's not as * trivial as on early boot because it needs some careful protection * against the clock monotonic timestamp jumping backwards on resume. */ void ktime_get_fast_timestamps(struct ktime_timestamps *snapshot) { struct timekeeper *tk = &tk_core.timekeeper; snapshot->real = __ktime_get_real_fast(&tk_fast_mono, &snapshot->mono); snapshot->boot = snapshot->mono + ktime_to_ns(data_race(tk->offs_boot)); } /** * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. * @tk: Timekeeper to snapshot. * * It generally is unsafe to access the clocksource after timekeeping has been * suspended, so take a snapshot of the readout base of @tk and use it as the * fast timekeeper's readout base while suspended. It will return the same * number of cycles every time until timekeeping is resumed at which time the * proper readout base for the fast timekeeper will be restored automatically. */ static void halt_fast_timekeeper(const struct timekeeper *tk) { static struct tk_read_base tkr_dummy; const struct tk_read_base *tkr = &tk->tkr_mono; memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); cycles_at_suspend = tk_clock_read(tkr); tkr_dummy.clock = &dummy_clock; tkr_dummy.base_real = tkr->base + tk->offs_real; update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); tkr = &tk->tkr_raw; memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); tkr_dummy.clock = &dummy_clock; update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); } static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) { raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); } /** * pvclock_gtod_register_notifier - register a pvclock timedata update listener * @nb: Pointer to the notifier block to register */ int pvclock_gtod_register_notifier(struct notifier_block *nb) { struct timekeeper *tk = &tk_core.timekeeper; int ret; guard(raw_spinlock_irqsave)(&tk_core.lock); ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); update_pvclock_gtod(tk, true); return ret; } EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); /** * pvclock_gtod_unregister_notifier - unregister a pvclock * timedata update listener * @nb: Pointer to the notifier block to unregister */ int pvclock_gtod_unregister_notifier(struct notifier_block *nb) { guard(raw_spinlock_irqsave)(&tk_core.lock); return raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); } EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); /* * tk_update_leap_state - helper to update the next_leap_ktime */ static inline void tk_update_leap_state(struct timekeeper *tk) { tk->next_leap_ktime = ntp_get_next_leap(); if (tk->next_leap_ktime != KTIME_MAX) /* Convert to monotonic time */ tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real); } /* * Leap state update for both shadow and the real timekeeper * Separate to spare a full memcpy() of the timekeeper. */ static void tk_update_leap_state_all(struct tk_data *tkd) { write_seqcount_begin(&tkd->seq); tk_update_leap_state(&tkd->shadow_timekeeper); tkd->timekeeper.next_leap_ktime = tkd->shadow_timekeeper.next_leap_ktime; write_seqcount_end(&tkd->seq); } /* * Update the ktime_t based scalar nsec members of the timekeeper */ static inline void tk_update_ktime_data(struct timekeeper *tk) { u64 seconds; u32 nsec; /* * The xtime based monotonic readout is: * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); * The ktime based monotonic readout is: * nsec = base_mono + now(); * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec */ seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); nsec = (u32) tk->wall_to_monotonic.tv_nsec; tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); /* * The sum of the nanoseconds portions of xtime and * wall_to_monotonic can be greater/equal one second. Take * this into account before updating tk->ktime_sec. */ nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); if (nsec >= NSEC_PER_SEC) seconds++; tk->ktime_sec = seconds; /* Update the monotonic raw base */ tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC); } /* * Restore the shadow timekeeper from the real timekeeper. */ static void timekeeping_restore_shadow(struct tk_data *tkd) { lockdep_assert_held(&tkd->lock); memcpy(&tkd->shadow_timekeeper, &tkd->timekeeper, sizeof(tkd->timekeeper)); } static void timekeeping_update_from_shadow(struct tk_data *tkd, unsigned int action) { struct timekeeper *tk = &tk_core.shadow_timekeeper; lockdep_assert_held(&tkd->lock); /* * Block out readers before running the updates below because that * updates VDSO and other time related infrastructure. Not blocking * the readers might let a reader see time going backwards when * reading from the VDSO after the VDSO update and then reading in * the kernel from the timekeeper before that got updated. */ write_seqcount_begin(&tkd->seq); if (action & TK_CLEAR_NTP) { tk->ntp_error = 0; ntp_clear(); } tk_update_leap_state(tk); tk_update_ktime_data(tk); update_vsyscall(tk); update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real; update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw); if (action & TK_CLOCK_WAS_SET) tk->clock_was_set_seq++; /* * Update the real timekeeper. * * We could avoid this memcpy() by switching pointers, but that has * the downside that the reader side does not longer benefit from * the cacheline optimized data layout of the timekeeper and requires * another indirection. */ memcpy(&tkd->timekeeper, tk, sizeof(*tk)); write_seqcount_end(&tkd->seq); } /** * timekeeping_forward_now - update clock to the current time * @tk: Pointer to the timekeeper to update * * Forward the current clock to update its state since the last call to * update_wall_time(). This is useful before significant clock changes, * as it avoids having to deal with this time offset explicitly. */ static void timekeeping_forward_now(struct timekeeper *tk) { u64 cycle_now, delta; cycle_now = tk_clock_read(&tk->tkr_mono); delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask); tk->tkr_mono.cycle_last = cycle_now; tk->tkr_raw.cycle_last = cycle_now; while (delta > 0) { u64 max = tk->tkr_mono.clock->max_cycles; u64 incr = delta < max ? delta : max; tk->tkr_mono.xtime_nsec += incr * tk->tkr_mono.mult; tk->tkr_raw.xtime_nsec += incr * tk->tkr_raw.mult; tk_normalize_xtime(tk); delta -= incr; } } /** * ktime_get_real_ts64 - Returns the time of day in a timespec64. * @ts: pointer to the timespec to be set * * Returns the time of day in a timespec64 (WARN if suspended). */ void ktime_get_real_ts64(struct timespec64 *ts) { struct timekeeper *tk = &tk_core.timekeeper; unsigned int seq; u64 nsecs; WARN_ON(timekeeping_suspended); do { seq = read_seqcount_begin(&tk_core.seq); ts->tv_sec = tk->xtime_sec; nsecs = timekeeping_get_ns(&tk->tkr_mono); } while (read_seqcount_retry(&tk_core.seq, seq)); ts->tv_nsec = 0; timespec64_add_ns(ts, nsecs); } EXPORT_SYMBOL(ktime_get_real_ts64); ktime_t ktime_get(void) { struct timekeeper *tk = &tk_core.timekeeper; unsigned int seq; ktime_t base; u64 nsecs; WARN_ON(timekeeping_suspended); do { seq = read_seqcount_begin(&tk_core.seq); base = tk->tkr_mono.base; nsecs = timekeeping_get_ns(&tk->tkr_mono); } while (read_seqcount_retry(&tk_core.seq, seq)); return ktime_add_ns(base, nsecs); } EXPORT_SYMBOL_GPL(ktime_get); u32 ktime_get_resolution_ns(void) { struct timekeeper *tk = &tk_core.timekeeper; unsigned int seq; u32 nsecs; WARN_ON(timekeeping_suspended); do { seq = read_seqcount_begin(&tk_core.seq); nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift; } while (read_seqcount_retry(&tk_core.seq, seq)); return nsecs; } EXPORT_SYMBOL_GPL(ktime_get_resolution_ns); static ktime_t *offsets[TK_OFFS_MAX] = { [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot, [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, }; ktime_t ktime_get_with_offset(enum tk_offsets offs) { struct timekeeper *tk = &tk_core.timekeeper; unsigned int seq; ktime_t base, *offset = offsets[offs]; u64 nsecs; WARN_ON(timekeeping_suspended); do { seq = read_seqcount_begin(&tk_core.seq); base = ktime_add(tk->tkr_mono.base, *offset); nsecs = timekeeping_get_ns(&tk->tkr_mono); } while (read_seqcount_retry(&tk_core.seq, seq)); return ktime_add_ns(base, nsecs); } EXPORT_SYMBOL_GPL(ktime_get_with_offset); ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs) { struct timekeeper *tk = &tk_core.timekeeper; unsigned int seq; ktime_t base, *offset = offsets[offs]; u64 nsecs; WARN_ON(timekeeping_suspended); do { seq = read_seqcount_begin(&tk_core.seq); base = ktime_add(tk->tkr_mono.base, *offset); nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift; } while (read_seqcount_retry(&tk_core.seq, seq)); return ktime_add_ns(base, nsecs); } EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset); /** * ktime_mono_to_any() - convert monotonic time to any other time * @tmono: time to convert. * @offs: which offset to use */ ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) { ktime_t *offset = offsets[offs]; unsigned int seq; ktime_t tconv; if (IS_ENABLED(CONFIG_64BIT)) { /* * Paired with WRITE_ONCE()s in tk_set_wall_to_mono() and * tk_update_sleep_time(). */ return ktime_add(tmono, READ_ONCE(*offset)); } do { seq = read_seqcount_begin(&tk_core.seq); tconv = ktime_add(tmono, *offset); } while (read_seqcount_retry(&tk_core.seq, seq)); return tconv; } EXPORT_SYMBOL_GPL(ktime_mono_to_any); /** * ktime_get_raw - Returns the raw monotonic time in ktime_t format */ ktime_t ktime_get_raw(void) { struct timekeeper *tk = &tk_core.timekeeper; unsigned int seq; ktime_t base; u64 nsecs; do { seq = read_seqcount_begin(&tk_core.seq); base = tk->tkr_raw.base; nsecs = timekeeping_get_ns(&tk->tkr_raw); } while (read_seqcount_retry(&tk_core.seq, seq)); return ktime_add_ns(base, nsecs); } EXPORT_SYMBOL_GPL(ktime_get_raw); /** * ktime_get_ts64 - get the monotonic clock in timespec64 format * @ts: pointer to timespec variable * * The function calculates the monotonic clock from the realtime * clock and the wall_to_monotonic offset and stores the result * in normalized timespec64 format in the variable pointed to by @ts. */ void ktime_get_ts64(struct timespec64 *ts) { struct timekeeper *tk = &tk_core.timekeeper; struct timespec64 tomono; unsigned int seq; u64 nsec; WARN_ON(timekeeping_suspended); do { seq = read_seqcount_begin(&tk_core.seq); ts->tv_sec = tk->xtime_sec; nsec = timekeeping_get_ns(&tk->tkr_mono); tomono = tk->wall_to_monotonic; } while (read_seqcount_retry(&tk_core.seq, seq)); ts->tv_sec += tomono.tv_sec; ts->tv_nsec = 0; timespec64_add_ns(ts, nsec + tomono.tv_nsec); } EXPORT_SYMBOL_GPL(ktime_get_ts64); /** * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC * * Returns the seconds portion of CLOCK_MONOTONIC with a single non * serialized read. tk->ktime_sec is of type 'unsigned long' so this * works on both 32 and 64 bit systems. On 32 bit systems the readout * covers ~136 years of uptime which should be enough to prevent * premature wrap arounds. */ time64_t ktime_get_seconds(void) { struct timekeeper *tk = &tk_core.timekeeper; WARN_ON(timekeeping_suspended); return tk->ktime_sec; } EXPORT_SYMBOL_GPL(ktime_get_seconds); /** * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME * * Returns the wall clock seconds since 1970. * * For 64bit systems the fast access to tk->xtime_sec is preserved. On * 32bit systems the access must be protected with the sequence * counter to provide "atomic" access to the 64bit tk->xtime_sec * value. */ time64_t ktime_get_real_seconds(void) { struct timekeeper *tk = &tk_core.timekeeper; time64_t seconds; unsigned int seq; if (IS_ENABLED(CONFIG_64BIT)) return tk->xtime_sec; do { seq = read_seqcount_begin(&tk_core.seq); seconds = tk->xtime_sec; } while (read_seqcount_retry(&tk_core.seq, seq)); return seconds; } EXPORT_SYMBOL_GPL(ktime_get_real_seconds); /** * __ktime_get_real_seconds - The same as ktime_get_real_seconds * but without the sequence counter protect. This internal function * is called just when timekeeping lock is already held. */ noinstr time64_t __ktime_get_real_seconds(void) { struct timekeeper *tk = &tk_core.timekeeper; return tk->xtime_sec; } /** * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter * @systime_snapshot: pointer to struct receiving the system time snapshot */ void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot) { struct timekeeper *tk = &tk_core.timekeeper; unsigned int seq; ktime_t base_raw; ktime_t base_real; ktime_t base_boot; u64 nsec_raw; u64 nsec_real; u64 now; WARN_ON_ONCE(timekeeping_suspended); do { seq = read_seqcount_begin(&tk_core.seq); now = tk_clock_read(&tk->tkr_mono); systime_snapshot->cs_id = tk->tkr_mono.clock->id; systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq; systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq; base_real = ktime_add(tk->tkr_mono.base, tk_core.timekeeper.offs_real); base_boot = ktime_add(tk->tkr_mono.base, tk_core.timekeeper.offs_boot); base_raw = tk->tkr_raw.base; nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now); nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now); } while (read_seqcount_retry(&tk_core.seq, seq)); systime_snapshot->cycles = now; systime_snapshot->real = ktime_add_ns(base_real, nsec_real); systime_snapshot->boot = ktime_add_ns(base_boot, nsec_real); systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw); } EXPORT_SYMBOL_GPL(ktime_get_snapshot); /* Scale base by mult/div checking for overflow */ static int scale64_check_overflow(u64 mult, u64 div, u64 *base) { u64 tmp, rem; tmp = div64_u64_rem(*base, div, &rem); if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) || ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem))) return -EOVERFLOW; tmp *= mult; rem = div64_u64(rem * mult, div); *base = tmp + rem; return 0; } /** * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval * @history: Snapshot representing start of history * @partial_history_cycles: Cycle offset into history (fractional part) * @total_history_cycles: Total history length in cycles * @discontinuity: True indicates clock was set on history period * @ts: Cross timestamp that should be adjusted using * partial/total ratio * * Helper function used by get_device_system_crosststamp() to correct the * crosstimestamp corresponding to the start of the current interval to the * system counter value (timestamp point) provided by the driver. The * total_history_* quantities are the total history starting at the provided * reference point and ending at the start of the current interval. The cycle * count between the driver timestamp point and the start of the current * interval is partial_history_cycles. */ static int adjust_historical_crosststamp(struct system_time_snapshot *history, u64 partial_history_cycles, u64 total_history_cycles, bool discontinuity, struct system_device_crosststamp *ts) { struct timekeeper *tk = &tk_core.timekeeper; u64 corr_raw, corr_real; bool interp_forward; int ret; if (total_history_cycles == 0 || partial_history_cycles == 0) return 0; /* Interpolate shortest distance from beginning or end of history */ interp_forward = partial_history_cycles > total_history_cycles / 2; partial_history_cycles = interp_forward ? total_history_cycles - partial_history_cycles : partial_history_cycles; /* * Scale the monotonic raw time delta by: * partial_history_cycles / total_history_cycles */ corr_raw = (u64)ktime_to_ns( ktime_sub(ts->sys_monoraw, history->raw)); ret = scale64_check_overflow(partial_history_cycles, total_history_cycles, &corr_raw); if (ret) return ret; /* * If there is a discontinuity in the history, scale monotonic raw * correction by: * mult(real)/mult(raw) yielding the realtime correction * Otherwise, calculate the realtime correction similar to monotonic * raw calculation */ if (discontinuity) { corr_real = mul_u64_u32_div (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult); } else { corr_real = (u64)ktime_to_ns( ktime_sub(ts->sys_realtime, history->real)); ret = scale64_check_overflow(partial_history_cycles, total_history_cycles, &corr_real); if (ret) return ret; } /* Fixup monotonic raw and real time time values */ if (interp_forward) { ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw); ts->sys_realtime = ktime_add_ns(history->real, corr_real); } else { ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw); ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real); } return 0; } /* * timestamp_in_interval - true if ts is chronologically in [start, end] * * True if ts occurs chronologically at or after start, and before or at end. */ static bool timestamp_in_interval(u64 start, u64 end, u64 ts) { if (ts >= start && ts <= end) return true; if (start > end && (ts >= start || ts <= end)) return true; return false; } static bool convert_clock(u64 *val, u32 numerator, u32 denominator) { u64 rem, res; if (!numerator || !denominator) return false; res = div64_u64_rem(*val, denominator, &rem) * numerator; *val = res + div_u64(rem * numerator, denominator); return true; } static bool convert_base_to_cs(struct system_counterval_t *scv) { struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock; struct clocksource_base *base; u32 num, den; /* The timestamp was taken from the time keeper clock source */ if (cs->id == scv->cs_id) return true; /* * Check whether cs_id matches the base clock. Prevent the compiler from * re-evaluating @base as the clocksource might change concurrently. */ base = READ_ONCE(cs->base); if (!base || base->id != scv->cs_id) return false; num = scv->use_nsecs ? cs->freq_khz : base->numerator; den = scv->use_nsecs ? USEC_PER_SEC : base->denominator; if (!convert_clock(&scv->cycles, num, den)) return false; scv->cycles += base->offset; return true; } static bool convert_cs_to_base(u64 *cycles, enum clocksource_ids base_id) { struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock; struct clocksource_base *base; /* * Check whether base_id matches the base clock. Prevent the compiler from * re-evaluating @base as the clocksource might change concurrently. */ base = READ_ONCE(cs->base); if (!base || base->id != base_id) return false; *cycles -= base->offset; if (!convert_clock(cycles, base->denominator, base->numerator)) return false; return true; } static bool convert_ns_to_cs(u64 *delta) { struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono; if (BITS_TO_BYTES(fls64(*delta) + tkr->shift) >= sizeof(*delta)) return false; *delta = div_u64((*delta << tkr->shift) - tkr->xtime_nsec, tkr->mult); return true; } /** * ktime_real_to_base_clock() - Convert CLOCK_REALTIME timestamp to a base clock timestamp * @treal: CLOCK_REALTIME timestamp to convert * @base_id: base clocksource id * @cycles: pointer to store the converted base clock timestamp * * Converts a supplied, future realtime clock value to the corresponding base clock value. * * Return: true if the conversion is successful, false otherwise. */ bool ktime_real_to_base_clock(ktime_t treal, enum clocksource_ids base_id, u64 *cycles) { struct timekeeper *tk = &tk_core.timekeeper; unsigned int seq; u64 delta; do { seq = read_seqcount_begin(&tk_core.seq); if ((u64)treal < tk->tkr_mono.base_real) return false; delta = (u64)treal - tk->tkr_mono.base_real; if (!convert_ns_to_cs(&delta)) return false; *cycles = tk->tkr_mono.cycle_last + delta; if (!convert_cs_to_base(cycles, base_id)) return false; } while (read_seqcount_retry(&tk_core.seq, seq)); return true; } EXPORT_SYMBOL_GPL(ktime_real_to_base_clock); /** * get_device_system_crosststamp - Synchronously capture system/device timestamp * @get_time_fn: Callback to get simultaneous device time and * system counter from the device driver * @ctx: Context passed to get_time_fn() * @history_begin: Historical reference point used to interpolate system * time when counter provided by the driver is before the current interval * @xtstamp: Receives simultaneously captured system and device time * * Reads a timestamp from a device and correlates it to system time */ int get_device_system_crosststamp(int (*get_time_fn) (ktime_t *device_time, struct system_counterval_t *sys_counterval, void *ctx), void *ctx, struct system_time_snapshot *history_begin, struct system_device_crosststamp *xtstamp) { struct system_counterval_t system_counterval; struct timekeeper *tk = &tk_core.timekeeper; u64 cycles, now, interval_start; unsigned int clock_was_set_seq = 0; ktime_t base_real, base_raw; u64 nsec_real, nsec_raw; u8 cs_was_changed_seq; unsigned int seq; bool do_interp; int ret; do { seq = read_seqcount_begin(&tk_core.seq); /* * Try to synchronously capture device time and a system * counter value calling back into the device driver */ ret = get_time_fn(&xtstamp->device, &system_counterval, ctx); if (ret) return ret; /* * Verify that the clocksource ID associated with the captured * system counter value is the same as for the currently * installed timekeeper clocksource */ if (system_counterval.cs_id == CSID_GENERIC || !convert_base_to_cs(&system_counterval)) return -ENODEV; cycles = system_counterval.cycles; /* * Check whether the system counter value provided by the * device driver is on the current timekeeping interval. */ now = tk_clock_read(&tk->tkr_mono); interval_start = tk->tkr_mono.cycle_last; if (!timestamp_in_interval(interval_start, now, cycles)) { clock_was_set_seq = tk->clock_was_set_seq; cs_was_changed_seq = tk->cs_was_changed_seq; cycles = interval_start; do_interp = true; } else { do_interp = false; } base_real = ktime_add(tk->tkr_mono.base, tk_core.timekeeper.offs_real); base_raw = tk->tkr_raw.base; nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, cycles); nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, cycles); } while (read_seqcount_retry(&tk_core.seq, seq)); xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real); xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw); /* * Interpolate if necessary, adjusting back from the start of the * current interval */ if (do_interp) { u64 partial_history_cycles, total_history_cycles; bool discontinuity; /* * Check that the counter value is not before the provided * history reference and that the history doesn't cross a * clocksource change */ if (!history_begin || !timestamp_in_interval(history_begin->cycles, cycles, system_counterval.cycles) || history_begin->cs_was_changed_seq != cs_was_changed_seq) return -EINVAL; partial_history_cycles = cycles - system_counterval.cycles; total_history_cycles = cycles - history_begin->cycles; discontinuity = history_begin->clock_was_set_seq != clock_was_set_seq; ret = adjust_historical_crosststamp(history_begin, partial_history_cycles, total_history_cycles, discontinuity, xtstamp); if (ret) return ret; } return 0; } EXPORT_SYMBOL_GPL(get_device_system_crosststamp); /** * timekeeping_clocksource_has_base - Check whether the current clocksource * is based on given a base clock * @id: base clocksource ID * * Note: The return value is a snapshot which can become invalid right * after the function returns. * * Return: true if the timekeeper clocksource has a base clock with @id, * false otherwise */ bool timekeeping_clocksource_has_base(enum clocksource_ids id) { /* * This is a snapshot, so no point in using the sequence * count. Just prevent the compiler from re-evaluating @base as the * clocksource might change concurrently. */ struct clocksource_base *base = READ_ONCE(tk_core.timekeeper.tkr_mono.clock->base); return base ? base->id == id : false; } EXPORT_SYMBOL_GPL(timekeeping_clocksource_has_base); /** * do_settimeofday64 - Sets the time of day. * @ts: pointer to the timespec64 variable containing the new time * * Sets the time of day to the new time and update NTP and notify hrtimers */ int do_settimeofday64(const struct timespec64 *ts) { struct timespec64 ts_delta, xt; if (!timespec64_valid_settod(ts)) return -EINVAL; scoped_guard (raw_spinlock_irqsave, &tk_core.lock) { struct timekeeper *tks = &tk_core.shadow_timekeeper; timekeeping_forward_now(tks); xt = tk_xtime(tks); ts_delta = timespec64_sub(*ts, xt); if (timespec64_compare(&tks->wall_to_monotonic, &ts_delta) > 0) { timekeeping_restore_shadow(&tk_core); return -EINVAL; } tk_set_wall_to_mono(tks, timespec64_sub(tks->wall_to_monotonic, ts_delta)); tk_set_xtime(tks, ts); timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL); } /* Signal hrtimers about time change */ clock_was_set(CLOCK_SET_WALL); audit_tk_injoffset(ts_delta); add_device_randomness(ts, sizeof(*ts)); return 0; } EXPORT_SYMBOL(do_settimeofday64); /** * timekeeping_inject_offset - Adds or subtracts from the current time. * @ts: Pointer to the timespec variable containing the offset * * Adds or subtracts an offset value from the current time. */ static int timekeeping_inject_offset(const struct timespec64 *ts) { if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC) return -EINVAL; scoped_guard (raw_spinlock_irqsave, &tk_core.lock) { struct timekeeper *tks = &tk_core.shadow_timekeeper; struct timespec64 tmp; timekeeping_forward_now(tks); /* Make sure the proposed value is valid */ tmp = timespec64_add(tk_xtime(tks), *ts); if (timespec64_compare(&tks->wall_to_monotonic, ts) > 0 || !timespec64_valid_settod(&tmp)) { timekeeping_restore_shadow(&tk_core); return -EINVAL; } tk_xtime_add(tks, ts); tk_set_wall_to_mono(tks, timespec64_sub(tks->wall_to_monotonic, *ts)); timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL); } /* Signal hrtimers about time change */ clock_was_set(CLOCK_SET_WALL); return 0; } /* * Indicates if there is an offset between the system clock and the hardware * clock/persistent clock/rtc. */ int persistent_clock_is_local; /* * Adjust the time obtained from the CMOS to be UTC time instead of * local time. * * This is ugly, but preferable to the alternatives. Otherwise we * would either need to write a program to do it in /etc/rc (and risk * confusion if the program gets run more than once; it would also be * hard to make the program warp the clock precisely n hours) or * compile in the timezone information into the kernel. Bad, bad.... * * - TYT, 1992-01-01 * * The best thing to do is to keep the CMOS clock in universal time (UTC) * as real UNIX machines always do it. This avoids all headaches about * daylight saving times and warping kernel clocks. */ void timekeeping_warp_clock(void) { if (sys_tz.tz_minuteswest != 0) { struct timespec64 adjust; persistent_clock_is_local = 1; adjust.tv_sec = sys_tz.tz_minuteswest * 60; adjust.tv_nsec = 0; timekeeping_inject_offset(&adjust); } } /* * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic */ static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) { tk->tai_offset = tai_offset; tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); } /* * change_clocksource - Swaps clocksources if a new one is available * * Accumulates current time interval and initializes new clocksource */ static int change_clocksource(void *data) { struct clocksource *new = data, *old = NULL; /* * If the clocksource is in a module, get a module reference. * Succeeds for built-in code (owner == NULL) as well. Abort if the * reference can't be acquired. */ if (!try_module_get(new->owner)) return 0; /* Abort if the device can't be enabled */ if (new->enable && new->enable(new) != 0) { module_put(new->owner); return 0; } scoped_guard (raw_spinlock_irqsave, &tk_core.lock) { struct timekeeper *tks = &tk_core.shadow_timekeeper; timekeeping_forward_now(tks); old = tks->tkr_mono.clock; tk_setup_internals(tks, new); timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL); } if (old) { if (old->disable) old->disable(old); module_put(old->owner); } return 0; } /** * timekeeping_notify - Install a new clock source * @clock: pointer to the clock source * * This function is called from clocksource.c after a new, better clock * source has been registered. The caller holds the clocksource_mutex. */ int timekeeping_notify(struct clocksource *clock) { struct timekeeper *tk = &tk_core.timekeeper; if (tk->tkr_mono.clock == clock) return 0; stop_machine(change_clocksource, clock, NULL); tick_clock_notify(); return tk->tkr_mono.clock == clock ? 0 : -1; } /** * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec * @ts: pointer to the timespec64 to be set * * Returns the raw monotonic time (completely un-modified by ntp) */ void ktime_get_raw_ts64(struct timespec64 *ts) { struct timekeeper *tk = &tk_core.timekeeper; unsigned int seq; u64 nsecs; do { seq = read_seqcount_begin(&tk_core.seq); ts->tv_sec = tk->raw_sec; nsecs = timekeeping_get_ns(&tk->tkr_raw); } while (read_seqcount_retry(&tk_core.seq, seq)); ts->tv_nsec = 0; timespec64_add_ns(ts, nsecs); } EXPORT_SYMBOL(ktime_get_raw_ts64); /** * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres */ int timekeeping_valid_for_hres(void) { struct timekeeper *tk = &tk_core.timekeeper; unsigned int seq; int ret; do { seq = read_seqcount_begin(&tk_core.seq); ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; } while (read_seqcount_retry(&tk_core.seq, seq)); return ret; } /** * timekeeping_max_deferment - Returns max time the clocksource can be deferred */ u64 timekeeping_max_deferment(void) { struct timekeeper *tk = &tk_core.timekeeper; unsigned int seq; u64 ret; do { seq = read_seqcount_begin(&tk_core.seq); ret = tk->tkr_mono.clock->max_idle_ns; } while (read_seqcount_retry(&tk_core.seq, seq)); return ret; } /** * read_persistent_clock64 - Return time from the persistent clock. * @ts: Pointer to the storage for the readout value * * Weak dummy function for arches that do not yet support it. * Reads the time from the battery backed persistent clock. * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. * * XXX - Do be sure to remove it once all arches implement it. */ void __weak read_persistent_clock64(struct timespec64 *ts) { ts->tv_sec = 0; ts->tv_nsec = 0; } /** * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset * from the boot. * @wall_time: current time as returned by persistent clock * @boot_offset: offset that is defined as wall_time - boot_time * * Weak dummy function for arches that do not yet support it. * * The default function calculates offset based on the current value of * local_clock(). This way architectures that support sched_clock() but don't * support dedicated boot time clock will provide the best estimate of the * boot time. */ void __weak __init read_persistent_wall_and_boot_offset(struct timespec64 *wall_time, struct timespec64 *boot_offset) { read_persistent_clock64(wall_time); *boot_offset = ns_to_timespec64(local_clock()); } static __init void tkd_basic_setup(struct tk_data *tkd) { raw_spin_lock_init(&tkd->lock); seqcount_raw_spinlock_init(&tkd->seq, &tkd->lock); } /* * Flag reflecting whether timekeeping_resume() has injected sleeptime. * * The flag starts of false and is only set when a suspend reaches * timekeeping_suspend(), timekeeping_resume() sets it to false when the * timekeeper clocksource is not stopping across suspend and has been * used to update sleep time. If the timekeeper clocksource has stopped * then the flag stays true and is used by the RTC resume code to decide * whether sleeptime must be injected and if so the flag gets false then. * * If a suspend fails before reaching timekeeping_resume() then the flag * stays false and prevents erroneous sleeptime injection. */ static bool suspend_timing_needed; /* Flag for if there is a persistent clock on this platform */ static bool persistent_clock_exists; /* * timekeeping_init - Initializes the clocksource and common timekeeping values */ void __init timekeeping_init(void) { struct timespec64 wall_time, boot_offset, wall_to_mono; struct timekeeper *tks = &tk_core.shadow_timekeeper; struct clocksource *clock; tkd_basic_setup(&tk_core); read_persistent_wall_and_boot_offset(&wall_time, &boot_offset); if (timespec64_valid_settod(&wall_time) && timespec64_to_ns(&wall_time) > 0) { persistent_clock_exists = true; } else if (timespec64_to_ns(&wall_time) != 0) { pr_warn("Persistent clock returned invalid value"); wall_time = (struct timespec64){0}; } if (timespec64_compare(&wall_time, &boot_offset) < 0) boot_offset = (struct timespec64){0}; /* * We want set wall_to_mono, so the following is true: * wall time + wall_to_mono = boot time */ wall_to_mono = timespec64_sub(boot_offset, wall_time); guard(raw_spinlock_irqsave)(&tk_core.lock); ntp_init(); clock = clocksource_default_clock(); if (clock->enable) clock->enable(clock); tk_setup_internals(tks, clock); tk_set_xtime(tks, &wall_time); tks->raw_sec = 0; tk_set_wall_to_mono(tks, wall_to_mono); timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET); } /* time in seconds when suspend began for persistent clock */ static struct timespec64 timekeeping_suspend_time; /** * __timekeeping_inject_sleeptime - Internal function to add sleep interval * @tk: Pointer to the timekeeper to be updated * @delta: Pointer to the delta value in timespec64 format * * Takes a timespec offset measuring a suspend interval and properly * adds the sleep offset to the timekeeping variables. */ static void __timekeeping_inject_sleeptime(struct timekeeper *tk, const struct timespec64 *delta) { if (!timespec64_valid_strict(delta)) { printk_deferred(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid " "sleep delta value!\n"); return; } tk_xtime_add(tk, delta); tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); tk_debug_account_sleep_time(delta); } #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) /* * We have three kinds of time sources to use for sleep time * injection, the preference order is: * 1) non-stop clocksource * 2) persistent clock (ie: RTC accessible when irqs are off) * 3) RTC * * 1) and 2) are used by timekeeping, 3) by RTC subsystem. * If system has neither 1) nor 2), 3) will be used finally. * * * If timekeeping has injected sleeptime via either 1) or 2), * 3) becomes needless, so in this case we don't need to call * rtc_resume(), and this is what timekeeping_rtc_skipresume() * means. */ bool timekeeping_rtc_skipresume(void) { return !suspend_timing_needed; } /* * 1) can be determined whether to use or not only when doing * timekeeping_resume() which is invoked after rtc_suspend(), * so we can't skip rtc_suspend() surely if system has 1). * * But if system has 2), 2) will definitely be used, so in this * case we don't need to call rtc_suspend(), and this is what * timekeeping_rtc_skipsuspend() means. */ bool timekeeping_rtc_skipsuspend(void) { return persistent_clock_exists; } /** * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values * @delta: pointer to a timespec64 delta value * * This hook is for architectures that cannot support read_persistent_clock64 * because their RTC/persistent clock is only accessible when irqs are enabled. * and also don't have an effective nonstop clocksource. * * This function should only be called by rtc_resume(), and allows * a suspend offset to be injected into the timekeeping values. */ void timekeeping_inject_sleeptime64(const struct timespec64 *delta) { scoped_guard(raw_spinlock_irqsave, &tk_core.lock) { struct timekeeper *tks = &tk_core.shadow_timekeeper; suspend_timing_needed = false; timekeeping_forward_now(tks); __timekeeping_inject_sleeptime(tks, delta); timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL); } /* Signal hrtimers about time change */ clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT); } #endif /** * timekeeping_resume - Resumes the generic timekeeping subsystem. */ void timekeeping_resume(void) { struct timekeeper *tks = &tk_core.shadow_timekeeper; struct clocksource *clock = tks->tkr_mono.clock; struct timespec64 ts_new, ts_delta; bool inject_sleeptime = false; u64 cycle_now, nsec; unsigned long flags; read_persistent_clock64(&ts_new); clockevents_resume(); clocksource_resume(); raw_spin_lock_irqsave(&tk_core.lock, flags); /* * After system resumes, we need to calculate the suspended time and * compensate it for the OS time. There are 3 sources that could be * used: Nonstop clocksource during suspend, persistent clock and rtc * device. * * One specific platform may have 1 or 2 or all of them, and the * preference will be: * suspend-nonstop clocksource -> persistent clock -> rtc * The less preferred source will only be tried if there is no better * usable source. The rtc part is handled separately in rtc core code. */ cycle_now = tk_clock_read(&tks->tkr_mono); nsec = clocksource_stop_suspend_timing(clock, cycle_now); if (nsec > 0) { ts_delta = ns_to_timespec64(nsec); inject_sleeptime = true; } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); inject_sleeptime = true; } if (inject_sleeptime) { suspend_timing_needed = false; __timekeeping_inject_sleeptime(tks, &ts_delta); } /* Re-base the last cycle value */ tks->tkr_mono.cycle_last = cycle_now; tks->tkr_raw.cycle_last = cycle_now; tks->ntp_error = 0; timekeeping_suspended = 0; timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET); raw_spin_unlock_irqrestore(&tk_core.lock, flags); touch_softlockup_watchdog(); /* Resume the clockevent device(s) and hrtimers */ tick_resume(); /* Notify timerfd as resume is equivalent to clock_was_set() */ timerfd_resume(); } int timekeeping_suspend(void) { struct timekeeper *tks = &tk_core.shadow_timekeeper; struct timespec64 delta, delta_delta; static struct timespec64 old_delta; struct clocksource *curr_clock; unsigned long flags; u64 cycle_now; read_persistent_clock64(&timekeeping_suspend_time); /* * On some systems the persistent_clock can not be detected at * timekeeping_init by its return value, so if we see a valid * value returned, update the persistent_clock_exists flag. */ if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) persistent_clock_exists = true; suspend_timing_needed = true; raw_spin_lock_irqsave(&tk_core.lock, flags); timekeeping_forward_now(tks); timekeeping_suspended = 1; /* * Since we've called forward_now, cycle_last stores the value * just read from the current clocksource. Save this to potentially * use in suspend timing. */ curr_clock = tks->tkr_mono.clock; cycle_now = tks->tkr_mono.cycle_last; clocksource_start_suspend_timing(curr_clock, cycle_now); if (persistent_clock_exists) { /* * To avoid drift caused by repeated suspend/resumes, * which each can add ~1 second drift error, * try to compensate so the difference in system time * and persistent_clock time stays close to constant. */ delta = timespec64_sub(tk_xtime(tks), timekeeping_suspend_time); delta_delta = timespec64_sub(delta, old_delta); if (abs(delta_delta.tv_sec) >= 2) { /* * if delta_delta is too large, assume time correction * has occurred and set old_delta to the current delta. */ old_delta = delta; } else { /* Otherwise try to adjust old_system to compensate */ timekeeping_suspend_time = timespec64_add(timekeeping_suspend_time, delta_delta); } } timekeeping_update_from_shadow(&tk_core, 0); halt_fast_timekeeper(tks); raw_spin_unlock_irqrestore(&tk_core.lock, flags); tick_suspend(); clocksource_suspend(); clockevents_suspend(); return 0; } /* sysfs resume/suspend bits for timekeeping */ static struct syscore_ops timekeeping_syscore_ops = { .resume = timekeeping_resume, .suspend = timekeeping_suspend, }; static int __init timekeeping_init_ops(void) { register_syscore_ops(&timekeeping_syscore_ops); return 0; } device_initcall(timekeeping_init_ops); /* * Apply a multiplier adjustment to the timekeeper */ static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, s64 offset, s32 mult_adj) { s64 interval = tk->cycle_interval; if (mult_adj == 0) { return; } else if (mult_adj == -1) { interval = -interval; offset = -offset; } else if (mult_adj != 1) { interval *= mult_adj; offset *= mult_adj; } /* * So the following can be confusing. * * To keep things simple, lets assume mult_adj == 1 for now. * * When mult_adj != 1, remember that the interval and offset values * have been appropriately scaled so the math is the same. * * The basic idea here is that we're increasing the multiplier * by one, this causes the xtime_interval to be incremented by * one cycle_interval. This is because: * xtime_interval = cycle_interval * mult * So if mult is being incremented by one: * xtime_interval = cycle_interval * (mult + 1) * Its the same as: * xtime_interval = (cycle_interval * mult) + cycle_interval * Which can be shortened to: * xtime_interval += cycle_interval * * So offset stores the non-accumulated cycles. Thus the current * time (in shifted nanoseconds) is: * now = (offset * adj) + xtime_nsec * Now, even though we're adjusting the clock frequency, we have * to keep time consistent. In other words, we can't jump back * in time, and we also want to avoid jumping forward in time. * * So given the same offset value, we need the time to be the same * both before and after the freq adjustment. * now = (offset * adj_1) + xtime_nsec_1 * now = (offset * adj_2) + xtime_nsec_2 * So: * (offset * adj_1) + xtime_nsec_1 = * (offset * adj_2) + xtime_nsec_2 * And we know: * adj_2 = adj_1 + 1 * So: * (offset * adj_1) + xtime_nsec_1 = * (offset * (adj_1+1)) + xtime_nsec_2 * (offset * adj_1) + xtime_nsec_1 = * (offset * adj_1) + offset + xtime_nsec_2 * Canceling the sides: * xtime_nsec_1 = offset + xtime_nsec_2 * Which gives us: * xtime_nsec_2 = xtime_nsec_1 - offset * Which simplifies to: * xtime_nsec -= offset */ if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { /* NTP adjustment caused clocksource mult overflow */ WARN_ON_ONCE(1); return; } tk->tkr_mono.mult += mult_adj; tk->xtime_interval += interval; tk->tkr_mono.xtime_nsec -= offset; } /* * Adjust the timekeeper's multiplier to the correct frequency * and also to reduce the accumulated error value. */ static void timekeeping_adjust(struct timekeeper *tk, s64 offset) { u64 ntp_tl = ntp_tick_length(); u32 mult; /* * Determine the multiplier from the current NTP tick length. * Avoid expensive division when the tick length doesn't change. */ if (likely(tk->ntp_tick == ntp_tl)) { mult = tk->tkr_mono.mult - tk->ntp_err_mult; } else { tk->ntp_tick = ntp_tl; mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) - tk->xtime_remainder, tk->cycle_interval); } /* * If the clock is behind the NTP time, increase the multiplier by 1 * to catch up with it. If it's ahead and there was a remainder in the * tick division, the clock will slow down. Otherwise it will stay * ahead until the tick length changes to a non-divisible value. */ tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0; mult += tk->ntp_err_mult; timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult); if (unlikely(tk->tkr_mono.clock->maxadj && (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) > tk->tkr_mono.clock->maxadj))) { printk_once(KERN_WARNING "Adjusting %s more than 11%% (%ld vs %ld)\n", tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); } /* * It may be possible that when we entered this function, xtime_nsec * was very small. Further, if we're slightly speeding the clocksource * in the code above, its possible the required corrective factor to * xtime_nsec could cause it to underflow. * * Now, since we have already accumulated the second and the NTP * subsystem has been notified via second_overflow(), we need to skip * the next update. */ if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC << tk->tkr_mono.shift; tk->xtime_sec--; tk->skip_second_overflow = 1; } } /* * accumulate_nsecs_to_secs - Accumulates nsecs into secs * * Helper function that accumulates the nsecs greater than a second * from the xtime_nsec field to the xtime_secs field. * It also calls into the NTP code to handle leapsecond processing. */ static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) { u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; unsigned int clock_set = 0; while (tk->tkr_mono.xtime_nsec >= nsecps) { int leap; tk->tkr_mono.xtime_nsec -= nsecps; tk->xtime_sec++; /* * Skip NTP update if this second was accumulated before, * i.e. xtime_nsec underflowed in timekeeping_adjust() */ if (unlikely(tk->skip_second_overflow)) { tk->skip_second_overflow = 0; continue; } /* Figure out if its a leap sec and apply if needed */ leap = second_overflow(tk->xtime_sec); if (unlikely(leap)) { struct timespec64 ts; tk->xtime_sec += leap; ts.tv_sec = leap; ts.tv_nsec = 0; tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts)); __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); clock_set = TK_CLOCK_WAS_SET; } } return clock_set; } /* * logarithmic_accumulation - shifted accumulation of cycles * * This functions accumulates a shifted interval of cycles into * a shifted interval nanoseconds. Allows for O(log) accumulation * loop. * * Returns the unconsumed cycles. */ static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset, u32 shift, unsigned int *clock_set) { u64 interval = tk->cycle_interval << shift; u64 snsec_per_sec; /* If the offset is smaller than a shifted interval, do nothing */ if (offset < interval) return offset; /* Accumulate one shifted interval */ offset -= interval; tk->tkr_mono.cycle_last += interval; tk->tkr_raw.cycle_last += interval; tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; *clock_set |= accumulate_nsecs_to_secs(tk); /* Accumulate raw time */ tk->tkr_raw.xtime_nsec += tk->raw_interval << shift; snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift; while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) { tk->tkr_raw.xtime_nsec -= snsec_per_sec; tk->raw_sec++; } /* Accumulate error between NTP and clock interval */ tk->ntp_error += tk->ntp_tick << shift; tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << (tk->ntp_error_shift + shift); return offset; } /* * timekeeping_advance - Updates the timekeeper to the current time and * current NTP tick length */ static bool timekeeping_advance(enum timekeeping_adv_mode mode) { struct timekeeper *tk = &tk_core.shadow_timekeeper; struct timekeeper *real_tk = &tk_core.timekeeper; unsigned int clock_set = 0; int shift = 0, maxshift; u64 offset; guard(raw_spinlock_irqsave)(&tk_core.lock); /* Make sure we're fully resumed: */ if (unlikely(timekeeping_suspended)) return false; offset = clocksource_delta(tk_clock_read(&tk->tkr_mono), tk->tkr_mono.cycle_last, tk->tkr_mono.mask); /* Check if there's really nothing to do */ if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK) return false; /* * With NO_HZ we may have to accumulate many cycle_intervals * (think "ticks") worth of time at once. To do this efficiently, * we calculate the largest doubling multiple of cycle_intervals * that is smaller than the offset. We then accumulate that * chunk in one go, and then try to consume the next smaller * doubled multiple. */ shift = ilog2(offset) - ilog2(tk->cycle_interval); shift = max(0, shift); /* Bound shift to one less than what overflows tick_length */ maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; shift = min(shift, maxshift); while (offset >= tk->cycle_interval) { offset = logarithmic_accumulation(tk, offset, shift, &clock_set); if (offset < tk->cycle_interval<offs_real, tk->offs_boot); *ts = ktime_to_timespec64(t); } EXPORT_SYMBOL_GPL(getboottime64); void ktime_get_coarse_real_ts64(struct timespec64 *ts) { struct timekeeper *tk = &tk_core.timekeeper; unsigned int seq; do { seq = read_seqcount_begin(&tk_core.seq); *ts = tk_xtime(tk); } while (read_seqcount_retry(&tk_core.seq, seq)); } EXPORT_SYMBOL(ktime_get_coarse_real_ts64); /** * ktime_get_coarse_real_ts64_mg - return latter of coarse grained time or floor * @ts: timespec64 to be filled * * Fetch the global mg_floor value, convert it to realtime and compare it * to the current coarse-grained time. Fill @ts with whichever is * latest. Note that this is a filesystem-specific interface and should be * avoided outside of that context. */ void ktime_get_coarse_real_ts64_mg(struct timespec64 *ts) { struct timekeeper *tk = &tk_core.timekeeper; u64 floor = atomic64_read(&mg_floor); ktime_t f_real, offset, coarse; unsigned int seq; do { seq = read_seqcount_begin(&tk_core.seq); *ts = tk_xtime(tk); offset = tk_core.timekeeper.offs_real; } while (read_seqcount_retry(&tk_core.seq, seq)); coarse = timespec64_to_ktime(*ts); f_real = ktime_add(floor, offset); if (ktime_after(f_real, coarse)) *ts = ktime_to_timespec64(f_real); } /** * ktime_get_real_ts64_mg - attempt to update floor value and return result * @ts: pointer to the timespec to be set * * Get a monotonic fine-grained time value and attempt to swap it into * mg_floor. If that succeeds then accept the new floor value. If it fails * then another task raced in during the interim time and updated the * floor. Since any update to the floor must be later than the previous * floor, either outcome is acceptable. * * Typically this will be called after calling ktime_get_coarse_real_ts64_mg(), * and determining that the resulting coarse-grained timestamp did not effect * a change in ctime. Any more recent floor value would effect a change to * ctime, so there is no need to retry the atomic64_try_cmpxchg() on failure. * * @ts will be filled with the latest floor value, regardless of the outcome of * the cmpxchg. Note that this is a filesystem specific interface and should be * avoided outside of that context. */ void ktime_get_real_ts64_mg(struct timespec64 *ts) { struct timekeeper *tk = &tk_core.timekeeper; ktime_t old = atomic64_read(&mg_floor); ktime_t offset, mono; unsigned int seq; u64 nsecs; do { seq = read_seqcount_begin(&tk_core.seq); ts->tv_sec = tk->xtime_sec; mono = tk->tkr_mono.base; nsecs = timekeeping_get_ns(&tk->tkr_mono); offset = tk_core.timekeeper.offs_real; } while (read_seqcount_retry(&tk_core.seq, seq)); mono = ktime_add_ns(mono, nsecs); /* * Attempt to update the floor with the new time value. As any * update must be later then the existing floor, and would effect * a change to ctime from the perspective of the current task, * accept the resulting floor value regardless of the outcome of * the swap. */ if (atomic64_try_cmpxchg(&mg_floor, &old, mono)) { ts->tv_nsec = 0; timespec64_add_ns(ts, nsecs); timekeeping_inc_mg_floor_swaps(); } else { /* * Another task changed mg_floor since "old" was fetched. * "old" has been updated with the latest value of "mg_floor". * That value is newer than the previous floor value, which * is enough to effect a change to ctime. Accept it. */ *ts = ktime_to_timespec64(ktime_add(old, offset)); } } void ktime_get_coarse_ts64(struct timespec64 *ts) { struct timekeeper *tk = &tk_core.timekeeper; struct timespec64 now, mono; unsigned int seq; do { seq = read_seqcount_begin(&tk_core.seq); now = tk_xtime(tk); mono = tk->wall_to_monotonic; } while (read_seqcount_retry(&tk_core.seq, seq)); set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec, now.tv_nsec + mono.tv_nsec); } EXPORT_SYMBOL(ktime_get_coarse_ts64); /* * Must hold jiffies_lock */ void do_timer(unsigned long ticks) { jiffies_64 += ticks; calc_global_load(); } /** * ktime_get_update_offsets_now - hrtimer helper * @cwsseq: pointer to check and store the clock was set sequence number * @offs_real: pointer to storage for monotonic -> realtime offset * @offs_boot: pointer to storage for monotonic -> boottime offset * @offs_tai: pointer to storage for monotonic -> clock tai offset * * Returns current monotonic time and updates the offsets if the * sequence number in @cwsseq and timekeeper.clock_was_set_seq are * different. * * Called from hrtimer_interrupt() or retrigger_next_event() */ ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real, ktime_t *offs_boot, ktime_t *offs_tai) { struct timekeeper *tk = &tk_core.timekeeper; unsigned int seq; ktime_t base; u64 nsecs; do { seq = read_seqcount_begin(&tk_core.seq); base = tk->tkr_mono.base; nsecs = timekeeping_get_ns(&tk->tkr_mono); base = ktime_add_ns(base, nsecs); if (*cwsseq != tk->clock_was_set_seq) { *cwsseq = tk->clock_was_set_seq; *offs_real = tk->offs_real; *offs_boot = tk->offs_boot; *offs_tai = tk->offs_tai; } /* Handle leapsecond insertion adjustments */ if (unlikely(base >= tk->next_leap_ktime)) *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0)); } while (read_seqcount_retry(&tk_core.seq, seq)); return base; } /* * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex */ static int timekeeping_validate_timex(const struct __kernel_timex *txc) { if (txc->modes & ADJ_ADJTIME) { /* singleshot must not be used with any other mode bits */ if (!(txc->modes & ADJ_OFFSET_SINGLESHOT)) return -EINVAL; if (!(txc->modes & ADJ_OFFSET_READONLY) && !capable(CAP_SYS_TIME)) return -EPERM; } else { /* In order to modify anything, you gotta be super-user! */ if (txc->modes && !capable(CAP_SYS_TIME)) return -EPERM; /* * if the quartz is off by more than 10% then * something is VERY wrong! */ if (txc->modes & ADJ_TICK && (txc->tick < 900000/USER_HZ || txc->tick > 1100000/USER_HZ)) return -EINVAL; } if (txc->modes & ADJ_SETOFFSET) { /* In order to inject time, you gotta be super-user! */ if (!capable(CAP_SYS_TIME)) return -EPERM; /* * Validate if a timespec/timeval used to inject a time * offset is valid. Offsets can be positive or negative, so * we don't check tv_sec. The value of the timeval/timespec * is the sum of its fields,but *NOTE*: * The field tv_usec/tv_nsec must always be non-negative and * we can't have more nanoseconds/microseconds than a second. */ if (txc->time.tv_usec < 0) return -EINVAL; if (txc->modes & ADJ_NANO) { if (txc->time.tv_usec >= NSEC_PER_SEC) return -EINVAL; } else { if (txc->time.tv_usec >= USEC_PER_SEC) return -EINVAL; } } /* * Check for potential multiplication overflows that can * only happen on 64-bit systems: */ if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) { if (LLONG_MIN / PPM_SCALE > txc->freq) return -EINVAL; if (LLONG_MAX / PPM_SCALE < txc->freq) return -EINVAL; } return 0; } /** * random_get_entropy_fallback - Returns the raw clock source value, * used by random.c for platforms with no valid random_get_entropy(). */ unsigned long random_get_entropy_fallback(void) { struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono; struct clocksource *clock = READ_ONCE(tkr->clock); if (unlikely(timekeeping_suspended || !clock)) return 0; return clock->read(clock); } EXPORT_SYMBOL_GPL(random_get_entropy_fallback); /** * do_adjtimex() - Accessor function to NTP __do_adjtimex function * @txc: Pointer to kernel_timex structure containing NTP parameters */ int do_adjtimex(struct __kernel_timex *txc) { struct audit_ntp_data ad; bool offset_set = false; bool clock_set = false; struct timespec64 ts; int ret; /* Validate the data before disabling interrupts */ ret = timekeeping_validate_timex(txc); if (ret) return ret; add_device_randomness(txc, sizeof(*txc)); if (txc->modes & ADJ_SETOFFSET) { struct timespec64 delta; delta.tv_sec = txc->time.tv_sec; delta.tv_nsec = txc->time.tv_usec; if (!(txc->modes & ADJ_NANO)) delta.tv_nsec *= 1000; ret = timekeeping_inject_offset(&delta); if (ret) return ret; offset_set = delta.tv_sec != 0; audit_tk_injoffset(delta); } audit_ntp_init(&ad); ktime_get_real_ts64(&ts); add_device_randomness(&ts, sizeof(ts)); scoped_guard (raw_spinlock_irqsave, &tk_core.lock) { struct timekeeper *tks = &tk_core.shadow_timekeeper; s32 orig_tai, tai; orig_tai = tai = tks->tai_offset; ret = __do_adjtimex(txc, &ts, &tai, &ad); if (tai != orig_tai) { __timekeeping_set_tai_offset(tks, tai); timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET); clock_set = true; } else { tk_update_leap_state_all(&tk_core); } } audit_ntp_log(&ad); /* Update the multiplier immediately if frequency was set directly */ if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK)) clock_set |= timekeeping_advance(TK_ADV_FREQ); if (clock_set) clock_was_set(CLOCK_SET_WALL); ntp_notify_cmos_timer(offset_set); return ret; } #ifdef CONFIG_NTP_PPS /** * hardpps() - Accessor function to NTP __hardpps function * @phase_ts: Pointer to timespec64 structure representing phase timestamp * @raw_ts: Pointer to timespec64 structure representing raw timestamp */ void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) { guard(raw_spinlock_irqsave)(&tk_core.lock); __hardpps(phase_ts, raw_ts); } EXPORT_SYMBOL(hardpps); #endif /* CONFIG_NTP_PPS */