#!/usr/bin/env python3 # SPDX-License-Identifier: GPL-2.0-or-later # # Script that generates constants for computing the given CRC variant(s). # # Copyright 2025 Google LLC # # Author: Eric Biggers import sys # XOR (add) an iterable of polynomials. def xor(iterable): res = 0 for val in iterable: res ^= val return res # Multiply two polynomials. def clmul(a, b): return xor(a << i for i in range(b.bit_length()) if (b & (1 << i)) != 0) # Polynomial division floor(a / b). def div(a, b): q = 0 while a.bit_length() >= b.bit_length(): q ^= 1 << (a.bit_length() - b.bit_length()) a ^= b << (a.bit_length() - b.bit_length()) return q # Reduce the polynomial 'a' modulo the polynomial 'b'. def reduce(a, b): return a ^ clmul(div(a, b), b) # Reflect the bits of a polynomial. def bitreflect(poly, num_bits): assert poly.bit_length() <= num_bits return xor(((poly >> i) & 1) << (num_bits - 1 - i) for i in range(num_bits)) # Format a polynomial as hex. Bit-reflect it if the CRC is lsb-first. def fmt_poly(variant, poly, num_bits): if variant.lsb: poly = bitreflect(poly, num_bits) return f'0x{poly:0{2*num_bits//8}x}' # Print a pair of 64-bit polynomial multipliers. They are always passed in the # order [HI64_TERMS, LO64_TERMS] but will be printed in the appropriate order. def print_mult_pair(variant, mults): mults = list(mults if variant.lsb else reversed(mults)) terms = ['HI64_TERMS', 'LO64_TERMS'] if variant.lsb else ['LO64_TERMS', 'HI64_TERMS'] for i in range(2): print(f'\t\t{fmt_poly(variant, mults[i]["val"], 64)},\t/* {terms[i]}: {mults[i]["desc"]} */') # Pretty-print a polynomial. def pprint_poly(prefix, poly): terms = [f'x^{i}' for i in reversed(range(poly.bit_length())) if (poly & (1 << i)) != 0] j = 0 while j < len(terms): s = prefix + terms[j] + (' +' if j < len(terms) - 1 else '') j += 1 while j < len(terms) and len(s) < 73: s += ' ' + terms[j] + (' +' if j < len(terms) - 1 else '') j += 1 print(s) prefix = ' * ' + (' ' * (len(prefix) - 3)) # Print a comment describing constants generated for the given CRC variant. def print_header(variant, what): print('/*') s = f'{"least" if variant.lsb else "most"}-significant-bit-first CRC-{variant.bits}' print(f' * {what} generated for {s} using') pprint_poly(' * G(x) = ', variant.G) print(' */') class CrcVariant: def __init__(self, bits, generator_poly, bit_order): self.bits = bits if bit_order not in ['lsb', 'msb']: raise ValueError('Invalid value for bit_order') self.lsb = bit_order == 'lsb' self.name = f'crc{bits}_{bit_order}_0x{generator_poly:0{(2*bits+7)//8}x}' if self.lsb: generator_poly = bitreflect(generator_poly, bits) self.G = generator_poly ^ (1 << bits) # Generate tables for CRC computation using the "slice-by-N" method. # N=1 corresponds to the traditional byte-at-a-time table. def gen_slicebyN_tables(variants, n): for v in variants: print('') print_header(v, f'Slice-by-{n} CRC table') print(f'static const u{v.bits} __maybe_unused {v.name}_table[{256*n}] = {{') s = '' for i in range(256 * n): # The i'th table entry is the CRC of the message consisting of byte # i % 256 followed by i // 256 zero bytes. poly = (bitreflect(i % 256, 8) if v.lsb else i % 256) << (v.bits + 8*(i//256)) next_entry = fmt_poly(v, reduce(poly, v.G), v.bits) + ',' if len(s + next_entry) > 71: print(f'\t{s}') s = '' s += (' ' if s else '') + next_entry if s: print(f'\t{s}') print('};') def print_riscv_const(v, bits_per_long, name, val, desc): print(f'\t.{name} = {fmt_poly(v, val, bits_per_long)}, /* {desc} */') def do_gen_riscv_clmul_consts(v, bits_per_long): (G, n, lsb) = (v.G, v.bits, v.lsb) pow_of_x = 3 * bits_per_long - (1 if lsb else 0) print_riscv_const(v, bits_per_long, 'fold_across_2_longs_const_hi', reduce(1 << pow_of_x, G), f'x^{pow_of_x} mod G') pow_of_x = 2 * bits_per_long - (1 if lsb else 0) print_riscv_const(v, bits_per_long, 'fold_across_2_longs_const_lo', reduce(1 << pow_of_x, G), f'x^{pow_of_x} mod G') pow_of_x = bits_per_long - 1 + n print_riscv_const(v, bits_per_long, 'barrett_reduction_const_1', div(1 << pow_of_x, G), f'floor(x^{pow_of_x} / G)') val = G - (1 << n) desc = f'G - x^{n}' if lsb: val <<= bits_per_long - n desc = f'({desc}) * x^{bits_per_long - n}' print_riscv_const(v, bits_per_long, 'barrett_reduction_const_2', val, desc) def gen_riscv_clmul_consts(variants): print('') print('struct crc_clmul_consts {'); print('\tunsigned long fold_across_2_longs_const_hi;'); print('\tunsigned long fold_across_2_longs_const_lo;'); print('\tunsigned long barrett_reduction_const_1;'); print('\tunsigned long barrett_reduction_const_2;'); print('};'); for v in variants: print(''); if v.bits > 32: print_header(v, 'Constants') print('#ifdef CONFIG_64BIT') print(f'static const struct crc_clmul_consts {v.name}_consts __maybe_unused = {{') do_gen_riscv_clmul_consts(v, 64) print('};') print('#endif') else: print_header(v, 'Constants') print(f'static const struct crc_clmul_consts {v.name}_consts __maybe_unused = {{') print('#ifdef CONFIG_64BIT') do_gen_riscv_clmul_consts(v, 64) print('#else') do_gen_riscv_clmul_consts(v, 32) print('#endif') print('};') # Generate constants for carryless multiplication based CRC computation. def gen_x86_pclmul_consts(variants): # These are the distances, in bits, to generate folding constants for. FOLD_DISTANCES = [2048, 1024, 512, 256, 128] for v in variants: (G, n, lsb) = (v.G, v.bits, v.lsb) print('') print_header(v, 'CRC folding constants') print('static const struct {') if not lsb: print('\tu8 bswap_mask[16];') for i in FOLD_DISTANCES: print(f'\tu64 fold_across_{i}_bits_consts[2];') print('\tu8 shuf_table[48];') print('\tu64 barrett_reduction_consts[2];') print(f'}} {v.name}_consts ____cacheline_aligned __maybe_unused = {{') # Byte-reflection mask, needed for msb-first CRCs if not lsb: print('\t.bswap_mask = {' + ', '.join(str(i) for i in reversed(range(16))) + '},') # Fold constants for all distances down to 128 bits for i in FOLD_DISTANCES: print(f'\t.fold_across_{i}_bits_consts = {{') # Given 64x64 => 128 bit carryless multiplication instructions, two # 64-bit fold constants are needed per "fold distance" i: one for # HI64_TERMS that is basically x^(i+64) mod G and one for LO64_TERMS # that is basically x^i mod G. The exact values however undergo a # couple adjustments, described below. mults = [] for j in [64, 0]: pow_of_x = i + j if lsb: # Each 64x64 => 128 bit carryless multiplication instruction # actually generates a 127-bit product in physical bits 0 # through 126, which in the lsb-first case represent the # coefficients of x^1 through x^127, not x^0 through x^126. # Thus in the lsb-first case, each such instruction # implicitly adds an extra factor of x. The below removes a # factor of x from each constant to compensate for this. # For n < 64 the x could be removed from either the reduced # part or unreduced part, but for n == 64 the reduced part # is the only option. Just always use the reduced part. pow_of_x -= 1 # Make a factor of x^(64-n) be applied unreduced rather than # reduced, to cause the product to use only the x^(64-n) and # higher terms and always be zero in the lower terms. Usually # this makes no difference as it does not affect the product's # congruence class mod G and the constant remains 64-bit, but # part of the final reduction from 128 bits does rely on this # property when it reuses one of the constants. pow_of_x -= 64 - n mults.append({ 'val': reduce(1 << pow_of_x, G) << (64 - n), 'desc': f'(x^{pow_of_x} mod G) * x^{64-n}' }) print_mult_pair(v, mults) print('\t},') # Shuffle table for handling 1..15 bytes at end print('\t.shuf_table = {') print('\t\t' + (16*'-1, ').rstrip()) print('\t\t' + ''.join(f'{i:2}, ' for i in range(16)).rstrip()) print('\t\t' + (16*'-1, ').rstrip()) print('\t},') # Barrett reduction constants for reducing 128 bits to the final CRC print('\t.barrett_reduction_consts = {') mults = [] val = div(1 << (63+n), G) desc = f'floor(x^{63+n} / G)' if not lsb: val = (val << 1) - (1 << 64) desc = f'({desc} * x) - x^64' mults.append({ 'val': val, 'desc': desc }) val = G - (1 << n) desc = f'G - x^{n}' if lsb and n == 64: assert (val & 1) != 0 # The x^0 term should always be nonzero. val >>= 1 desc = f'({desc} - x^0) / x' else: pow_of_x = 64 - n - (1 if lsb else 0) val <<= pow_of_x desc = f'({desc}) * x^{pow_of_x}' mults.append({ 'val': val, 'desc': desc }) print_mult_pair(v, mults) print('\t},') print('};') def parse_crc_variants(vars_string): variants = [] for var_string in vars_string.split(','): bits, bit_order, generator_poly = var_string.split('_') assert bits.startswith('crc') bits = int(bits.removeprefix('crc')) assert generator_poly.startswith('0x') generator_poly = generator_poly.removeprefix('0x') assert len(generator_poly) % 2 == 0 generator_poly = int(generator_poly, 16) variants.append(CrcVariant(bits, generator_poly, bit_order)) return variants if len(sys.argv) != 3: sys.stderr.write(f'Usage: {sys.argv[0]} CONSTS_TYPE[,CONSTS_TYPE]... CRC_VARIANT[,CRC_VARIANT]...\n') sys.stderr.write(' CONSTS_TYPE can be sliceby[1-8], riscv_clmul, or x86_pclmul\n') sys.stderr.write(' CRC_VARIANT is crc${num_bits}_${bit_order}_${generator_poly_as_hex}\n') sys.stderr.write(' E.g. crc16_msb_0x8bb7 or crc32_lsb_0xedb88320\n') sys.stderr.write(' Polynomial must use the given bit_order and exclude x^{num_bits}\n') sys.exit(1) print('/* SPDX-License-Identifier: GPL-2.0-or-later */') print('/*') print(' * CRC constants generated by:') print(' *') print(f' *\t{sys.argv[0]} {" ".join(sys.argv[1:])}') print(' *') print(' * Do not edit manually.') print(' */') consts_types = sys.argv[1].split(',') variants = parse_crc_variants(sys.argv[2]) for consts_type in consts_types: if consts_type.startswith('sliceby'): gen_slicebyN_tables(variants, int(consts_type.removeprefix('sliceby'))) elif consts_type == 'riscv_clmul': gen_riscv_clmul_consts(variants) elif consts_type == 'x86_pclmul': gen_x86_pclmul_consts(variants) else: raise ValueError(f'Unknown consts_type: {consts_type}')