// SPDX-License-Identifier: GPL-2.0-only /* * fireworks_pcm.c - a part of driver for Fireworks based devices * * Copyright (c) 2009-2010 Clemens Ladisch * Copyright (c) 2013-2014 Takashi Sakamoto */ #include "./fireworks.h" /* * NOTE: * Fireworks changes its AMDTP channels for PCM data according to its sampling * rate. There are three modes. Here _XX is either _rx or _tx. * 0: 32.0- 48.0 kHz then snd_efw_hwinfo.amdtp_XX_pcm_channels applied * 1: 88.2- 96.0 kHz then snd_efw_hwinfo.amdtp_XX_pcm_channels_2x applied * 2: 176.4-192.0 kHz then snd_efw_hwinfo.amdtp_XX_pcm_channels_4x applied * * The number of PCM channels for analog input and output are always fixed but * the number of PCM channels for digital input and output are differed. * * Additionally, according to "AudioFire Owner's Manual Version 2.2", in some * model, the number of PCM channels for digital input has more restriction * depending on which digital interface is selected. * - S/PDIF coaxial and optical : use input 1-2 * - ADAT optical at 32.0-48.0 kHz : use input 1-8 * - ADAT optical at 88.2-96.0 kHz : use input 1-4 (S/MUX format) * * The data in AMDTP channels for blank PCM channels are zero. */ static const unsigned int freq_table[] = { /* multiplier mode 0 */ [0] = 32000, [1] = 44100, [2] = 48000, /* multiplier mode 1 */ [3] = 88200, [4] = 96000, /* multiplier mode 2 */ [5] = 176400, [6] = 192000, }; static inline unsigned int get_multiplier_mode_with_index(unsigned int index) { return ((int)index - 1) / 2; } int snd_efw_get_multiplier_mode(unsigned int sampling_rate, unsigned int *mode) { unsigned int i; for (i = 0; i < ARRAY_SIZE(freq_table); i++) { if (freq_table[i] == sampling_rate) { *mode = get_multiplier_mode_with_index(i); return 0; } } return -EINVAL; } static int hw_rule_rate(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) { unsigned int *pcm_channels = rule->private; struct snd_interval *r = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); const struct snd_interval *c = hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_CHANNELS); struct snd_interval t = { .min = UINT_MAX, .max = 0, .integer = 1 }; unsigned int i, mode; for (i = 0; i < ARRAY_SIZE(freq_table); i++) { mode = get_multiplier_mode_with_index(i); if (!snd_interval_test(c, pcm_channels[mode])) continue; t.min = min(t.min, freq_table[i]); t.max = max(t.max, freq_table[i]); } return snd_interval_refine(r, &t); } static int hw_rule_channels(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) { unsigned int *pcm_channels = rule->private; struct snd_interval *c = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); const struct snd_interval *r = hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE); struct snd_interval t = { .min = UINT_MAX, .max = 0, .integer = 1 }; unsigned int i, mode; for (i = 0; i < ARRAY_SIZE(freq_table); i++) { mode = get_multiplier_mode_with_index(i); if (!snd_interval_test(r, freq_table[i])) continue; t.min = min(t.min, pcm_channels[mode]); t.max = max(t.max, pcm_channels[mode]); } return snd_interval_refine(c, &t); } static void limit_channels(struct snd_pcm_hardware *hw, unsigned int *pcm_channels) { unsigned int i, mode; hw->channels_min = UINT_MAX; hw->channels_max = 0; for (i = 0; i < ARRAY_SIZE(freq_table); i++) { mode = get_multiplier_mode_with_index(i); if (pcm_channels[mode] == 0) continue; hw->channels_min = min(hw->channels_min, pcm_channels[mode]); hw->channels_max = max(hw->channels_max, pcm_channels[mode]); } } static int pcm_init_hw_params(struct snd_efw *efw, struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; struct amdtp_stream *s; unsigned int *pcm_channels; int err; if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) { runtime->hw.formats = AM824_IN_PCM_FORMAT_BITS; s = &efw->tx_stream; pcm_channels = efw->pcm_capture_channels; } else { runtime->hw.formats = AM824_OUT_PCM_FORMAT_BITS; s = &efw->rx_stream; pcm_channels = efw->pcm_playback_channels; } /* limit rates */ runtime->hw.rates = efw->supported_sampling_rate; snd_pcm_limit_hw_rates(runtime); limit_channels(&runtime->hw, pcm_channels); err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, hw_rule_channels, pcm_channels, SNDRV_PCM_HW_PARAM_RATE, -1); if (err < 0) goto end; err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, hw_rule_rate, pcm_channels, SNDRV_PCM_HW_PARAM_CHANNELS, -1); if (err < 0) goto end; err = amdtp_am824_add_pcm_hw_constraints(s, runtime); end: return err; } static int pcm_open(struct snd_pcm_substream *substream) { struct snd_efw *efw = substream->private_data; struct amdtp_domain *d = &efw->domain; enum snd_efw_clock_source clock_source; int err; err = snd_efw_stream_lock_try(efw); if (err < 0) return err; err = pcm_init_hw_params(efw, substream); if (err < 0) goto err_locked; err = snd_efw_command_get_clock_source(efw, &clock_source); if (err < 0) goto err_locked; mutex_lock(&efw->mutex); // When source of clock is not internal or any stream is reserved for // transmission of PCM frames, the available sampling rate is limited // at current one. if ((clock_source != SND_EFW_CLOCK_SOURCE_INTERNAL) || (efw->substreams_counter > 0 && d->events_per_period > 0)) { unsigned int frames_per_period = d->events_per_period; unsigned int frames_per_buffer = d->events_per_buffer; unsigned int sampling_rate; err = snd_efw_command_get_sampling_rate(efw, &sampling_rate); if (err < 0) { mutex_unlock(&efw->mutex); goto err_locked; } substream->runtime->hw.rate_min = sampling_rate; substream->runtime->hw.rate_max = sampling_rate; if (frames_per_period > 0) { err = snd_pcm_hw_constraint_minmax(substream->runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, frames_per_period, frames_per_period); if (err < 0) { mutex_unlock(&efw->mutex); goto err_locked; } err = snd_pcm_hw_constraint_minmax(substream->runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, frames_per_buffer, frames_per_buffer); if (err < 0) { mutex_unlock(&efw->mutex); goto err_locked; } } } mutex_unlock(&efw->mutex); snd_pcm_set_sync(substream); return 0; err_locked: snd_efw_stream_lock_release(efw); return err; } static int pcm_close(struct snd_pcm_substream *substream) { struct snd_efw *efw = substream->private_data; snd_efw_stream_lock_release(efw); return 0; } static int pcm_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { struct snd_efw *efw = substream->private_data; int err = 0; if (substream->runtime->state == SNDRV_PCM_STATE_OPEN) { unsigned int rate = params_rate(hw_params); unsigned int frames_per_period = params_period_size(hw_params); unsigned int frames_per_buffer = params_buffer_size(hw_params); mutex_lock(&efw->mutex); err = snd_efw_stream_reserve_duplex(efw, rate, frames_per_period, frames_per_buffer); if (err >= 0) ++efw->substreams_counter; mutex_unlock(&efw->mutex); } return err; } static int pcm_hw_free(struct snd_pcm_substream *substream) { struct snd_efw *efw = substream->private_data; mutex_lock(&efw->mutex); if (substream->runtime->state != SNDRV_PCM_STATE_OPEN) --efw->substreams_counter; snd_efw_stream_stop_duplex(efw); mutex_unlock(&efw->mutex); return 0; } static int pcm_capture_prepare(struct snd_pcm_substream *substream) { struct snd_efw *efw = substream->private_data; int err; err = snd_efw_stream_start_duplex(efw); if (err >= 0) amdtp_stream_pcm_prepare(&efw->tx_stream); return err; } static int pcm_playback_prepare(struct snd_pcm_substream *substream) { struct snd_efw *efw = substream->private_data; int err; err = snd_efw_stream_start_duplex(efw); if (err >= 0) amdtp_stream_pcm_prepare(&efw->rx_stream); return err; } static int pcm_capture_trigger(struct snd_pcm_substream *substream, int cmd) { struct snd_efw *efw = substream->private_data; switch (cmd) { case SNDRV_PCM_TRIGGER_START: amdtp_stream_pcm_trigger(&efw->tx_stream, substream); break; case SNDRV_PCM_TRIGGER_STOP: amdtp_stream_pcm_trigger(&efw->tx_stream, NULL); break; default: return -EINVAL; } return 0; } static int pcm_playback_trigger(struct snd_pcm_substream *substream, int cmd) { struct snd_efw *efw = substream->private_data; switch (cmd) { case SNDRV_PCM_TRIGGER_START: amdtp_stream_pcm_trigger(&efw->rx_stream, substream); break; case SNDRV_PCM_TRIGGER_STOP: amdtp_stream_pcm_trigger(&efw->rx_stream, NULL); break; default: return -EINVAL; } return 0; } static snd_pcm_uframes_t pcm_capture_pointer(struct snd_pcm_substream *sbstrm) { struct snd_efw *efw = sbstrm->private_data; return amdtp_domain_stream_pcm_pointer(&efw->domain, &efw->tx_stream); } static snd_pcm_uframes_t pcm_playback_pointer(struct snd_pcm_substream *sbstrm) { struct snd_efw *efw = sbstrm->private_data; return amdtp_domain_stream_pcm_pointer(&efw->domain, &efw->rx_stream); } static int pcm_capture_ack(struct snd_pcm_substream *substream) { struct snd_efw *efw = substream->private_data; return amdtp_domain_stream_pcm_ack(&efw->domain, &efw->tx_stream); } static int pcm_playback_ack(struct snd_pcm_substream *substream) { struct snd_efw *efw = substream->private_data; return amdtp_domain_stream_pcm_ack(&efw->domain, &efw->rx_stream); } int snd_efw_create_pcm_devices(struct snd_efw *efw) { static const struct snd_pcm_ops capture_ops = { .open = pcm_open, .close = pcm_close, .hw_params = pcm_hw_params, .hw_free = pcm_hw_free, .prepare = pcm_capture_prepare, .trigger = pcm_capture_trigger, .pointer = pcm_capture_pointer, .ack = pcm_capture_ack, }; static const struct snd_pcm_ops playback_ops = { .open = pcm_open, .close = pcm_close, .hw_params = pcm_hw_params, .hw_free = pcm_hw_free, .prepare = pcm_playback_prepare, .trigger = pcm_playback_trigger, .pointer = pcm_playback_pointer, .ack = pcm_playback_ack, }; struct snd_pcm *pcm; int err; err = snd_pcm_new(efw->card, efw->card->driver, 0, 1, 1, &pcm); if (err < 0) goto end; pcm->private_data = efw; pcm->nonatomic = true; snprintf(pcm->name, sizeof(pcm->name), "%s PCM", efw->card->shortname); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &playback_ops); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &capture_ops); snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_VMALLOC, NULL, 0, 0); end: return err; }