// SPDX-License-Identifier: GPL-2.0 /* * tracing clocks * * Copyright (C) 2009 Red Hat, Inc., Ingo Molnar * * Implements 3 trace clock variants, with differing scalability/precision * tradeoffs: * * - local: CPU-local trace clock * - medium: scalable global clock with some jitter * - global: globally monotonic, serialized clock * * Tracer plugins will chose a default from these clocks. */ #include #include #include #include #include #include #include #include #include /* * trace_clock_local(): the simplest and least coherent tracing clock. * * Useful for tracing that does not cross to other CPUs nor * does it go through idle events. */ u64 notrace trace_clock_local(void) { u64 clock; /* * sched_clock() is an architecture implemented, fast, scalable, * lockless clock. It is not guaranteed to be coherent across * CPUs, nor across CPU idle events. */ preempt_disable_notrace(); clock = sched_clock(); preempt_enable_notrace(); return clock; } EXPORT_SYMBOL_GPL(trace_clock_local); /* * trace_clock(): 'between' trace clock. Not completely serialized, * but not completely incorrect when crossing CPUs either. * * This is based on cpu_clock(), which will allow at most ~1 jiffy of * jitter between CPUs. So it's a pretty scalable clock, but there * can be offsets in the trace data. */ u64 notrace trace_clock(void) { return local_clock(); } EXPORT_SYMBOL_GPL(trace_clock); /* * trace_jiffy_clock(): Simply use jiffies as a clock counter. * Note that this use of jiffies_64 is not completely safe on * 32-bit systems. But the window is tiny, and the effect if * we are affected is that we will have an obviously bogus * timestamp on a trace event - i.e. not life threatening. */ u64 notrace trace_clock_jiffies(void) { return jiffies_64_to_clock_t(jiffies_64 - INITIAL_JIFFIES); } EXPORT_SYMBOL_GPL(trace_clock_jiffies); /* * trace_clock_global(): special globally coherent trace clock * * It has higher overhead than the other trace clocks but is still * an order of magnitude faster than GTOD derived hardware clocks. * * Used by plugins that need globally coherent timestamps. */ /* keep prev_time and lock in the same cacheline. */ static struct { u64 prev_time; arch_spinlock_t lock; } trace_clock_struct ____cacheline_aligned_in_smp = { .lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED, }; u64 notrace trace_clock_global(void) { unsigned long flags; int this_cpu; u64 now, prev_time; raw_local_irq_save(flags); this_cpu = raw_smp_processor_id(); /* * The global clock "guarantees" that the events are ordered * between CPUs. But if two events on two different CPUS call * trace_clock_global at roughly the same time, it really does * not matter which one gets the earlier time. Just make sure * that the same CPU will always show a monotonic clock. * * Use a read memory barrier to get the latest written * time that was recorded. */ smp_rmb(); prev_time = READ_ONCE(trace_clock_struct.prev_time); now = sched_clock_cpu(this_cpu); /* Make sure that now is always greater than or equal to prev_time */ if ((s64)(now - prev_time) < 0) now = prev_time; /* * If in an NMI context then dont risk lockups and simply return * the current time. */ if (unlikely(in_nmi())) goto out; /* Tracing can cause strange recursion, always use a try lock */ if (arch_spin_trylock(&trace_clock_struct.lock)) { /* Reread prev_time in case it was already updated */ prev_time = READ_ONCE(trace_clock_struct.prev_time); if ((s64)(now - prev_time) < 0) now = prev_time; trace_clock_struct.prev_time = now; /* The unlock acts as the wmb for the above rmb */ arch_spin_unlock(&trace_clock_struct.lock); } out: raw_local_irq_restore(flags); return now; } EXPORT_SYMBOL_GPL(trace_clock_global); static atomic64_t trace_counter; /* * trace_clock_counter(): simply an atomic counter. * Use the trace_counter "counter" for cases where you do not care * about timings, but are interested in strict ordering. */ u64 notrace trace_clock_counter(void) { return atomic64_inc_return(&trace_counter); }