// SPDX-License-Identifier: GPL-2.0-or-later /* * USB Audio Driver for ALSA * * Quirks and vendor-specific extensions for mixer interfaces * * Copyright (c) 2002 by Takashi Iwai * * Many codes borrowed from audio.c by * Alan Cox (alan@lxorguk.ukuu.org.uk) * Thomas Sailer (sailer@ife.ee.ethz.ch) * * Audio Advantage Micro II support added by: * Przemek Rudy (prudy1@o2.pl) */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "usbaudio.h" #include "mixer.h" #include "mixer_quirks.h" #include "mixer_scarlett.h" #include "mixer_scarlett2.h" #include "mixer_us16x08.h" #include "mixer_s1810c.h" #include "helper.h" struct std_mono_table { unsigned int unitid, control, cmask; int val_type; const char *name; snd_kcontrol_tlv_rw_t *tlv_callback; }; /* This function allows for the creation of standard UAC controls. * See the quirks for M-Audio FTUs or Ebox-44. * If you don't want to set a TLV callback pass NULL. * * Since there doesn't seem to be a devices that needs a multichannel * version, we keep it mono for simplicity. */ static int snd_create_std_mono_ctl_offset(struct usb_mixer_interface *mixer, unsigned int unitid, unsigned int control, unsigned int cmask, int val_type, unsigned int idx_off, const char *name, snd_kcontrol_tlv_rw_t *tlv_callback) { struct usb_mixer_elem_info *cval; struct snd_kcontrol *kctl; cval = kzalloc(sizeof(*cval), GFP_KERNEL); if (!cval) return -ENOMEM; snd_usb_mixer_elem_init_std(&cval->head, mixer, unitid); cval->val_type = val_type; cval->channels = 1; cval->control = control; cval->cmask = cmask; cval->idx_off = idx_off; /* get_min_max() is called only for integer volumes later, * so provide a short-cut for booleans */ cval->min = 0; cval->max = 1; cval->res = 0; cval->dBmin = 0; cval->dBmax = 0; /* Create control */ kctl = snd_ctl_new1(snd_usb_feature_unit_ctl, cval); if (!kctl) { kfree(cval); return -ENOMEM; } /* Set name */ snprintf(kctl->id.name, sizeof(kctl->id.name), name); kctl->private_free = snd_usb_mixer_elem_free; /* set TLV */ if (tlv_callback) { kctl->tlv.c = tlv_callback; kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_TLV_READ | SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK; } /* Add control to mixer */ return snd_usb_mixer_add_control(&cval->head, kctl); } static int snd_create_std_mono_ctl(struct usb_mixer_interface *mixer, unsigned int unitid, unsigned int control, unsigned int cmask, int val_type, const char *name, snd_kcontrol_tlv_rw_t *tlv_callback) { return snd_create_std_mono_ctl_offset(mixer, unitid, control, cmask, val_type, 0 /* Offset */, name, tlv_callback); } /* * Create a set of standard UAC controls from a table */ static int snd_create_std_mono_table(struct usb_mixer_interface *mixer, const struct std_mono_table *t) { int err; while (t->name != NULL) { err = snd_create_std_mono_ctl(mixer, t->unitid, t->control, t->cmask, t->val_type, t->name, t->tlv_callback); if (err < 0) return err; t++; } return 0; } static int add_single_ctl_with_resume(struct usb_mixer_interface *mixer, int id, usb_mixer_elem_resume_func_t resume, const struct snd_kcontrol_new *knew, struct usb_mixer_elem_list **listp) { struct usb_mixer_elem_list *list; struct snd_kcontrol *kctl; list = kzalloc(sizeof(*list), GFP_KERNEL); if (!list) return -ENOMEM; if (listp) *listp = list; list->mixer = mixer; list->id = id; list->resume = resume; kctl = snd_ctl_new1(knew, list); if (!kctl) { kfree(list); return -ENOMEM; } kctl->private_free = snd_usb_mixer_elem_free; /* don't use snd_usb_mixer_add_control() here, this is a special list element */ return snd_usb_mixer_add_list(list, kctl, false); } /* * Sound Blaster remote control configuration * * format of remote control data: * Extigy: xx 00 * Audigy 2 NX: 06 80 xx 00 00 00 * Live! 24-bit: 06 80 xx yy 22 83 */ static const struct rc_config { u32 usb_id; u8 offset; u8 length; u8 packet_length; u8 min_packet_length; /* minimum accepted length of the URB result */ u8 mute_mixer_id; u32 mute_code; } rc_configs[] = { { USB_ID(0x041e, 0x3000), 0, 1, 2, 1, 18, 0x0013 }, /* Extigy */ { USB_ID(0x041e, 0x3020), 2, 1, 6, 6, 18, 0x0013 }, /* Audigy 2 NX */ { USB_ID(0x041e, 0x3040), 2, 2, 6, 6, 2, 0x6e91 }, /* Live! 24-bit */ { USB_ID(0x041e, 0x3042), 0, 1, 1, 1, 1, 0x000d }, /* Usb X-Fi S51 */ { USB_ID(0x041e, 0x30df), 0, 1, 1, 1, 1, 0x000d }, /* Usb X-Fi S51 Pro */ { USB_ID(0x041e, 0x3237), 0, 1, 1, 1, 1, 0x000d }, /* Usb X-Fi S51 Pro */ { USB_ID(0x041e, 0x3263), 0, 1, 1, 1, 1, 0x000d }, /* Usb X-Fi S51 Pro */ { USB_ID(0x041e, 0x3048), 2, 2, 6, 6, 2, 0x6e91 }, /* Toshiba SB0500 */ }; static void snd_usb_soundblaster_remote_complete(struct urb *urb) { struct usb_mixer_interface *mixer = urb->context; const struct rc_config *rc = mixer->rc_cfg; u32 code; if (urb->status < 0 || urb->actual_length < rc->min_packet_length) return; code = mixer->rc_buffer[rc->offset]; if (rc->length == 2) code |= mixer->rc_buffer[rc->offset + 1] << 8; /* the Mute button actually changes the mixer control */ if (code == rc->mute_code) snd_usb_mixer_notify_id(mixer, rc->mute_mixer_id); mixer->rc_code = code; wmb(); wake_up(&mixer->rc_waitq); } static long snd_usb_sbrc_hwdep_read(struct snd_hwdep *hw, char __user *buf, long count, loff_t *offset) { struct usb_mixer_interface *mixer = hw->private_data; int err; u32 rc_code; if (count != 1 && count != 4) return -EINVAL; err = wait_event_interruptible(mixer->rc_waitq, (rc_code = xchg(&mixer->rc_code, 0)) != 0); if (err == 0) { if (count == 1) err = put_user(rc_code, buf); else err = put_user(rc_code, (u32 __user *)buf); } return err < 0 ? err : count; } static __poll_t snd_usb_sbrc_hwdep_poll(struct snd_hwdep *hw, struct file *file, poll_table *wait) { struct usb_mixer_interface *mixer = hw->private_data; poll_wait(file, &mixer->rc_waitq, wait); return mixer->rc_code ? EPOLLIN | EPOLLRDNORM : 0; } static int snd_usb_soundblaster_remote_init(struct usb_mixer_interface *mixer) { struct snd_hwdep *hwdep; int err, len, i; for (i = 0; i < ARRAY_SIZE(rc_configs); ++i) if (rc_configs[i].usb_id == mixer->chip->usb_id) break; if (i >= ARRAY_SIZE(rc_configs)) return 0; mixer->rc_cfg = &rc_configs[i]; len = mixer->rc_cfg->packet_length; init_waitqueue_head(&mixer->rc_waitq); err = snd_hwdep_new(mixer->chip->card, "SB remote control", 0, &hwdep); if (err < 0) return err; snprintf(hwdep->name, sizeof(hwdep->name), "%s remote control", mixer->chip->card->shortname); hwdep->iface = SNDRV_HWDEP_IFACE_SB_RC; hwdep->private_data = mixer; hwdep->ops.read = snd_usb_sbrc_hwdep_read; hwdep->ops.poll = snd_usb_sbrc_hwdep_poll; hwdep->exclusive = 1; mixer->rc_urb = usb_alloc_urb(0, GFP_KERNEL); if (!mixer->rc_urb) return -ENOMEM; mixer->rc_setup_packet = kmalloc(sizeof(*mixer->rc_setup_packet), GFP_KERNEL); if (!mixer->rc_setup_packet) { usb_free_urb(mixer->rc_urb); mixer->rc_urb = NULL; return -ENOMEM; } mixer->rc_setup_packet->bRequestType = USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE; mixer->rc_setup_packet->bRequest = UAC_GET_MEM; mixer->rc_setup_packet->wValue = cpu_to_le16(0); mixer->rc_setup_packet->wIndex = cpu_to_le16(0); mixer->rc_setup_packet->wLength = cpu_to_le16(len); usb_fill_control_urb(mixer->rc_urb, mixer->chip->dev, usb_rcvctrlpipe(mixer->chip->dev, 0), (u8*)mixer->rc_setup_packet, mixer->rc_buffer, len, snd_usb_soundblaster_remote_complete, mixer); return 0; } #define snd_audigy2nx_led_info snd_ctl_boolean_mono_info static int snd_audigy2nx_led_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { ucontrol->value.integer.value[0] = kcontrol->private_value >> 8; return 0; } static int snd_audigy2nx_led_update(struct usb_mixer_interface *mixer, int value, int index) { struct snd_usb_audio *chip = mixer->chip; int err; err = snd_usb_lock_shutdown(chip); if (err < 0) return err; if (chip->usb_id == USB_ID(0x041e, 0x3042)) err = snd_usb_ctl_msg(chip->dev, usb_sndctrlpipe(chip->dev, 0), 0x24, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER, !value, 0, NULL, 0); /* USB X-Fi S51 Pro */ if (chip->usb_id == USB_ID(0x041e, 0x30df)) err = snd_usb_ctl_msg(chip->dev, usb_sndctrlpipe(chip->dev, 0), 0x24, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER, !value, 0, NULL, 0); else err = snd_usb_ctl_msg(chip->dev, usb_sndctrlpipe(chip->dev, 0), 0x24, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER, value, index + 2, NULL, 0); snd_usb_unlock_shutdown(chip); return err; } static int snd_audigy2nx_led_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol); struct usb_mixer_interface *mixer = list->mixer; int index = kcontrol->private_value & 0xff; unsigned int value = ucontrol->value.integer.value[0]; int old_value = kcontrol->private_value >> 8; int err; if (value > 1) return -EINVAL; if (value == old_value) return 0; kcontrol->private_value = (value << 8) | index; err = snd_audigy2nx_led_update(mixer, value, index); return err < 0 ? err : 1; } static int snd_audigy2nx_led_resume(struct usb_mixer_elem_list *list) { int priv_value = list->kctl->private_value; return snd_audigy2nx_led_update(list->mixer, priv_value >> 8, priv_value & 0xff); } /* name and private_value are set dynamically */ static const struct snd_kcontrol_new snd_audigy2nx_control = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .info = snd_audigy2nx_led_info, .get = snd_audigy2nx_led_get, .put = snd_audigy2nx_led_put, }; static const char * const snd_audigy2nx_led_names[] = { "CMSS LED Switch", "Power LED Switch", "Dolby Digital LED Switch", }; static int snd_audigy2nx_controls_create(struct usb_mixer_interface *mixer) { int i, err; for (i = 0; i < ARRAY_SIZE(snd_audigy2nx_led_names); ++i) { struct snd_kcontrol_new knew; /* USB X-Fi S51 doesn't have a CMSS LED */ if ((mixer->chip->usb_id == USB_ID(0x041e, 0x3042)) && i == 0) continue; /* USB X-Fi S51 Pro doesn't have one either */ if ((mixer->chip->usb_id == USB_ID(0x041e, 0x30df)) && i == 0) continue; if (i > 1 && /* Live24ext has 2 LEDs only */ (mixer->chip->usb_id == USB_ID(0x041e, 0x3040) || mixer->chip->usb_id == USB_ID(0x041e, 0x3042) || mixer->chip->usb_id == USB_ID(0x041e, 0x30df) || mixer->chip->usb_id == USB_ID(0x041e, 0x3048))) break; knew = snd_audigy2nx_control; knew.name = snd_audigy2nx_led_names[i]; knew.private_value = (1 << 8) | i; /* LED on as default */ err = add_single_ctl_with_resume(mixer, 0, snd_audigy2nx_led_resume, &knew, NULL); if (err < 0) return err; } return 0; } static void snd_audigy2nx_proc_read(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { static const struct sb_jack { int unitid; const char *name; } jacks_audigy2nx[] = { {4, "dig in "}, {7, "line in"}, {19, "spk out"}, {20, "hph out"}, {-1, NULL} }, jacks_live24ext[] = { {4, "line in"}, /* &1=Line, &2=Mic*/ {3, "hph out"}, /* headphones */ {0, "RC "}, /* last command, 6 bytes see rc_config above */ {-1, NULL} }; const struct sb_jack *jacks; struct usb_mixer_interface *mixer = entry->private_data; int i, err; u8 buf[3]; snd_iprintf(buffer, "%s jacks\n\n", mixer->chip->card->shortname); if (mixer->chip->usb_id == USB_ID(0x041e, 0x3020)) jacks = jacks_audigy2nx; else if (mixer->chip->usb_id == USB_ID(0x041e, 0x3040) || mixer->chip->usb_id == USB_ID(0x041e, 0x3048)) jacks = jacks_live24ext; else return; for (i = 0; jacks[i].name; ++i) { snd_iprintf(buffer, "%s: ", jacks[i].name); err = snd_usb_lock_shutdown(mixer->chip); if (err < 0) return; err = snd_usb_ctl_msg(mixer->chip->dev, usb_rcvctrlpipe(mixer->chip->dev, 0), UAC_GET_MEM, USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE, 0, jacks[i].unitid << 8, buf, 3); snd_usb_unlock_shutdown(mixer->chip); if (err == 3 && (buf[0] == 3 || buf[0] == 6)) snd_iprintf(buffer, "%02x %02x\n", buf[1], buf[2]); else snd_iprintf(buffer, "?\n"); } } /* EMU0204 */ static int snd_emu0204_ch_switch_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { static const char * const texts[2] = {"1/2", "3/4"}; return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(texts), texts); } static int snd_emu0204_ch_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { ucontrol->value.enumerated.item[0] = kcontrol->private_value; return 0; } static int snd_emu0204_ch_switch_update(struct usb_mixer_interface *mixer, int value) { struct snd_usb_audio *chip = mixer->chip; int err; unsigned char buf[2]; err = snd_usb_lock_shutdown(chip); if (err < 0) return err; buf[0] = 0x01; buf[1] = value ? 0x02 : 0x01; err = snd_usb_ctl_msg(chip->dev, usb_sndctrlpipe(chip->dev, 0), UAC_SET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT, 0x0400, 0x0e00, buf, 2); snd_usb_unlock_shutdown(chip); return err; } static int snd_emu0204_ch_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol); struct usb_mixer_interface *mixer = list->mixer; unsigned int value = ucontrol->value.enumerated.item[0]; int err; if (value > 1) return -EINVAL; if (value == kcontrol->private_value) return 0; kcontrol->private_value = value; err = snd_emu0204_ch_switch_update(mixer, value); return err < 0 ? err : 1; } static int snd_emu0204_ch_switch_resume(struct usb_mixer_elem_list *list) { return snd_emu0204_ch_switch_update(list->mixer, list->kctl->private_value); } static const struct snd_kcontrol_new snd_emu0204_control = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Front Jack Channels", .info = snd_emu0204_ch_switch_info, .get = snd_emu0204_ch_switch_get, .put = snd_emu0204_ch_switch_put, .private_value = 0, }; static int snd_emu0204_controls_create(struct usb_mixer_interface *mixer) { return add_single_ctl_with_resume(mixer, 0, snd_emu0204_ch_switch_resume, &snd_emu0204_control, NULL); } /* ASUS Xonar U1 / U3 controls */ static int snd_xonar_u1_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { ucontrol->value.integer.value[0] = !!(kcontrol->private_value & 0x02); return 0; } static int snd_xonar_u1_switch_update(struct usb_mixer_interface *mixer, unsigned char status) { struct snd_usb_audio *chip = mixer->chip; int err; err = snd_usb_lock_shutdown(chip); if (err < 0) return err; err = snd_usb_ctl_msg(chip->dev, usb_sndctrlpipe(chip->dev, 0), 0x08, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER, 50, 0, &status, 1); snd_usb_unlock_shutdown(chip); return err; } static int snd_xonar_u1_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol); u8 old_status, new_status; int err; old_status = kcontrol->private_value; if (ucontrol->value.integer.value[0]) new_status = old_status | 0x02; else new_status = old_status & ~0x02; if (new_status == old_status) return 0; kcontrol->private_value = new_status; err = snd_xonar_u1_switch_update(list->mixer, new_status); return err < 0 ? err : 1; } static int snd_xonar_u1_switch_resume(struct usb_mixer_elem_list *list) { return snd_xonar_u1_switch_update(list->mixer, list->kctl->private_value); } static const struct snd_kcontrol_new snd_xonar_u1_output_switch = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Digital Playback Switch", .info = snd_ctl_boolean_mono_info, .get = snd_xonar_u1_switch_get, .put = snd_xonar_u1_switch_put, .private_value = 0x05, }; static int snd_xonar_u1_controls_create(struct usb_mixer_interface *mixer) { return add_single_ctl_with_resume(mixer, 0, snd_xonar_u1_switch_resume, &snd_xonar_u1_output_switch, NULL); } /* Digidesign Mbox 1 helper functions */ static int snd_mbox1_is_spdif_synced(struct snd_usb_audio *chip) { unsigned char buff[3]; int err; int is_spdif_synced; /* Read clock source */ err = snd_usb_ctl_msg(chip->dev, usb_rcvctrlpipe(chip->dev, 0), 0x81, USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_ENDPOINT, 0x100, 0x81, buff, 3); if (err < 0) return err; /* spdif sync: buff is all zeroes */ is_spdif_synced = !(buff[0] | buff[1] | buff[2]); return is_spdif_synced; } static int snd_mbox1_set_clk_source(struct snd_usb_audio *chip, int rate_or_zero) { /* 2 possibilities: Internal -> expects sample rate * S/PDIF sync -> expects rate = 0 */ unsigned char buff[3]; buff[0] = (rate_or_zero >> 0) & 0xff; buff[1] = (rate_or_zero >> 8) & 0xff; buff[2] = (rate_or_zero >> 16) & 0xff; /* Set clock source */ return snd_usb_ctl_msg(chip->dev, usb_sndctrlpipe(chip->dev, 0), 0x1, USB_TYPE_CLASS | USB_RECIP_ENDPOINT, 0x100, 0x81, buff, 3); } static int snd_mbox1_is_spdif_input(struct snd_usb_audio *chip) { /* Hardware gives 2 possibilities: ANALOG Source -> 0x01 * S/PDIF Source -> 0x02 */ int err; unsigned char source[1]; /* Read input source */ err = snd_usb_ctl_msg(chip->dev, usb_rcvctrlpipe(chip->dev, 0), 0x81, USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE, 0x00, 0x500, source, 1); if (err < 0) return err; return (source[0] == 2); } static int snd_mbox1_set_input_source(struct snd_usb_audio *chip, int is_spdif) { /* NB: Setting the input source to S/PDIF resets the clock source to S/PDIF * Hardware expects 2 possibilities: ANALOG Source -> 0x01 * S/PDIF Source -> 0x02 */ unsigned char buff[1]; buff[0] = (is_spdif & 1) + 1; /* Set input source */ return snd_usb_ctl_msg(chip->dev, usb_sndctrlpipe(chip->dev, 0), 0x1, USB_TYPE_CLASS | USB_RECIP_INTERFACE, 0x00, 0x500, buff, 1); } /* Digidesign Mbox 1 clock source switch (internal/spdif) */ static int snd_mbox1_clk_switch_get(struct snd_kcontrol *kctl, struct snd_ctl_elem_value *ucontrol) { struct usb_mixer_elem_list *list = snd_kcontrol_chip(kctl); struct snd_usb_audio *chip = list->mixer->chip; int err; err = snd_usb_lock_shutdown(chip); if (err < 0) goto err; err = snd_mbox1_is_spdif_synced(chip); if (err < 0) goto err; kctl->private_value = err; err = 0; ucontrol->value.enumerated.item[0] = kctl->private_value; err: snd_usb_unlock_shutdown(chip); return err; } static int snd_mbox1_clk_switch_update(struct usb_mixer_interface *mixer, int is_spdif_sync) { struct snd_usb_audio *chip = mixer->chip; int err; err = snd_usb_lock_shutdown(chip); if (err < 0) return err; err = snd_mbox1_is_spdif_input(chip); if (err < 0) goto err; err = snd_mbox1_is_spdif_synced(chip); if (err < 0) goto err; /* FIXME: hardcoded sample rate */ err = snd_mbox1_set_clk_source(chip, is_spdif_sync ? 0 : 48000); if (err < 0) goto err; err = snd_mbox1_is_spdif_synced(chip); err: snd_usb_unlock_shutdown(chip); return err; } static int snd_mbox1_clk_switch_put(struct snd_kcontrol *kctl, struct snd_ctl_elem_value *ucontrol) { struct usb_mixer_elem_list *list = snd_kcontrol_chip(kctl); struct usb_mixer_interface *mixer = list->mixer; int err; bool cur_val, new_val; cur_val = kctl->private_value; new_val = ucontrol->value.enumerated.item[0]; if (cur_val == new_val) return 0; kctl->private_value = new_val; err = snd_mbox1_clk_switch_update(mixer, new_val); return err < 0 ? err : 1; } static int snd_mbox1_clk_switch_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { static const char *const texts[2] = { "Internal", "S/PDIF" }; return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(texts), texts); } static int snd_mbox1_clk_switch_resume(struct usb_mixer_elem_list *list) { return snd_mbox1_clk_switch_update(list->mixer, list->kctl->private_value); } /* Digidesign Mbox 1 input source switch (analog/spdif) */ static int snd_mbox1_src_switch_get(struct snd_kcontrol *kctl, struct snd_ctl_elem_value *ucontrol) { ucontrol->value.enumerated.item[0] = kctl->private_value; return 0; } static int snd_mbox1_src_switch_update(struct usb_mixer_interface *mixer, int is_spdif_input) { struct snd_usb_audio *chip = mixer->chip; int err; err = snd_usb_lock_shutdown(chip); if (err < 0) return err; err = snd_mbox1_is_spdif_input(chip); if (err < 0) goto err; err = snd_mbox1_set_input_source(chip, is_spdif_input); if (err < 0) goto err; err = snd_mbox1_is_spdif_input(chip); if (err < 0) goto err; err = snd_mbox1_is_spdif_synced(chip); err: snd_usb_unlock_shutdown(chip); return err; } static int snd_mbox1_src_switch_put(struct snd_kcontrol *kctl, struct snd_ctl_elem_value *ucontrol) { struct usb_mixer_elem_list *list = snd_kcontrol_chip(kctl); struct usb_mixer_interface *mixer = list->mixer; int err; bool cur_val, new_val; cur_val = kctl->private_value; new_val = ucontrol->value.enumerated.item[0]; if (cur_val == new_val) return 0; kctl->private_value = new_val; err = snd_mbox1_src_switch_update(mixer, new_val); return err < 0 ? err : 1; } static int snd_mbox1_src_switch_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { static const char *const texts[2] = { "Analog", "S/PDIF" }; return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(texts), texts); } static int snd_mbox1_src_switch_resume(struct usb_mixer_elem_list *list) { return snd_mbox1_src_switch_update(list->mixer, list->kctl->private_value); } static const struct snd_kcontrol_new snd_mbox1_clk_switch = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Clock Source", .index = 0, .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, .info = snd_mbox1_clk_switch_info, .get = snd_mbox1_clk_switch_get, .put = snd_mbox1_clk_switch_put, .private_value = 0 }; static const struct snd_kcontrol_new snd_mbox1_src_switch = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Input Source", .index = 1, .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, .info = snd_mbox1_src_switch_info, .get = snd_mbox1_src_switch_get, .put = snd_mbox1_src_switch_put, .private_value = 0 }; static int snd_mbox1_controls_create(struct usb_mixer_interface *mixer) { int err; err = add_single_ctl_with_resume(mixer, 0, snd_mbox1_clk_switch_resume, &snd_mbox1_clk_switch, NULL); if (err < 0) return err; return add_single_ctl_with_resume(mixer, 1, snd_mbox1_src_switch_resume, &snd_mbox1_src_switch, NULL); } /* Native Instruments device quirks */ #define _MAKE_NI_CONTROL(bRequest,wIndex) ((bRequest) << 16 | (wIndex)) static int snd_ni_control_init_val(struct usb_mixer_interface *mixer, struct snd_kcontrol *kctl) { struct usb_device *dev = mixer->chip->dev; unsigned int pval = kctl->private_value; u8 value; int err; err = snd_usb_ctl_msg(dev, usb_rcvctrlpipe(dev, 0), (pval >> 16) & 0xff, USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_IN, 0, pval & 0xffff, &value, 1); if (err < 0) { dev_err(&dev->dev, "unable to issue vendor read request (ret = %d)", err); return err; } kctl->private_value |= ((unsigned int)value << 24); return 0; } static int snd_nativeinstruments_control_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { ucontrol->value.integer.value[0] = kcontrol->private_value >> 24; return 0; } static int snd_ni_update_cur_val(struct usb_mixer_elem_list *list) { struct snd_usb_audio *chip = list->mixer->chip; unsigned int pval = list->kctl->private_value; int err; err = snd_usb_lock_shutdown(chip); if (err < 0) return err; err = usb_control_msg(chip->dev, usb_sndctrlpipe(chip->dev, 0), (pval >> 16) & 0xff, USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_OUT, pval >> 24, pval & 0xffff, NULL, 0, 1000); snd_usb_unlock_shutdown(chip); return err; } static int snd_nativeinstruments_control_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol); u8 oldval = (kcontrol->private_value >> 24) & 0xff; u8 newval = ucontrol->value.integer.value[0]; int err; if (oldval == newval) return 0; kcontrol->private_value &= ~(0xff << 24); kcontrol->private_value |= (unsigned int)newval << 24; err = snd_ni_update_cur_val(list); return err < 0 ? err : 1; } static const struct snd_kcontrol_new snd_nativeinstruments_ta6_mixers[] = { { .name = "Direct Thru Channel A", .private_value = _MAKE_NI_CONTROL(0x01, 0x03), }, { .name = "Direct Thru Channel B", .private_value = _MAKE_NI_CONTROL(0x01, 0x05), }, { .name = "Phono Input Channel A", .private_value = _MAKE_NI_CONTROL(0x02, 0x03), }, { .name = "Phono Input Channel B", .private_value = _MAKE_NI_CONTROL(0x02, 0x05), }, }; static const struct snd_kcontrol_new snd_nativeinstruments_ta10_mixers[] = { { .name = "Direct Thru Channel A", .private_value = _MAKE_NI_CONTROL(0x01, 0x03), }, { .name = "Direct Thru Channel B", .private_value = _MAKE_NI_CONTROL(0x01, 0x05), }, { .name = "Direct Thru Channel C", .private_value = _MAKE_NI_CONTROL(0x01, 0x07), }, { .name = "Direct Thru Channel D", .private_value = _MAKE_NI_CONTROL(0x01, 0x09), }, { .name = "Phono Input Channel A", .private_value = _MAKE_NI_CONTROL(0x02, 0x03), }, { .name = "Phono Input Channel B", .private_value = _MAKE_NI_CONTROL(0x02, 0x05), }, { .name = "Phono Input Channel C", .private_value = _MAKE_NI_CONTROL(0x02, 0x07), }, { .name = "Phono Input Channel D", .private_value = _MAKE_NI_CONTROL(0x02, 0x09), }, }; static int snd_nativeinstruments_create_mixer(struct usb_mixer_interface *mixer, const struct snd_kcontrol_new *kc, unsigned int count) { int i, err = 0; struct snd_kcontrol_new template = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, .get = snd_nativeinstruments_control_get, .put = snd_nativeinstruments_control_put, .info = snd_ctl_boolean_mono_info, }; for (i = 0; i < count; i++) { struct usb_mixer_elem_list *list; template.name = kc[i].name; template.private_value = kc[i].private_value; err = add_single_ctl_with_resume(mixer, 0, snd_ni_update_cur_val, &template, &list); if (err < 0) break; snd_ni_control_init_val(mixer, list->kctl); } return err; } /* M-Audio FastTrack Ultra quirks */ /* FTU Effect switch (also used by C400/C600) */ static int snd_ftu_eff_switch_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { static const char *const texts[8] = { "Room 1", "Room 2", "Room 3", "Hall 1", "Hall 2", "Plate", "Delay", "Echo" }; return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(texts), texts); } static int snd_ftu_eff_switch_init(struct usb_mixer_interface *mixer, struct snd_kcontrol *kctl) { struct usb_device *dev = mixer->chip->dev; unsigned int pval = kctl->private_value; int err; unsigned char value[2]; value[0] = 0x00; value[1] = 0x00; err = snd_usb_ctl_msg(dev, usb_rcvctrlpipe(dev, 0), UAC_GET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN, pval & 0xff00, snd_usb_ctrl_intf(mixer->hostif) | ((pval & 0xff) << 8), value, 2); if (err < 0) return err; kctl->private_value |= (unsigned int)value[0] << 24; return 0; } static int snd_ftu_eff_switch_get(struct snd_kcontrol *kctl, struct snd_ctl_elem_value *ucontrol) { ucontrol->value.enumerated.item[0] = kctl->private_value >> 24; return 0; } static int snd_ftu_eff_switch_update(struct usb_mixer_elem_list *list) { struct snd_usb_audio *chip = list->mixer->chip; unsigned int pval = list->kctl->private_value; unsigned char value[2]; int err; value[0] = pval >> 24; value[1] = 0; err = snd_usb_lock_shutdown(chip); if (err < 0) return err; err = snd_usb_ctl_msg(chip->dev, usb_sndctrlpipe(chip->dev, 0), UAC_SET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT, pval & 0xff00, snd_usb_ctrl_intf(list->mixer->hostif) | ((pval & 0xff) << 8), value, 2); snd_usb_unlock_shutdown(chip); return err; } static int snd_ftu_eff_switch_put(struct snd_kcontrol *kctl, struct snd_ctl_elem_value *ucontrol) { struct usb_mixer_elem_list *list = snd_kcontrol_chip(kctl); unsigned int pval = list->kctl->private_value; int cur_val, err, new_val; cur_val = pval >> 24; new_val = ucontrol->value.enumerated.item[0]; if (cur_val == new_val) return 0; kctl->private_value &= ~(0xff << 24); kctl->private_value |= new_val << 24; err = snd_ftu_eff_switch_update(list); return err < 0 ? err : 1; } static int snd_ftu_create_effect_switch(struct usb_mixer_interface *mixer, int validx, int bUnitID) { static struct snd_kcontrol_new template = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Effect Program Switch", .index = 0, .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, .info = snd_ftu_eff_switch_info, .get = snd_ftu_eff_switch_get, .put = snd_ftu_eff_switch_put }; struct usb_mixer_elem_list *list; int err; err = add_single_ctl_with_resume(mixer, bUnitID, snd_ftu_eff_switch_update, &template, &list); if (err < 0) return err; list->kctl->private_value = (validx << 8) | bUnitID; snd_ftu_eff_switch_init(mixer, list->kctl); return 0; } /* Create volume controls for FTU devices*/ static int snd_ftu_create_volume_ctls(struct usb_mixer_interface *mixer) { char name[64]; unsigned int control, cmask; int in, out, err; const unsigned int id = 5; const int val_type = USB_MIXER_S16; for (out = 0; out < 8; out++) { control = out + 1; for (in = 0; in < 8; in++) { cmask = BIT(in); snprintf(name, sizeof(name), "AIn%d - Out%d Capture Volume", in + 1, out + 1); err = snd_create_std_mono_ctl(mixer, id, control, cmask, val_type, name, &snd_usb_mixer_vol_tlv); if (err < 0) return err; } for (in = 8; in < 16; in++) { cmask = BIT(in); snprintf(name, sizeof(name), "DIn%d - Out%d Playback Volume", in - 7, out + 1); err = snd_create_std_mono_ctl(mixer, id, control, cmask, val_type, name, &snd_usb_mixer_vol_tlv); if (err < 0) return err; } } return 0; } /* This control needs a volume quirk, see mixer.c */ static int snd_ftu_create_effect_volume_ctl(struct usb_mixer_interface *mixer) { static const char name[] = "Effect Volume"; const unsigned int id = 6; const int val_type = USB_MIXER_U8; const unsigned int control = 2; const unsigned int cmask = 0; return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type, name, snd_usb_mixer_vol_tlv); } /* This control needs a volume quirk, see mixer.c */ static int snd_ftu_create_effect_duration_ctl(struct usb_mixer_interface *mixer) { static const char name[] = "Effect Duration"; const unsigned int id = 6; const int val_type = USB_MIXER_S16; const unsigned int control = 3; const unsigned int cmask = 0; return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type, name, snd_usb_mixer_vol_tlv); } /* This control needs a volume quirk, see mixer.c */ static int snd_ftu_create_effect_feedback_ctl(struct usb_mixer_interface *mixer) { static const char name[] = "Effect Feedback Volume"; const unsigned int id = 6; const int val_type = USB_MIXER_U8; const unsigned int control = 4; const unsigned int cmask = 0; return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type, name, NULL); } static int snd_ftu_create_effect_return_ctls(struct usb_mixer_interface *mixer) { unsigned int cmask; int err, ch; char name[48]; const unsigned int id = 7; const int val_type = USB_MIXER_S16; const unsigned int control = 7; for (ch = 0; ch < 4; ++ch) { cmask = BIT(ch); snprintf(name, sizeof(name), "Effect Return %d Volume", ch + 1); err = snd_create_std_mono_ctl(mixer, id, control, cmask, val_type, name, snd_usb_mixer_vol_tlv); if (err < 0) return err; } return 0; } static int snd_ftu_create_effect_send_ctls(struct usb_mixer_interface *mixer) { unsigned int cmask; int err, ch; char name[48]; const unsigned int id = 5; const int val_type = USB_MIXER_S16; const unsigned int control = 9; for (ch = 0; ch < 8; ++ch) { cmask = BIT(ch); snprintf(name, sizeof(name), "Effect Send AIn%d Volume", ch + 1); err = snd_create_std_mono_ctl(mixer, id, control, cmask, val_type, name, snd_usb_mixer_vol_tlv); if (err < 0) return err; } for (ch = 8; ch < 16; ++ch) { cmask = BIT(ch); snprintf(name, sizeof(name), "Effect Send DIn%d Volume", ch - 7); err = snd_create_std_mono_ctl(mixer, id, control, cmask, val_type, name, snd_usb_mixer_vol_tlv); if (err < 0) return err; } return 0; } static int snd_ftu_create_mixer(struct usb_mixer_interface *mixer) { int err; err = snd_ftu_create_volume_ctls(mixer); if (err < 0) return err; err = snd_ftu_create_effect_switch(mixer, 1, 6); if (err < 0) return err; err = snd_ftu_create_effect_volume_ctl(mixer); if (err < 0) return err; err = snd_ftu_create_effect_duration_ctl(mixer); if (err < 0) return err; err = snd_ftu_create_effect_feedback_ctl(mixer); if (err < 0) return err; err = snd_ftu_create_effect_return_ctls(mixer); if (err < 0) return err; err = snd_ftu_create_effect_send_ctls(mixer); if (err < 0) return err; return 0; } void snd_emuusb_set_samplerate(struct snd_usb_audio *chip, unsigned char samplerate_id) { struct usb_mixer_interface *mixer; struct usb_mixer_elem_info *cval; int unitid = 12; /* SampleRate ExtensionUnit ID */ list_for_each_entry(mixer, &chip->mixer_list, list) { if (mixer->id_elems[unitid]) { cval = mixer_elem_list_to_info(mixer->id_elems[unitid]); snd_usb_mixer_set_ctl_value(cval, UAC_SET_CUR, cval->control << 8, samplerate_id); snd_usb_mixer_notify_id(mixer, unitid); break; } } } /* M-Audio Fast Track C400/C600 */ /* C400/C600 volume controls, this control needs a volume quirk, see mixer.c */ static int snd_c400_create_vol_ctls(struct usb_mixer_interface *mixer) { char name[64]; unsigned int cmask, offset; int out, chan, err; int num_outs = 0; int num_ins = 0; const unsigned int id = 0x40; const int val_type = USB_MIXER_S16; const int control = 1; switch (mixer->chip->usb_id) { case USB_ID(0x0763, 0x2030): num_outs = 6; num_ins = 4; break; case USB_ID(0x0763, 0x2031): num_outs = 8; num_ins = 6; break; } for (chan = 0; chan < num_outs + num_ins; chan++) { for (out = 0; out < num_outs; out++) { if (chan < num_outs) { snprintf(name, sizeof(name), "PCM%d-Out%d Playback Volume", chan + 1, out + 1); } else { snprintf(name, sizeof(name), "In%d-Out%d Playback Volume", chan - num_outs + 1, out + 1); } cmask = (out == 0) ? 0 : BIT(out - 1); offset = chan * num_outs; err = snd_create_std_mono_ctl_offset(mixer, id, control, cmask, val_type, offset, name, &snd_usb_mixer_vol_tlv); if (err < 0) return err; } } return 0; } /* This control needs a volume quirk, see mixer.c */ static int snd_c400_create_effect_volume_ctl(struct usb_mixer_interface *mixer) { static const char name[] = "Effect Volume"; const unsigned int id = 0x43; const int val_type = USB_MIXER_U8; const unsigned int control = 3; const unsigned int cmask = 0; return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type, name, snd_usb_mixer_vol_tlv); } /* This control needs a volume quirk, see mixer.c */ static int snd_c400_create_effect_duration_ctl(struct usb_mixer_interface *mixer) { static const char name[] = "Effect Duration"; const unsigned int id = 0x43; const int val_type = USB_MIXER_S16; const unsigned int control = 4; const unsigned int cmask = 0; return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type, name, snd_usb_mixer_vol_tlv); } /* This control needs a volume quirk, see mixer.c */ static int snd_c400_create_effect_feedback_ctl(struct usb_mixer_interface *mixer) { static const char name[] = "Effect Feedback Volume"; const unsigned int id = 0x43; const int val_type = USB_MIXER_U8; const unsigned int control = 5; const unsigned int cmask = 0; return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type, name, NULL); } static int snd_c400_create_effect_vol_ctls(struct usb_mixer_interface *mixer) { char name[64]; unsigned int cmask; int chan, err; int num_outs = 0; int num_ins = 0; const unsigned int id = 0x42; const int val_type = USB_MIXER_S16; const int control = 1; switch (mixer->chip->usb_id) { case USB_ID(0x0763, 0x2030): num_outs = 6; num_ins = 4; break; case USB_ID(0x0763, 0x2031): num_outs = 8; num_ins = 6; break; } for (chan = 0; chan < num_outs + num_ins; chan++) { if (chan < num_outs) { snprintf(name, sizeof(name), "Effect Send DOut%d", chan + 1); } else { snprintf(name, sizeof(name), "Effect Send AIn%d", chan - num_outs + 1); } cmask = (chan == 0) ? 0 : BIT(chan - 1); err = snd_create_std_mono_ctl(mixer, id, control, cmask, val_type, name, &snd_usb_mixer_vol_tlv); if (err < 0) return err; } return 0; } static int snd_c400_create_effect_ret_vol_ctls(struct usb_mixer_interface *mixer) { char name[64]; unsigned int cmask; int chan, err; int num_outs = 0; int offset = 0; const unsigned int id = 0x40; const int val_type = USB_MIXER_S16; const int control = 1; switch (mixer->chip->usb_id) { case USB_ID(0x0763, 0x2030): num_outs = 6; offset = 0x3c; /* { 0x3c, 0x43, 0x3e, 0x45, 0x40, 0x47 } */ break; case USB_ID(0x0763, 0x2031): num_outs = 8; offset = 0x70; /* { 0x70, 0x79, 0x72, 0x7b, 0x74, 0x7d, 0x76, 0x7f } */ break; } for (chan = 0; chan < num_outs; chan++) { snprintf(name, sizeof(name), "Effect Return %d", chan + 1); cmask = (chan == 0) ? 0 : BIT(chan + (chan % 2) * num_outs - 1); err = snd_create_std_mono_ctl_offset(mixer, id, control, cmask, val_type, offset, name, &snd_usb_mixer_vol_tlv); if (err < 0) return err; } return 0; } static int snd_c400_create_mixer(struct usb_mixer_interface *mixer) { int err; err = snd_c400_create_vol_ctls(mixer); if (err < 0) return err; err = snd_c400_create_effect_vol_ctls(mixer); if (err < 0) return err; err = snd_c400_create_effect_ret_vol_ctls(mixer); if (err < 0) return err; err = snd_ftu_create_effect_switch(mixer, 2, 0x43); if (err < 0) return err; err = snd_c400_create_effect_volume_ctl(mixer); if (err < 0) return err; err = snd_c400_create_effect_duration_ctl(mixer); if (err < 0) return err; err = snd_c400_create_effect_feedback_ctl(mixer); if (err < 0) return err; return 0; } /* * The mixer units for Ebox-44 are corrupt, and even where they * are valid they presents mono controls as L and R channels of * stereo. So we provide a good mixer here. */ static const struct std_mono_table ebox44_table[] = { { .unitid = 4, .control = 1, .cmask = 0x0, .val_type = USB_MIXER_INV_BOOLEAN, .name = "Headphone Playback Switch" }, { .unitid = 4, .control = 2, .cmask = 0x1, .val_type = USB_MIXER_S16, .name = "Headphone A Mix Playback Volume" }, { .unitid = 4, .control = 2, .cmask = 0x2, .val_type = USB_MIXER_S16, .name = "Headphone B Mix Playback Volume" }, { .unitid = 7, .control = 1, .cmask = 0x0, .val_type = USB_MIXER_INV_BOOLEAN, .name = "Output Playback Switch" }, { .unitid = 7, .control = 2, .cmask = 0x1, .val_type = USB_MIXER_S16, .name = "Output A Playback Volume" }, { .unitid = 7, .control = 2, .cmask = 0x2, .val_type = USB_MIXER_S16, .name = "Output B Playback Volume" }, { .unitid = 10, .control = 1, .cmask = 0x0, .val_type = USB_MIXER_INV_BOOLEAN, .name = "Input Capture Switch" }, { .unitid = 10, .control = 2, .cmask = 0x1, .val_type = USB_MIXER_S16, .name = "Input A Capture Volume" }, { .unitid = 10, .control = 2, .cmask = 0x2, .val_type = USB_MIXER_S16, .name = "Input B Capture Volume" }, {} }; /* Audio Advantage Micro II findings: * * Mapping spdif AES bits to vendor register.bit: * AES0: [0 0 0 0 2.3 2.2 2.1 2.0] - default 0x00 * AES1: [3.3 3.2.3.1.3.0 2.7 2.6 2.5 2.4] - default: 0x01 * AES2: [0 0 0 0 0 0 0 0] * AES3: [0 0 0 0 0 0 x 0] - 'x' bit is set basing on standard usb request * (UAC_EP_CS_ATTR_SAMPLE_RATE) for Audio Devices * * power on values: * r2: 0x10 * r3: 0x20 (b7 is zeroed just before playback (except IEC61937) and set * just after it to 0xa0, presumably it disables/mutes some analog * parts when there is no audio.) * r9: 0x28 * * Optical transmitter on/off: * vendor register.bit: 9.1 * 0 - on (0x28 register value) * 1 - off (0x2a register value) * */ static int snd_microii_spdif_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; uinfo->count = 1; return 0; } static int snd_microii_spdif_default_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol); struct snd_usb_audio *chip = list->mixer->chip; int err; struct usb_interface *iface; struct usb_host_interface *alts; unsigned int ep; unsigned char data[3]; int rate; err = snd_usb_lock_shutdown(chip); if (err < 0) return err; ucontrol->value.iec958.status[0] = kcontrol->private_value & 0xff; ucontrol->value.iec958.status[1] = (kcontrol->private_value >> 8) & 0xff; ucontrol->value.iec958.status[2] = 0x00; /* use known values for that card: interface#1 altsetting#1 */ iface = usb_ifnum_to_if(chip->dev, 1); if (!iface || iface->num_altsetting < 2) { err = -EINVAL; goto end; } alts = &iface->altsetting[1]; if (get_iface_desc(alts)->bNumEndpoints < 1) { err = -EINVAL; goto end; } ep = get_endpoint(alts, 0)->bEndpointAddress; err = snd_usb_ctl_msg(chip->dev, usb_rcvctrlpipe(chip->dev, 0), UAC_GET_CUR, USB_TYPE_CLASS | USB_RECIP_ENDPOINT | USB_DIR_IN, UAC_EP_CS_ATTR_SAMPLE_RATE << 8, ep, data, sizeof(data)); if (err < 0) goto end; rate = data[0] | (data[1] << 8) | (data[2] << 16); ucontrol->value.iec958.status[3] = (rate == 48000) ? IEC958_AES3_CON_FS_48000 : IEC958_AES3_CON_FS_44100; err = 0; end: snd_usb_unlock_shutdown(chip); return err; } static int snd_microii_spdif_default_update(struct usb_mixer_elem_list *list) { struct snd_usb_audio *chip = list->mixer->chip; unsigned int pval = list->kctl->private_value; u8 reg; int err; err = snd_usb_lock_shutdown(chip); if (err < 0) return err; reg = ((pval >> 4) & 0xf0) | (pval & 0x0f); err = snd_usb_ctl_msg(chip->dev, usb_sndctrlpipe(chip->dev, 0), UAC_SET_CUR, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER, reg, 2, NULL, 0); if (err < 0) goto end; reg = (pval & IEC958_AES0_NONAUDIO) ? 0xa0 : 0x20; reg |= (pval >> 12) & 0x0f; err = snd_usb_ctl_msg(chip->dev, usb_sndctrlpipe(chip->dev, 0), UAC_SET_CUR, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER, reg, 3, NULL, 0); if (err < 0) goto end; end: snd_usb_unlock_shutdown(chip); return err; } static int snd_microii_spdif_default_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol); unsigned int pval, pval_old; int err; pval = pval_old = kcontrol->private_value; pval &= 0xfffff0f0; pval |= (ucontrol->value.iec958.status[1] & 0x0f) << 8; pval |= (ucontrol->value.iec958.status[0] & 0x0f); pval &= 0xffff0fff; pval |= (ucontrol->value.iec958.status[1] & 0xf0) << 8; /* The frequency bits in AES3 cannot be set via register access. */ /* Silently ignore any bits from the request that cannot be set. */ if (pval == pval_old) return 0; kcontrol->private_value = pval; err = snd_microii_spdif_default_update(list); return err < 0 ? err : 1; } static int snd_microii_spdif_mask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { ucontrol->value.iec958.status[0] = 0x0f; ucontrol->value.iec958.status[1] = 0xff; ucontrol->value.iec958.status[2] = 0x00; ucontrol->value.iec958.status[3] = 0x00; return 0; } static int snd_microii_spdif_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { ucontrol->value.integer.value[0] = !(kcontrol->private_value & 0x02); return 0; } static int snd_microii_spdif_switch_update(struct usb_mixer_elem_list *list) { struct snd_usb_audio *chip = list->mixer->chip; u8 reg = list->kctl->private_value; int err; err = snd_usb_lock_shutdown(chip); if (err < 0) return err; err = snd_usb_ctl_msg(chip->dev, usb_sndctrlpipe(chip->dev, 0), UAC_SET_CUR, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER, reg, 9, NULL, 0); snd_usb_unlock_shutdown(chip); return err; } static int snd_microii_spdif_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol); u8 reg; int err; reg = ucontrol->value.integer.value[0] ? 0x28 : 0x2a; if (reg != list->kctl->private_value) return 0; kcontrol->private_value = reg; err = snd_microii_spdif_switch_update(list); return err < 0 ? err : 1; } static const struct snd_kcontrol_new snd_microii_mixer_spdif[] = { { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT), .info = snd_microii_spdif_info, .get = snd_microii_spdif_default_get, .put = snd_microii_spdif_default_put, .private_value = 0x00000100UL,/* reset value */ }, { .access = SNDRV_CTL_ELEM_ACCESS_READ, .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK), .info = snd_microii_spdif_info, .get = snd_microii_spdif_mask_get, }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, SWITCH), .info = snd_ctl_boolean_mono_info, .get = snd_microii_spdif_switch_get, .put = snd_microii_spdif_switch_put, .private_value = 0x00000028UL,/* reset value */ } }; static int snd_microii_controls_create(struct usb_mixer_interface *mixer) { int err, i; static const usb_mixer_elem_resume_func_t resume_funcs[] = { snd_microii_spdif_default_update, NULL, snd_microii_spdif_switch_update }; for (i = 0; i < ARRAY_SIZE(snd_microii_mixer_spdif); ++i) { err = add_single_ctl_with_resume(mixer, 0, resume_funcs[i], &snd_microii_mixer_spdif[i], NULL); if (err < 0) return err; } return 0; } /* Creative Sound Blaster E1 */ static int snd_soundblaster_e1_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { ucontrol->value.integer.value[0] = kcontrol->private_value; return 0; } static int snd_soundblaster_e1_switch_update(struct usb_mixer_interface *mixer, unsigned char state) { struct snd_usb_audio *chip = mixer->chip; int err; unsigned char buff[2]; buff[0] = 0x02; buff[1] = state ? 0x02 : 0x00; err = snd_usb_lock_shutdown(chip); if (err < 0) return err; err = snd_usb_ctl_msg(chip->dev, usb_sndctrlpipe(chip->dev, 0), HID_REQ_SET_REPORT, USB_TYPE_CLASS | USB_RECIP_INTERFACE | USB_DIR_OUT, 0x0202, 3, buff, 2); snd_usb_unlock_shutdown(chip); return err; } static int snd_soundblaster_e1_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol); unsigned char value = !!ucontrol->value.integer.value[0]; int err; if (kcontrol->private_value == value) return 0; kcontrol->private_value = value; err = snd_soundblaster_e1_switch_update(list->mixer, value); return err < 0 ? err : 1; } static int snd_soundblaster_e1_switch_resume(struct usb_mixer_elem_list *list) { return snd_soundblaster_e1_switch_update(list->mixer, list->kctl->private_value); } static int snd_soundblaster_e1_switch_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { static const char *const texts[2] = { "Mic", "Aux" }; return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(texts), texts); } static const struct snd_kcontrol_new snd_soundblaster_e1_input_switch = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Input Source", .info = snd_soundblaster_e1_switch_info, .get = snd_soundblaster_e1_switch_get, .put = snd_soundblaster_e1_switch_put, .private_value = 0, }; static int snd_soundblaster_e1_switch_create(struct usb_mixer_interface *mixer) { return add_single_ctl_with_resume(mixer, 0, snd_soundblaster_e1_switch_resume, &snd_soundblaster_e1_input_switch, NULL); } /* * Dell WD15 dock jack detection * * The WD15 contains an ALC4020 USB audio controller and ALC3263 audio codec * from Realtek. It is a UAC 1 device, and UAC 1 does not support jack * detection. Instead, jack detection works by sending HD Audio commands over * vendor-type USB messages. */ #define HDA_VERB_CMD(V, N, D) (((N) << 20) | ((V) << 8) | (D)) #define REALTEK_HDA_VALUE 0x0038 #define REALTEK_HDA_SET 62 #define REALTEK_MANUAL_MODE 72 #define REALTEK_HDA_GET_OUT 88 #define REALTEK_HDA_GET_IN 89 #define REALTEK_AUDIO_FUNCTION_GROUP 0x01 #define REALTEK_LINE1 0x1a #define REALTEK_VENDOR_REGISTERS 0x20 #define REALTEK_HP_OUT 0x21 #define REALTEK_CBJ_CTRL2 0x50 #define REALTEK_JACK_INTERRUPT_NODE 5 #define REALTEK_MIC_FLAG 0x100 static int realtek_hda_set(struct snd_usb_audio *chip, u32 cmd) { struct usb_device *dev = chip->dev; __be32 buf = cpu_to_be32(cmd); return snd_usb_ctl_msg(dev, usb_sndctrlpipe(dev, 0), REALTEK_HDA_SET, USB_RECIP_DEVICE | USB_TYPE_VENDOR | USB_DIR_OUT, REALTEK_HDA_VALUE, 0, &buf, sizeof(buf)); } static int realtek_hda_get(struct snd_usb_audio *chip, u32 cmd, u32 *value) { struct usb_device *dev = chip->dev; int err; __be32 buf = cpu_to_be32(cmd); err = snd_usb_ctl_msg(dev, usb_sndctrlpipe(dev, 0), REALTEK_HDA_GET_OUT, USB_RECIP_DEVICE | USB_TYPE_VENDOR | USB_DIR_OUT, REALTEK_HDA_VALUE, 0, &buf, sizeof(buf)); if (err < 0) return err; err = snd_usb_ctl_msg(dev, usb_rcvctrlpipe(dev, 0), REALTEK_HDA_GET_IN, USB_RECIP_DEVICE | USB_TYPE_VENDOR | USB_DIR_IN, REALTEK_HDA_VALUE, 0, &buf, sizeof(buf)); if (err < 0) return err; *value = be32_to_cpu(buf); return 0; } static int realtek_ctl_connector_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct usb_mixer_elem_info *cval = kcontrol->private_data; struct snd_usb_audio *chip = cval->head.mixer->chip; u32 pv = kcontrol->private_value; u32 node_id = pv & 0xff; u32 sense; u32 cbj_ctrl2; bool presence; int err; err = snd_usb_lock_shutdown(chip); if (err < 0) return err; err = realtek_hda_get(chip, HDA_VERB_CMD(AC_VERB_GET_PIN_SENSE, node_id, 0), &sense); if (err < 0) goto err; if (pv & REALTEK_MIC_FLAG) { err = realtek_hda_set(chip, HDA_VERB_CMD(AC_VERB_SET_COEF_INDEX, REALTEK_VENDOR_REGISTERS, REALTEK_CBJ_CTRL2)); if (err < 0) goto err; err = realtek_hda_get(chip, HDA_VERB_CMD(AC_VERB_GET_PROC_COEF, REALTEK_VENDOR_REGISTERS, 0), &cbj_ctrl2); if (err < 0) goto err; } err: snd_usb_unlock_shutdown(chip); if (err < 0) return err; presence = sense & AC_PINSENSE_PRESENCE; if (pv & REALTEK_MIC_FLAG) presence = presence && (cbj_ctrl2 & 0x0070) == 0x0070; ucontrol->value.integer.value[0] = presence; return 0; } static const struct snd_kcontrol_new realtek_connector_ctl_ro = { .iface = SNDRV_CTL_ELEM_IFACE_CARD, .name = "", /* will be filled later manually */ .access = SNDRV_CTL_ELEM_ACCESS_READ, .info = snd_ctl_boolean_mono_info, .get = realtek_ctl_connector_get, }; static int realtek_resume_jack(struct usb_mixer_elem_list *list) { snd_ctl_notify(list->mixer->chip->card, SNDRV_CTL_EVENT_MASK_VALUE, &list->kctl->id); return 0; } static int realtek_add_jack(struct usb_mixer_interface *mixer, char *name, u32 val) { struct usb_mixer_elem_info *cval; struct snd_kcontrol *kctl; cval = kzalloc(sizeof(*cval), GFP_KERNEL); if (!cval) return -ENOMEM; snd_usb_mixer_elem_init_std(&cval->head, mixer, REALTEK_JACK_INTERRUPT_NODE); cval->head.resume = realtek_resume_jack; cval->val_type = USB_MIXER_BOOLEAN; cval->channels = 1; cval->min = 0; cval->max = 1; kctl = snd_ctl_new1(&realtek_connector_ctl_ro, cval); if (!kctl) { kfree(cval); return -ENOMEM; } kctl->private_value = val; strscpy(kctl->id.name, name, sizeof(kctl->id.name)); kctl->private_free = snd_usb_mixer_elem_free; return snd_usb_mixer_add_control(&cval->head, kctl); } static int dell_dock_mixer_create(struct usb_mixer_interface *mixer) { int err; struct usb_device *dev = mixer->chip->dev; /* Power down the audio codec to avoid loud pops in the next step. */ realtek_hda_set(mixer->chip, HDA_VERB_CMD(AC_VERB_SET_POWER_STATE, REALTEK_AUDIO_FUNCTION_GROUP, AC_PWRST_D3)); /* * Turn off 'manual mode' in case it was enabled. This removes the need * to power cycle the dock after it was attached to a Windows machine. */ snd_usb_ctl_msg(dev, usb_sndctrlpipe(dev, 0), REALTEK_MANUAL_MODE, USB_RECIP_DEVICE | USB_TYPE_VENDOR | USB_DIR_OUT, 0, 0, NULL, 0); err = realtek_add_jack(mixer, "Line Out Jack", REALTEK_LINE1); if (err < 0) return err; err = realtek_add_jack(mixer, "Headphone Jack", REALTEK_HP_OUT); if (err < 0) return err; err = realtek_add_jack(mixer, "Headset Mic Jack", REALTEK_HP_OUT | REALTEK_MIC_FLAG); if (err < 0) return err; return 0; } static void dell_dock_init_vol(struct usb_mixer_interface *mixer, int ch, int id) { struct snd_usb_audio *chip = mixer->chip; u16 buf = 0; snd_usb_ctl_msg(chip->dev, usb_sndctrlpipe(chip->dev, 0), UAC_SET_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT, (UAC_FU_VOLUME << 8) | ch, snd_usb_ctrl_intf(mixer->hostif) | (id << 8), &buf, 2); } static int dell_dock_mixer_init(struct usb_mixer_interface *mixer) { /* fix to 0dB playback volumes */ dell_dock_init_vol(mixer, 1, 16); dell_dock_init_vol(mixer, 2, 16); dell_dock_init_vol(mixer, 1, 19); dell_dock_init_vol(mixer, 2, 19); return 0; } /* RME Class Compliant device quirks */ #define SND_RME_GET_STATUS1 23 #define SND_RME_GET_CURRENT_FREQ 17 #define SND_RME_CLK_SYSTEM_SHIFT 16 #define SND_RME_CLK_SYSTEM_MASK 0x1f #define SND_RME_CLK_AES_SHIFT 8 #define SND_RME_CLK_SPDIF_SHIFT 12 #define SND_RME_CLK_AES_SPDIF_MASK 0xf #define SND_RME_CLK_SYNC_SHIFT 6 #define SND_RME_CLK_SYNC_MASK 0x3 #define SND_RME_CLK_FREQMUL_SHIFT 18 #define SND_RME_CLK_FREQMUL_MASK 0x7 #define SND_RME_CLK_SYSTEM(x) \ ((x >> SND_RME_CLK_SYSTEM_SHIFT) & SND_RME_CLK_SYSTEM_MASK) #define SND_RME_CLK_AES(x) \ ((x >> SND_RME_CLK_AES_SHIFT) & SND_RME_CLK_AES_SPDIF_MASK) #define SND_RME_CLK_SPDIF(x) \ ((x >> SND_RME_CLK_SPDIF_SHIFT) & SND_RME_CLK_AES_SPDIF_MASK) #define SND_RME_CLK_SYNC(x) \ ((x >> SND_RME_CLK_SYNC_SHIFT) & SND_RME_CLK_SYNC_MASK) #define SND_RME_CLK_FREQMUL(x) \ ((x >> SND_RME_CLK_FREQMUL_SHIFT) & SND_RME_CLK_FREQMUL_MASK) #define SND_RME_CLK_AES_LOCK 0x1 #define SND_RME_CLK_AES_SYNC 0x4 #define SND_RME_CLK_SPDIF_LOCK 0x2 #define SND_RME_CLK_SPDIF_SYNC 0x8 #define SND_RME_SPDIF_IF_SHIFT 4 #define SND_RME_SPDIF_FORMAT_SHIFT 5 #define SND_RME_BINARY_MASK 0x1 #define SND_RME_SPDIF_IF(x) \ ((x >> SND_RME_SPDIF_IF_SHIFT) & SND_RME_BINARY_MASK) #define SND_RME_SPDIF_FORMAT(x) \ ((x >> SND_RME_SPDIF_FORMAT_SHIFT) & SND_RME_BINARY_MASK) static const u32 snd_rme_rate_table[] = { 32000, 44100, 48000, 50000, 64000, 88200, 96000, 100000, 128000, 176400, 192000, 200000, 256000, 352800, 384000, 400000, 512000, 705600, 768000, 800000 }; /* maximum number of items for AES and S/PDIF rates for above table */ #define SND_RME_RATE_IDX_AES_SPDIF_NUM 12 enum snd_rme_domain { SND_RME_DOMAIN_SYSTEM, SND_RME_DOMAIN_AES, SND_RME_DOMAIN_SPDIF }; enum snd_rme_clock_status { SND_RME_CLOCK_NOLOCK, SND_RME_CLOCK_LOCK, SND_RME_CLOCK_SYNC }; static int snd_rme_read_value(struct snd_usb_audio *chip, unsigned int item, u32 *value) { struct usb_device *dev = chip->dev; int err; err = snd_usb_ctl_msg(dev, usb_rcvctrlpipe(dev, 0), item, USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 0, 0, value, sizeof(*value)); if (err < 0) dev_err(&dev->dev, "unable to issue vendor read request %d (ret = %d)", item, err); return err; } static int snd_rme_get_status1(struct snd_kcontrol *kcontrol, u32 *status1) { struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol); struct snd_usb_audio *chip = list->mixer->chip; int err; err = snd_usb_lock_shutdown(chip); if (err < 0) return err; err = snd_rme_read_value(chip, SND_RME_GET_STATUS1, status1); snd_usb_unlock_shutdown(chip); return err; } static int snd_rme_rate_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { u32 status1; u32 rate = 0; int idx; int err; err = snd_rme_get_status1(kcontrol, &status1); if (err < 0) return err; switch (kcontrol->private_value) { case SND_RME_DOMAIN_SYSTEM: idx = SND_RME_CLK_SYSTEM(status1); if (idx < ARRAY_SIZE(snd_rme_rate_table)) rate = snd_rme_rate_table[idx]; break; case SND_RME_DOMAIN_AES: idx = SND_RME_CLK_AES(status1); if (idx < SND_RME_RATE_IDX_AES_SPDIF_NUM) rate = snd_rme_rate_table[idx]; break; case SND_RME_DOMAIN_SPDIF: idx = SND_RME_CLK_SPDIF(status1); if (idx < SND_RME_RATE_IDX_AES_SPDIF_NUM) rate = snd_rme_rate_table[idx]; break; default: return -EINVAL; } ucontrol->value.integer.value[0] = rate; return 0; } static int snd_rme_sync_state_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { u32 status1; int idx = SND_RME_CLOCK_NOLOCK; int err; err = snd_rme_get_status1(kcontrol, &status1); if (err < 0) return err; switch (kcontrol->private_value) { case SND_RME_DOMAIN_AES: /* AES */ if (status1 & SND_RME_CLK_AES_SYNC) idx = SND_RME_CLOCK_SYNC; else if (status1 & SND_RME_CLK_AES_LOCK) idx = SND_RME_CLOCK_LOCK; break; case SND_RME_DOMAIN_SPDIF: /* SPDIF */ if (status1 & SND_RME_CLK_SPDIF_SYNC) idx = SND_RME_CLOCK_SYNC; else if (status1 & SND_RME_CLK_SPDIF_LOCK) idx = SND_RME_CLOCK_LOCK; break; default: return -EINVAL; } ucontrol->value.enumerated.item[0] = idx; return 0; } static int snd_rme_spdif_if_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { u32 status1; int err; err = snd_rme_get_status1(kcontrol, &status1); if (err < 0) return err; ucontrol->value.enumerated.item[0] = SND_RME_SPDIF_IF(status1); return 0; } static int snd_rme_spdif_format_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { u32 status1; int err; err = snd_rme_get_status1(kcontrol, &status1); if (err < 0) return err; ucontrol->value.enumerated.item[0] = SND_RME_SPDIF_FORMAT(status1); return 0; } static int snd_rme_sync_source_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { u32 status1; int err; err = snd_rme_get_status1(kcontrol, &status1); if (err < 0) return err; ucontrol->value.enumerated.item[0] = SND_RME_CLK_SYNC(status1); return 0; } static int snd_rme_current_freq_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol); struct snd_usb_audio *chip = list->mixer->chip; u32 status1; const u64 num = 104857600000000ULL; u32 den; unsigned int freq; int err; err = snd_usb_lock_shutdown(chip); if (err < 0) return err; err = snd_rme_read_value(chip, SND_RME_GET_STATUS1, &status1); if (err < 0) goto end; err = snd_rme_read_value(chip, SND_RME_GET_CURRENT_FREQ, &den); if (err < 0) goto end; freq = (den == 0) ? 0 : div64_u64(num, den); freq <<= SND_RME_CLK_FREQMUL(status1); ucontrol->value.integer.value[0] = freq; end: snd_usb_unlock_shutdown(chip); return err; } static int snd_rme_rate_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; switch (kcontrol->private_value) { case SND_RME_DOMAIN_SYSTEM: uinfo->value.integer.min = 32000; uinfo->value.integer.max = 800000; break; case SND_RME_DOMAIN_AES: case SND_RME_DOMAIN_SPDIF: default: uinfo->value.integer.min = 0; uinfo->value.integer.max = 200000; } uinfo->value.integer.step = 0; return 0; } static int snd_rme_sync_state_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { static const char *const sync_states[] = { "No Lock", "Lock", "Sync" }; return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(sync_states), sync_states); } static int snd_rme_spdif_if_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { static const char *const spdif_if[] = { "Coaxial", "Optical" }; return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(spdif_if), spdif_if); } static int snd_rme_spdif_format_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { static const char *const optical_type[] = { "Consumer", "Professional" }; return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(optical_type), optical_type); } static int snd_rme_sync_source_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { static const char *const sync_sources[] = { "Internal", "AES", "SPDIF", "Internal" }; return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(sync_sources), sync_sources); } static const struct snd_kcontrol_new snd_rme_controls[] = { { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "AES Rate", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_rme_rate_info, .get = snd_rme_rate_get, .private_value = SND_RME_DOMAIN_AES }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "AES Sync", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_rme_sync_state_info, .get = snd_rme_sync_state_get, .private_value = SND_RME_DOMAIN_AES }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "SPDIF Rate", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_rme_rate_info, .get = snd_rme_rate_get, .private_value = SND_RME_DOMAIN_SPDIF }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "SPDIF Sync", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_rme_sync_state_info, .get = snd_rme_sync_state_get, .private_value = SND_RME_DOMAIN_SPDIF }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "SPDIF Interface", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_rme_spdif_if_info, .get = snd_rme_spdif_if_get, }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "SPDIF Format", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_rme_spdif_format_info, .get = snd_rme_spdif_format_get, }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Sync Source", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_rme_sync_source_info, .get = snd_rme_sync_source_get }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "System Rate", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_rme_rate_info, .get = snd_rme_rate_get, .private_value = SND_RME_DOMAIN_SYSTEM }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Current Frequency", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_rme_rate_info, .get = snd_rme_current_freq_get } }; static int snd_rme_controls_create(struct usb_mixer_interface *mixer) { int err, i; for (i = 0; i < ARRAY_SIZE(snd_rme_controls); ++i) { err = add_single_ctl_with_resume(mixer, 0, NULL, &snd_rme_controls[i], NULL); if (err < 0) return err; } return 0; } /* * RME Babyface Pro (FS) * * These devices exposes a couple of DSP functions via request to EP0. * Switches are available via control registers, while routing is controlled * by controlling the volume on each possible crossing point. * Volume control is linear, from -inf (dec. 0) to +6dB (dec. 65536) with * 0dB being at dec. 32768. */ enum { SND_BBFPRO_CTL_REG1 = 0, SND_BBFPRO_CTL_REG2 }; #define SND_BBFPRO_CTL_REG_MASK 1 #define SND_BBFPRO_CTL_IDX_MASK 0xff #define SND_BBFPRO_CTL_IDX_SHIFT 1 #define SND_BBFPRO_CTL_VAL_MASK 1 #define SND_BBFPRO_CTL_VAL_SHIFT 9 #define SND_BBFPRO_CTL_REG1_CLK_MASTER 0 #define SND_BBFPRO_CTL_REG1_CLK_OPTICAL 1 #define SND_BBFPRO_CTL_REG1_SPDIF_PRO 7 #define SND_BBFPRO_CTL_REG1_SPDIF_EMPH 8 #define SND_BBFPRO_CTL_REG1_SPDIF_OPTICAL 10 #define SND_BBFPRO_CTL_REG2_48V_AN1 0 #define SND_BBFPRO_CTL_REG2_48V_AN2 1 #define SND_BBFPRO_CTL_REG2_SENS_IN3 2 #define SND_BBFPRO_CTL_REG2_SENS_IN4 3 #define SND_BBFPRO_CTL_REG2_PAD_AN1 4 #define SND_BBFPRO_CTL_REG2_PAD_AN2 5 #define SND_BBFPRO_MIXER_MAIN_OUT_CH_OFFSET 992 #define SND_BBFPRO_MIXER_IDX_MASK 0x3ff #define SND_BBFPRO_MIXER_VAL_MASK 0x3ffff #define SND_BBFPRO_MIXER_VAL_SHIFT 9 #define SND_BBFPRO_MIXER_VAL_MIN 0 // -inf #define SND_BBFPRO_MIXER_VAL_MAX 65536 // +6dB #define SND_BBFPRO_GAIN_CHANNEL_MASK 0x03 #define SND_BBFPRO_GAIN_CHANNEL_SHIFT 7 #define SND_BBFPRO_GAIN_VAL_MASK 0x7f #define SND_BBFPRO_GAIN_VAL_MIN 0 #define SND_BBFPRO_GAIN_VAL_MIC_MAX 65 #define SND_BBFPRO_GAIN_VAL_LINE_MAX 18 // 9db in 0.5db incraments #define SND_BBFPRO_USBREQ_CTL_REG1 0x10 #define SND_BBFPRO_USBREQ_CTL_REG2 0x17 #define SND_BBFPRO_USBREQ_GAIN 0x1a #define SND_BBFPRO_USBREQ_MIXER 0x12 static int snd_bbfpro_ctl_update(struct usb_mixer_interface *mixer, u8 reg, u8 index, u8 value) { int err; u16 usb_req, usb_idx, usb_val; struct snd_usb_audio *chip = mixer->chip; err = snd_usb_lock_shutdown(chip); if (err < 0) return err; if (reg == SND_BBFPRO_CTL_REG1) { usb_req = SND_BBFPRO_USBREQ_CTL_REG1; if (index == SND_BBFPRO_CTL_REG1_CLK_OPTICAL) { usb_idx = 3; usb_val = value ? 3 : 0; } else { usb_idx = BIT(index); usb_val = value ? usb_idx : 0; } } else { usb_req = SND_BBFPRO_USBREQ_CTL_REG2; usb_idx = BIT(index); usb_val = value ? usb_idx : 0; } err = snd_usb_ctl_msg(chip->dev, usb_sndctrlpipe(chip->dev, 0), usb_req, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE, usb_val, usb_idx, NULL, 0); snd_usb_unlock_shutdown(chip); return err; } static int snd_bbfpro_ctl_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { u8 reg, idx, val; int pv; pv = kcontrol->private_value; reg = pv & SND_BBFPRO_CTL_REG_MASK; idx = (pv >> SND_BBFPRO_CTL_IDX_SHIFT) & SND_BBFPRO_CTL_IDX_MASK; val = kcontrol->private_value >> SND_BBFPRO_CTL_VAL_SHIFT; if ((reg == SND_BBFPRO_CTL_REG1 && idx == SND_BBFPRO_CTL_REG1_CLK_OPTICAL) || (reg == SND_BBFPRO_CTL_REG2 && (idx == SND_BBFPRO_CTL_REG2_SENS_IN3 || idx == SND_BBFPRO_CTL_REG2_SENS_IN4))) { ucontrol->value.enumerated.item[0] = val; } else { ucontrol->value.integer.value[0] = val; } return 0; } static int snd_bbfpro_ctl_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { u8 reg, idx; int pv; pv = kcontrol->private_value; reg = pv & SND_BBFPRO_CTL_REG_MASK; idx = (pv >> SND_BBFPRO_CTL_IDX_SHIFT) & SND_BBFPRO_CTL_IDX_MASK; if (reg == SND_BBFPRO_CTL_REG1 && idx == SND_BBFPRO_CTL_REG1_CLK_OPTICAL) { static const char * const texts[2] = { "AutoSync", "Internal" }; return snd_ctl_enum_info(uinfo, 1, 2, texts); } else if (reg == SND_BBFPRO_CTL_REG2 && (idx == SND_BBFPRO_CTL_REG2_SENS_IN3 || idx == SND_BBFPRO_CTL_REG2_SENS_IN4)) { static const char * const texts[2] = { "-10dBV", "+4dBu" }; return snd_ctl_enum_info(uinfo, 1, 2, texts); } uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = 1; uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; return 0; } static int snd_bbfpro_ctl_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { int err; u8 reg, idx; int old_value, pv, val; struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol); struct usb_mixer_interface *mixer = list->mixer; pv = kcontrol->private_value; reg = pv & SND_BBFPRO_CTL_REG_MASK; idx = (pv >> SND_BBFPRO_CTL_IDX_SHIFT) & SND_BBFPRO_CTL_IDX_MASK; old_value = (pv >> SND_BBFPRO_CTL_VAL_SHIFT) & SND_BBFPRO_CTL_VAL_MASK; if ((reg == SND_BBFPRO_CTL_REG1 && idx == SND_BBFPRO_CTL_REG1_CLK_OPTICAL) || (reg == SND_BBFPRO_CTL_REG2 && (idx == SND_BBFPRO_CTL_REG2_SENS_IN3 || idx == SND_BBFPRO_CTL_REG2_SENS_IN4))) { val = ucontrol->value.enumerated.item[0]; } else { val = ucontrol->value.integer.value[0]; } if (val > 1) return -EINVAL; if (val == old_value) return 0; kcontrol->private_value = reg | ((idx & SND_BBFPRO_CTL_IDX_MASK) << SND_BBFPRO_CTL_IDX_SHIFT) | ((val & SND_BBFPRO_CTL_VAL_MASK) << SND_BBFPRO_CTL_VAL_SHIFT); err = snd_bbfpro_ctl_update(mixer, reg, idx, val); return err < 0 ? err : 1; } static int snd_bbfpro_ctl_resume(struct usb_mixer_elem_list *list) { u8 reg, idx; int value, pv; pv = list->kctl->private_value; reg = pv & SND_BBFPRO_CTL_REG_MASK; idx = (pv >> SND_BBFPRO_CTL_IDX_SHIFT) & SND_BBFPRO_CTL_IDX_MASK; value = (pv >> SND_BBFPRO_CTL_VAL_SHIFT) & SND_BBFPRO_CTL_VAL_MASK; return snd_bbfpro_ctl_update(list->mixer, reg, idx, value); } static int snd_bbfpro_gain_update(struct usb_mixer_interface *mixer, u8 channel, u8 gain) { int err; struct snd_usb_audio *chip = mixer->chip; if (channel < 2) { // XLR preamp: 3-bit fine, 5-bit coarse; special case >60 if (gain < 60) gain = ((gain % 3) << 5) | (gain / 3); else gain = ((gain % 6) << 5) | (60 / 3); } err = snd_usb_lock_shutdown(chip); if (err < 0) return err; err = snd_usb_ctl_msg(chip->dev, usb_sndctrlpipe(chip->dev, 0), SND_BBFPRO_USBREQ_GAIN, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE, gain, channel, NULL, 0); snd_usb_unlock_shutdown(chip); return err; } static int snd_bbfpro_gain_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { int value = kcontrol->private_value & SND_BBFPRO_GAIN_VAL_MASK; ucontrol->value.integer.value[0] = value; return 0; } static int snd_bbfpro_gain_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { int pv, channel; pv = kcontrol->private_value; channel = (pv >> SND_BBFPRO_GAIN_CHANNEL_SHIFT) & SND_BBFPRO_GAIN_CHANNEL_MASK; uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = SND_BBFPRO_GAIN_VAL_MIN; if (channel < 2) uinfo->value.integer.max = SND_BBFPRO_GAIN_VAL_MIC_MAX; else uinfo->value.integer.max = SND_BBFPRO_GAIN_VAL_LINE_MAX; return 0; } static int snd_bbfpro_gain_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { int pv, channel, old_value, value, err; struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol); struct usb_mixer_interface *mixer = list->mixer; pv = kcontrol->private_value; channel = (pv >> SND_BBFPRO_GAIN_CHANNEL_SHIFT) & SND_BBFPRO_GAIN_CHANNEL_MASK; old_value = pv & SND_BBFPRO_GAIN_VAL_MASK; value = ucontrol->value.integer.value[0]; if (value < SND_BBFPRO_GAIN_VAL_MIN) return -EINVAL; if (channel < 2) { if (value > SND_BBFPRO_GAIN_VAL_MIC_MAX) return -EINVAL; } else { if (value > SND_BBFPRO_GAIN_VAL_LINE_MAX) return -EINVAL; } if (value == old_value) return 0; err = snd_bbfpro_gain_update(mixer, channel, value); if (err < 0) return err; kcontrol->private_value = (channel << SND_BBFPRO_GAIN_CHANNEL_SHIFT) | value; return 1; } static int snd_bbfpro_gain_resume(struct usb_mixer_elem_list *list) { int pv, channel, value; struct snd_kcontrol *kctl = list->kctl; pv = kctl->private_value; channel = (pv >> SND_BBFPRO_GAIN_CHANNEL_SHIFT) & SND_BBFPRO_GAIN_CHANNEL_MASK; value = pv & SND_BBFPRO_GAIN_VAL_MASK; return snd_bbfpro_gain_update(list->mixer, channel, value); } static int snd_bbfpro_vol_update(struct usb_mixer_interface *mixer, u16 index, u32 value) { struct snd_usb_audio *chip = mixer->chip; int err; u16 idx; u16 usb_idx, usb_val; u32 v; err = snd_usb_lock_shutdown(chip); if (err < 0) return err; idx = index & SND_BBFPRO_MIXER_IDX_MASK; // 18 bit linear volume, split so 2 bits end up in index. v = value & SND_BBFPRO_MIXER_VAL_MASK; usb_idx = idx | (v & 0x3) << 14; usb_val = (v >> 2) & 0xffff; err = snd_usb_ctl_msg(chip->dev, usb_sndctrlpipe(chip->dev, 0), SND_BBFPRO_USBREQ_MIXER, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE, usb_val, usb_idx, NULL, 0); snd_usb_unlock_shutdown(chip); return err; } static int snd_bbfpro_vol_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { ucontrol->value.integer.value[0] = kcontrol->private_value >> SND_BBFPRO_MIXER_VAL_SHIFT; return 0; } static int snd_bbfpro_vol_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = SND_BBFPRO_MIXER_VAL_MIN; uinfo->value.integer.max = SND_BBFPRO_MIXER_VAL_MAX; return 0; } static int snd_bbfpro_vol_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { int err; u16 idx; u32 new_val, old_value, uvalue; struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol); struct usb_mixer_interface *mixer = list->mixer; uvalue = ucontrol->value.integer.value[0]; idx = kcontrol->private_value & SND_BBFPRO_MIXER_IDX_MASK; old_value = kcontrol->private_value >> SND_BBFPRO_MIXER_VAL_SHIFT; if (uvalue > SND_BBFPRO_MIXER_VAL_MAX) return -EINVAL; if (uvalue == old_value) return 0; new_val = uvalue & SND_BBFPRO_MIXER_VAL_MASK; kcontrol->private_value = idx | (new_val << SND_BBFPRO_MIXER_VAL_SHIFT); err = snd_bbfpro_vol_update(mixer, idx, new_val); return err < 0 ? err : 1; } static int snd_bbfpro_vol_resume(struct usb_mixer_elem_list *list) { int pv = list->kctl->private_value; u16 idx = pv & SND_BBFPRO_MIXER_IDX_MASK; u32 val = (pv >> SND_BBFPRO_MIXER_VAL_SHIFT) & SND_BBFPRO_MIXER_VAL_MASK; return snd_bbfpro_vol_update(list->mixer, idx, val); } // Predfine elements static const struct snd_kcontrol_new snd_bbfpro_ctl_control = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, .index = 0, .info = snd_bbfpro_ctl_info, .get = snd_bbfpro_ctl_get, .put = snd_bbfpro_ctl_put }; static const struct snd_kcontrol_new snd_bbfpro_gain_control = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, .index = 0, .info = snd_bbfpro_gain_info, .get = snd_bbfpro_gain_get, .put = snd_bbfpro_gain_put }; static const struct snd_kcontrol_new snd_bbfpro_vol_control = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, .index = 0, .info = snd_bbfpro_vol_info, .get = snd_bbfpro_vol_get, .put = snd_bbfpro_vol_put }; static int snd_bbfpro_ctl_add(struct usb_mixer_interface *mixer, u8 reg, u8 index, char *name) { struct snd_kcontrol_new knew = snd_bbfpro_ctl_control; knew.name = name; knew.private_value = (reg & SND_BBFPRO_CTL_REG_MASK) | ((index & SND_BBFPRO_CTL_IDX_MASK) << SND_BBFPRO_CTL_IDX_SHIFT); return add_single_ctl_with_resume(mixer, 0, snd_bbfpro_ctl_resume, &knew, NULL); } static int snd_bbfpro_gain_add(struct usb_mixer_interface *mixer, u8 channel, char *name) { struct snd_kcontrol_new knew = snd_bbfpro_gain_control; knew.name = name; knew.private_value = channel << SND_BBFPRO_GAIN_CHANNEL_SHIFT; return add_single_ctl_with_resume(mixer, 0, snd_bbfpro_gain_resume, &knew, NULL); } static int snd_bbfpro_vol_add(struct usb_mixer_interface *mixer, u16 index, char *name) { struct snd_kcontrol_new knew = snd_bbfpro_vol_control; knew.name = name; knew.private_value = index & SND_BBFPRO_MIXER_IDX_MASK; return add_single_ctl_with_resume(mixer, 0, snd_bbfpro_vol_resume, &knew, NULL); } static int snd_bbfpro_controls_create(struct usb_mixer_interface *mixer) { int err, i, o; char name[48]; static const char * const input[] = { "AN1", "AN2", "IN3", "IN4", "AS1", "AS2", "ADAT3", "ADAT4", "ADAT5", "ADAT6", "ADAT7", "ADAT8"}; static const char * const output[] = { "AN1", "AN2", "PH3", "PH4", "AS1", "AS2", "ADAT3", "ADAT4", "ADAT5", "ADAT6", "ADAT7", "ADAT8"}; for (o = 0 ; o < 12 ; ++o) { for (i = 0 ; i < 12 ; ++i) { // Line routing snprintf(name, sizeof(name), "%s-%s-%s Playback Volume", (i < 2 ? "Mic" : "Line"), input[i], output[o]); err = snd_bbfpro_vol_add(mixer, (26 * o + i), name); if (err < 0) return err; // PCM routing... yes, it is output remapping snprintf(name, sizeof(name), "PCM-%s-%s Playback Volume", output[i], output[o]); err = snd_bbfpro_vol_add(mixer, (26 * o + 12 + i), name); if (err < 0) return err; } } // Main out volume for (i = 0 ; i < 12 ; ++i) { snprintf(name, sizeof(name), "Main-Out %s", output[i]); // Main outs are offset to 992 err = snd_bbfpro_vol_add(mixer, i + SND_BBFPRO_MIXER_MAIN_OUT_CH_OFFSET, name); if (err < 0) return err; } // Input gain for (i = 0 ; i < 4 ; ++i) { if (i < 2) snprintf(name, sizeof(name), "Mic-%s Gain", input[i]); else snprintf(name, sizeof(name), "Line-%s Gain", input[i]); err = snd_bbfpro_gain_add(mixer, i, name); if (err < 0) return err; } // Control Reg 1 err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG1, SND_BBFPRO_CTL_REG1_CLK_OPTICAL, "Sample Clock Source"); if (err < 0) return err; err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG1, SND_BBFPRO_CTL_REG1_SPDIF_PRO, "IEC958 Pro Mask"); if (err < 0) return err; err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG1, SND_BBFPRO_CTL_REG1_SPDIF_EMPH, "IEC958 Emphasis"); if (err < 0) return err; err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG1, SND_BBFPRO_CTL_REG1_SPDIF_OPTICAL, "IEC958 Switch"); if (err < 0) return err; // Control Reg 2 err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2, SND_BBFPRO_CTL_REG2_48V_AN1, "Mic-AN1 48V"); if (err < 0) return err; err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2, SND_BBFPRO_CTL_REG2_48V_AN2, "Mic-AN2 48V"); if (err < 0) return err; err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2, SND_BBFPRO_CTL_REG2_SENS_IN3, "Line-IN3 Sens."); if (err < 0) return err; err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2, SND_BBFPRO_CTL_REG2_SENS_IN4, "Line-IN4 Sens."); if (err < 0) return err; err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2, SND_BBFPRO_CTL_REG2_PAD_AN1, "Mic-AN1 PAD"); if (err < 0) return err; err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2, SND_BBFPRO_CTL_REG2_PAD_AN2, "Mic-AN2 PAD"); if (err < 0) return err; return 0; } /* * RME Digiface USB */ #define RME_DIGIFACE_READ_STATUS 17 #define RME_DIGIFACE_STATUS_REG0L 0 #define RME_DIGIFACE_STATUS_REG0H 1 #define RME_DIGIFACE_STATUS_REG1L 2 #define RME_DIGIFACE_STATUS_REG1H 3 #define RME_DIGIFACE_STATUS_REG2L 4 #define RME_DIGIFACE_STATUS_REG2H 5 #define RME_DIGIFACE_STATUS_REG3L 6 #define RME_DIGIFACE_STATUS_REG3H 7 #define RME_DIGIFACE_CTL_REG1 16 #define RME_DIGIFACE_CTL_REG2 18 /* Reg is overloaded, 0-7 for status halfwords or 16 or 18 for control registers */ #define RME_DIGIFACE_REGISTER(reg, mask) (((reg) << 16) | (mask)) #define RME_DIGIFACE_INVERT BIT(31) /* Nonconst helpers */ #define field_get(_mask, _reg) (((_reg) & (_mask)) >> (ffs(_mask) - 1)) #define field_prep(_mask, _val) (((_val) << (ffs(_mask) - 1)) & (_mask)) static int snd_rme_digiface_write_reg(struct snd_kcontrol *kcontrol, int item, u16 mask, u16 val) { struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol); struct snd_usb_audio *chip = list->mixer->chip; struct usb_device *dev = chip->dev; int err; err = snd_usb_ctl_msg(dev, usb_sndctrlpipe(dev, 0), item, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE, val, mask, NULL, 0); if (err < 0) dev_err(&dev->dev, "unable to issue control set request %d (ret = %d)", item, err); return err; } static int snd_rme_digiface_read_status(struct snd_kcontrol *kcontrol, u32 status[4]) { struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol); struct snd_usb_audio *chip = list->mixer->chip; struct usb_device *dev = chip->dev; __le32 buf[4]; int err; err = snd_usb_ctl_msg(dev, usb_rcvctrlpipe(dev, 0), RME_DIGIFACE_READ_STATUS, USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 0, 0, buf, sizeof(buf)); if (err < 0) { dev_err(&dev->dev, "unable to issue status read request (ret = %d)", err); } else { for (int i = 0; i < ARRAY_SIZE(buf); i++) status[i] = le32_to_cpu(buf[i]); } return err; } static int snd_rme_digiface_get_status_val(struct snd_kcontrol *kcontrol) { int err; u32 status[4]; bool invert = kcontrol->private_value & RME_DIGIFACE_INVERT; u8 reg = (kcontrol->private_value >> 16) & 0xff; u16 mask = kcontrol->private_value & 0xffff; u16 val; err = snd_rme_digiface_read_status(kcontrol, status); if (err < 0) return err; switch (reg) { /* Status register halfwords */ case RME_DIGIFACE_STATUS_REG0L ... RME_DIGIFACE_STATUS_REG3H: break; case RME_DIGIFACE_CTL_REG1: /* Control register 1, present in halfword 3L */ reg = RME_DIGIFACE_STATUS_REG3L; break; case RME_DIGIFACE_CTL_REG2: /* Control register 2, present in halfword 3H */ reg = RME_DIGIFACE_STATUS_REG3H; break; default: return -EINVAL; } if (reg & 1) val = status[reg >> 1] >> 16; else val = status[reg >> 1] & 0xffff; if (invert) val ^= mask; return field_get(mask, val); } static int snd_rme_digiface_rate_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { int freq = snd_rme_digiface_get_status_val(kcontrol); if (freq < 0) return freq; if (freq >= ARRAY_SIZE(snd_rme_rate_table)) return -EIO; ucontrol->value.integer.value[0] = snd_rme_rate_table[freq]; return 0; } static int snd_rme_digiface_enum_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { int val = snd_rme_digiface_get_status_val(kcontrol); if (val < 0) return val; ucontrol->value.enumerated.item[0] = val; return 0; } static int snd_rme_digiface_enum_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { bool invert = kcontrol->private_value & RME_DIGIFACE_INVERT; u8 reg = (kcontrol->private_value >> 16) & 0xff; u16 mask = kcontrol->private_value & 0xffff; u16 val = field_prep(mask, ucontrol->value.enumerated.item[0]); if (invert) val ^= mask; return snd_rme_digiface_write_reg(kcontrol, reg, mask, val); } static int snd_rme_digiface_current_sync_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { int ret = snd_rme_digiface_enum_get(kcontrol, ucontrol); /* 7 means internal for current sync */ if (ucontrol->value.enumerated.item[0] == 7) ucontrol->value.enumerated.item[0] = 0; return ret; } static int snd_rme_digiface_sync_state_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { u32 status[4]; int err; bool valid, sync; err = snd_rme_digiface_read_status(kcontrol, status); if (err < 0) return err; valid = status[0] & BIT(kcontrol->private_value); sync = status[0] & BIT(5 + kcontrol->private_value); if (!valid) ucontrol->value.enumerated.item[0] = SND_RME_CLOCK_NOLOCK; else if (!sync) ucontrol->value.enumerated.item[0] = SND_RME_CLOCK_LOCK; else ucontrol->value.enumerated.item[0] = SND_RME_CLOCK_SYNC; return 0; } static int snd_rme_digiface_format_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { static const char *const format[] = { "ADAT", "S/PDIF" }; return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(format), format); } static int snd_rme_digiface_sync_source_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { static const char *const sync_sources[] = { "Internal", "Input 1", "Input 2", "Input 3", "Input 4" }; return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(sync_sources), sync_sources); } static int snd_rme_digiface_rate_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = 200000; uinfo->value.integer.step = 0; return 0; } static const struct snd_kcontrol_new snd_rme_digiface_controls[] = { { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Input 1 Sync", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_rme_sync_state_info, .get = snd_rme_digiface_sync_state_get, .private_value = 0, }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Input 1 Format", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_rme_digiface_format_info, .get = snd_rme_digiface_enum_get, .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG0H, BIT(0)) | RME_DIGIFACE_INVERT, }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Input 1 Rate", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_rme_digiface_rate_info, .get = snd_rme_digiface_rate_get, .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG1L, GENMASK(3, 0)), }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Input 2 Sync", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_rme_sync_state_info, .get = snd_rme_digiface_sync_state_get, .private_value = 1, }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Input 2 Format", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_rme_digiface_format_info, .get = snd_rme_digiface_enum_get, .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG0L, BIT(13)) | RME_DIGIFACE_INVERT, }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Input 2 Rate", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_rme_digiface_rate_info, .get = snd_rme_digiface_rate_get, .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG1L, GENMASK(7, 4)), }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Input 3 Sync", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_rme_sync_state_info, .get = snd_rme_digiface_sync_state_get, .private_value = 2, }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Input 3 Format", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_rme_digiface_format_info, .get = snd_rme_digiface_enum_get, .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG0L, BIT(14)) | RME_DIGIFACE_INVERT, }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Input 3 Rate", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_rme_digiface_rate_info, .get = snd_rme_digiface_rate_get, .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG1L, GENMASK(11, 8)), }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Input 4 Sync", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_rme_sync_state_info, .get = snd_rme_digiface_sync_state_get, .private_value = 3, }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Input 4 Format", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_rme_digiface_format_info, .get = snd_rme_digiface_enum_get, .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG0L, GENMASK(15, 12)) | RME_DIGIFACE_INVERT, }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Input 4 Rate", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_rme_digiface_rate_info, .get = snd_rme_digiface_rate_get, .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG1L, GENMASK(3, 0)), }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Output 1 Format", .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, .info = snd_rme_digiface_format_info, .get = snd_rme_digiface_enum_get, .put = snd_rme_digiface_enum_put, .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_CTL_REG2, BIT(0)), }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Output 2 Format", .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, .info = snd_rme_digiface_format_info, .get = snd_rme_digiface_enum_get, .put = snd_rme_digiface_enum_put, .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_CTL_REG2, BIT(1)), }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Output 3 Format", .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, .info = snd_rme_digiface_format_info, .get = snd_rme_digiface_enum_get, .put = snd_rme_digiface_enum_put, .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_CTL_REG2, BIT(3)), }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Output 4 Format", .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, .info = snd_rme_digiface_format_info, .get = snd_rme_digiface_enum_get, .put = snd_rme_digiface_enum_put, .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_CTL_REG2, BIT(4)), }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Sync Source", .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, .info = snd_rme_digiface_sync_source_info, .get = snd_rme_digiface_enum_get, .put = snd_rme_digiface_enum_put, .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_CTL_REG1, GENMASK(2, 0)), }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Current Sync Source", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_rme_digiface_sync_source_info, .get = snd_rme_digiface_current_sync_get, .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG0L, GENMASK(12, 10)), }, { /* * This is writeable, but it is only set by the PCM rate. * Mixer apps currently need to drive the mixer using raw USB requests, * so they can also change this that way to configure the rate for * stand-alone operation when the PCM is closed. */ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "System Rate", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_rme_rate_info, .get = snd_rme_digiface_rate_get, .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_CTL_REG1, GENMASK(6, 3)), }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Current Rate", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_rme_rate_info, .get = snd_rme_digiface_rate_get, .private_value = RME_DIGIFACE_REGISTER(RME_DIGIFACE_STATUS_REG1H, GENMASK(7, 4)), } }; static int snd_rme_digiface_controls_create(struct usb_mixer_interface *mixer) { int err, i; for (i = 0; i < ARRAY_SIZE(snd_rme_digiface_controls); ++i) { err = add_single_ctl_with_resume(mixer, 0, NULL, &snd_rme_digiface_controls[i], NULL); if (err < 0) return err; } return 0; } /* * Pioneer DJ / AlphaTheta DJM Mixers * * These devices generally have options for soft-switching the playback and * capture sources in addition to the recording level. Although different * devices have different configurations, there seems to be canonical values * for specific capture/playback types: See the definitions of these below. * * The wValue is masked with the stereo channel number. e.g. Setting Ch2 to * capture phono would be 0x0203. Capture, playback and capture level have * different wIndexes. */ // Capture types #define SND_DJM_CAP_LINE 0x00 #define SND_DJM_CAP_CDLINE 0x01 #define SND_DJM_CAP_DIGITAL 0x02 #define SND_DJM_CAP_PHONO 0x03 #define SND_DJM_CAP_PREFADER 0x05 #define SND_DJM_CAP_PFADER 0x06 #define SND_DJM_CAP_XFADERA 0x07 #define SND_DJM_CAP_XFADERB 0x08 #define SND_DJM_CAP_MIC 0x09 #define SND_DJM_CAP_AUX 0x0d #define SND_DJM_CAP_RECOUT 0x0a #define SND_DJM_CAP_RECOUT_NOMIC 0x0e #define SND_DJM_CAP_NONE 0x0f #define SND_DJM_CAP_CH1PFADER 0x11 #define SND_DJM_CAP_CH2PFADER 0x12 #define SND_DJM_CAP_CH3PFADER 0x13 #define SND_DJM_CAP_CH4PFADER 0x14 #define SND_DJM_CAP_CH1PREFADER 0x31 #define SND_DJM_CAP_CH2PREFADER 0x32 #define SND_DJM_CAP_CH3PREFADER 0x33 #define SND_DJM_CAP_CH4PREFADER 0x34 // Playback types #define SND_DJM_PB_CH1 0x00 #define SND_DJM_PB_CH2 0x01 #define SND_DJM_PB_AUX 0x04 #define SND_DJM_WINDEX_CAP 0x8002 #define SND_DJM_WINDEX_CAPLVL 0x8003 #define SND_DJM_WINDEX_PB 0x8016 // kcontrol->private_value layout #define SND_DJM_VALUE_MASK 0x0000ffff #define SND_DJM_GROUP_MASK 0x00ff0000 #define SND_DJM_DEVICE_MASK 0xff000000 #define SND_DJM_GROUP_SHIFT 16 #define SND_DJM_DEVICE_SHIFT 24 // device table index // used for the snd_djm_devices table, so please update accordingly #define SND_DJM_250MK2_IDX 0x0 #define SND_DJM_750_IDX 0x1 #define SND_DJM_850_IDX 0x2 #define SND_DJM_900NXS2_IDX 0x3 #define SND_DJM_750MK2_IDX 0x4 #define SND_DJM_450_IDX 0x5 #define SND_DJM_A9_IDX 0x6 #define SND_DJM_CTL(_name, suffix, _default_value, _windex) { \ .name = _name, \ .options = snd_djm_opts_##suffix, \ .noptions = ARRAY_SIZE(snd_djm_opts_##suffix), \ .default_value = _default_value, \ .wIndex = _windex } #define SND_DJM_DEVICE(suffix) { \ .controls = snd_djm_ctls_##suffix, \ .ncontrols = ARRAY_SIZE(snd_djm_ctls_##suffix) } struct snd_djm_device { const char *name; const struct snd_djm_ctl *controls; size_t ncontrols; }; struct snd_djm_ctl { const char *name; const u16 *options; size_t noptions; u16 default_value; u16 wIndex; }; static const char *snd_djm_get_label_caplevel_common(u16 wvalue) { switch (wvalue) { case 0x0000: return "-19dB"; case 0x0100: return "-15dB"; case 0x0200: return "-10dB"; case 0x0300: return "-5dB"; default: return NULL; } }; // The DJM-A9 has different capture levels than other, older models static const char *snd_djm_get_label_caplevel_a9(u16 wvalue) { switch (wvalue) { case 0x0000: return "+15dB"; case 0x0100: return "+12dB"; case 0x0200: return "+9dB"; case 0x0300: return "+6dB"; case 0x0400: return "+3dB"; case 0x0500: return "0dB"; default: return NULL; } }; static const char *snd_djm_get_label_cap_common(u16 wvalue) { switch (wvalue & 0x00ff) { case SND_DJM_CAP_LINE: return "Control Tone LINE"; case SND_DJM_CAP_CDLINE: return "Control Tone CD/LINE"; case SND_DJM_CAP_DIGITAL: return "Control Tone DIGITAL"; case SND_DJM_CAP_PHONO: return "Control Tone PHONO"; case SND_DJM_CAP_PFADER: return "Post Fader"; case SND_DJM_CAP_XFADERA: return "Cross Fader A"; case SND_DJM_CAP_XFADERB: return "Cross Fader B"; case SND_DJM_CAP_MIC: return "Mic"; case SND_DJM_CAP_RECOUT: return "Rec Out"; case SND_DJM_CAP_RECOUT_NOMIC: return "Rec Out without Mic"; case SND_DJM_CAP_AUX: return "Aux"; case SND_DJM_CAP_NONE: return "None"; case SND_DJM_CAP_CH1PREFADER: return "Pre Fader Ch1"; case SND_DJM_CAP_CH2PREFADER: return "Pre Fader Ch2"; case SND_DJM_CAP_CH3PREFADER: return "Pre Fader Ch3"; case SND_DJM_CAP_CH4PREFADER: return "Pre Fader Ch4"; case SND_DJM_CAP_CH1PFADER: return "Post Fader Ch1"; case SND_DJM_CAP_CH2PFADER: return "Post Fader Ch2"; case SND_DJM_CAP_CH3PFADER: return "Post Fader Ch3"; case SND_DJM_CAP_CH4PFADER: return "Post Fader Ch4"; default: return NULL; } }; // The DJM-850 has different values for CD/LINE and LINE capture // control options than the other DJM declared in this file. static const char *snd_djm_get_label_cap_850(u16 wvalue) { switch (wvalue & 0x00ff) { case 0x00: return "Control Tone CD/LINE"; case 0x01: return "Control Tone LINE"; default: return snd_djm_get_label_cap_common(wvalue); } }; static const char *snd_djm_get_label_caplevel(u8 device_idx, u16 wvalue) { switch (device_idx) { case SND_DJM_A9_IDX: return snd_djm_get_label_caplevel_a9(wvalue); default: return snd_djm_get_label_caplevel_common(wvalue); } }; static const char *snd_djm_get_label_cap(u8 device_idx, u16 wvalue) { switch (device_idx) { case SND_DJM_850_IDX: return snd_djm_get_label_cap_850(wvalue); default: return snd_djm_get_label_cap_common(wvalue); } }; static const char *snd_djm_get_label_pb(u16 wvalue) { switch (wvalue & 0x00ff) { case SND_DJM_PB_CH1: return "Ch1"; case SND_DJM_PB_CH2: return "Ch2"; case SND_DJM_PB_AUX: return "Aux"; default: return NULL; } }; static const char *snd_djm_get_label(u8 device_idx, u16 wvalue, u16 windex) { switch (windex) { case SND_DJM_WINDEX_CAPLVL: return snd_djm_get_label_caplevel(device_idx, wvalue); case SND_DJM_WINDEX_CAP: return snd_djm_get_label_cap(device_idx, wvalue); case SND_DJM_WINDEX_PB: return snd_djm_get_label_pb(wvalue); default: return NULL; } }; // common DJM capture level option values static const u16 snd_djm_opts_cap_level[] = { 0x0000, 0x0100, 0x0200, 0x0300, 0x400, 0x500 }; // DJM-250MK2 static const u16 snd_djm_opts_250mk2_cap1[] = { 0x0103, 0x0100, 0x0106, 0x0107, 0x0108, 0x0109, 0x010d, 0x010a }; static const u16 snd_djm_opts_250mk2_cap2[] = { 0x0203, 0x0200, 0x0206, 0x0207, 0x0208, 0x0209, 0x020d, 0x020a }; static const u16 snd_djm_opts_250mk2_cap3[] = { 0x030a, 0x0311, 0x0312, 0x0307, 0x0308, 0x0309, 0x030d }; static const u16 snd_djm_opts_250mk2_pb1[] = { 0x0100, 0x0101, 0x0104 }; static const u16 snd_djm_opts_250mk2_pb2[] = { 0x0200, 0x0201, 0x0204 }; static const u16 snd_djm_opts_250mk2_pb3[] = { 0x0300, 0x0301, 0x0304 }; static const struct snd_djm_ctl snd_djm_ctls_250mk2[] = { SND_DJM_CTL("Capture Level", cap_level, 0, SND_DJM_WINDEX_CAPLVL), SND_DJM_CTL("Ch1 Input", 250mk2_cap1, 2, SND_DJM_WINDEX_CAP), SND_DJM_CTL("Ch2 Input", 250mk2_cap2, 2, SND_DJM_WINDEX_CAP), SND_DJM_CTL("Ch3 Input", 250mk2_cap3, 0, SND_DJM_WINDEX_CAP), SND_DJM_CTL("Ch1 Output", 250mk2_pb1, 0, SND_DJM_WINDEX_PB), SND_DJM_CTL("Ch2 Output", 250mk2_pb2, 1, SND_DJM_WINDEX_PB), SND_DJM_CTL("Ch3 Output", 250mk2_pb3, 2, SND_DJM_WINDEX_PB) }; // DJM-450 static const u16 snd_djm_opts_450_cap1[] = { 0x0103, 0x0100, 0x0106, 0x0107, 0x0108, 0x0109, 0x010d, 0x010a }; static const u16 snd_djm_opts_450_cap2[] = { 0x0203, 0x0200, 0x0206, 0x0207, 0x0208, 0x0209, 0x020d, 0x020a }; static const u16 snd_djm_opts_450_cap3[] = { 0x030a, 0x0311, 0x0312, 0x0307, 0x0308, 0x0309, 0x030d }; static const u16 snd_djm_opts_450_pb1[] = { 0x0100, 0x0101, 0x0104 }; static const u16 snd_djm_opts_450_pb2[] = { 0x0200, 0x0201, 0x0204 }; static const u16 snd_djm_opts_450_pb3[] = { 0x0300, 0x0301, 0x0304 }; static const struct snd_djm_ctl snd_djm_ctls_450[] = { SND_DJM_CTL("Capture Level", cap_level, 0, SND_DJM_WINDEX_CAPLVL), SND_DJM_CTL("Ch1 Input", 450_cap1, 2, SND_DJM_WINDEX_CAP), SND_DJM_CTL("Ch2 Input", 450_cap2, 2, SND_DJM_WINDEX_CAP), SND_DJM_CTL("Ch3 Input", 450_cap3, 0, SND_DJM_WINDEX_CAP), SND_DJM_CTL("Ch1 Output", 450_pb1, 0, SND_DJM_WINDEX_PB), SND_DJM_CTL("Ch2 Output", 450_pb2, 1, SND_DJM_WINDEX_PB), SND_DJM_CTL("Ch3 Output", 450_pb3, 2, SND_DJM_WINDEX_PB) }; // DJM-750 static const u16 snd_djm_opts_750_cap1[] = { 0x0101, 0x0103, 0x0106, 0x0107, 0x0108, 0x0109, 0x010a, 0x010f }; static const u16 snd_djm_opts_750_cap2[] = { 0x0200, 0x0201, 0x0206, 0x0207, 0x0208, 0x0209, 0x020a, 0x020f }; static const u16 snd_djm_opts_750_cap3[] = { 0x0300, 0x0301, 0x0306, 0x0307, 0x0308, 0x0309, 0x030a, 0x030f }; static const u16 snd_djm_opts_750_cap4[] = { 0x0401, 0x0403, 0x0406, 0x0407, 0x0408, 0x0409, 0x040a, 0x040f }; static const struct snd_djm_ctl snd_djm_ctls_750[] = { SND_DJM_CTL("Capture Level", cap_level, 0, SND_DJM_WINDEX_CAPLVL), SND_DJM_CTL("Ch1 Input", 750_cap1, 2, SND_DJM_WINDEX_CAP), SND_DJM_CTL("Ch2 Input", 750_cap2, 2, SND_DJM_WINDEX_CAP), SND_DJM_CTL("Ch3 Input", 750_cap3, 0, SND_DJM_WINDEX_CAP), SND_DJM_CTL("Ch4 Input", 750_cap4, 0, SND_DJM_WINDEX_CAP) }; // DJM-850 static const u16 snd_djm_opts_850_cap1[] = { 0x0100, 0x0103, 0x0106, 0x0107, 0x0108, 0x0109, 0x010a, 0x010f }; static const u16 snd_djm_opts_850_cap2[] = { 0x0200, 0x0201, 0x0206, 0x0207, 0x0208, 0x0209, 0x020a, 0x020f }; static const u16 snd_djm_opts_850_cap3[] = { 0x0300, 0x0301, 0x0306, 0x0307, 0x0308, 0x0309, 0x030a, 0x030f }; static const u16 snd_djm_opts_850_cap4[] = { 0x0400, 0x0403, 0x0406, 0x0407, 0x0408, 0x0409, 0x040a, 0x040f }; static const struct snd_djm_ctl snd_djm_ctls_850[] = { SND_DJM_CTL("Capture Level", cap_level, 0, SND_DJM_WINDEX_CAPLVL), SND_DJM_CTL("Ch1 Input", 850_cap1, 1, SND_DJM_WINDEX_CAP), SND_DJM_CTL("Ch2 Input", 850_cap2, 0, SND_DJM_WINDEX_CAP), SND_DJM_CTL("Ch3 Input", 850_cap3, 0, SND_DJM_WINDEX_CAP), SND_DJM_CTL("Ch4 Input", 850_cap4, 1, SND_DJM_WINDEX_CAP) }; // DJM-900NXS2 static const u16 snd_djm_opts_900nxs2_cap1[] = { 0x0100, 0x0102, 0x0103, 0x0106, 0x0107, 0x0108, 0x0109, 0x010a }; static const u16 snd_djm_opts_900nxs2_cap2[] = { 0x0200, 0x0202, 0x0203, 0x0206, 0x0207, 0x0208, 0x0209, 0x020a }; static const u16 snd_djm_opts_900nxs2_cap3[] = { 0x0300, 0x0302, 0x0303, 0x0306, 0x0307, 0x0308, 0x0309, 0x030a }; static const u16 snd_djm_opts_900nxs2_cap4[] = { 0x0400, 0x0402, 0x0403, 0x0406, 0x0407, 0x0408, 0x0409, 0x040a }; static const u16 snd_djm_opts_900nxs2_cap5[] = { 0x0507, 0x0508, 0x0509, 0x050a, 0x0511, 0x0512, 0x0513, 0x0514 }; static const struct snd_djm_ctl snd_djm_ctls_900nxs2[] = { SND_DJM_CTL("Capture Level", cap_level, 0, SND_DJM_WINDEX_CAPLVL), SND_DJM_CTL("Ch1 Input", 900nxs2_cap1, 2, SND_DJM_WINDEX_CAP), SND_DJM_CTL("Ch2 Input", 900nxs2_cap2, 2, SND_DJM_WINDEX_CAP), SND_DJM_CTL("Ch3 Input", 900nxs2_cap3, 2, SND_DJM_WINDEX_CAP), SND_DJM_CTL("Ch4 Input", 900nxs2_cap4, 2, SND_DJM_WINDEX_CAP), SND_DJM_CTL("Ch5 Input", 900nxs2_cap5, 3, SND_DJM_WINDEX_CAP) }; // DJM-750MK2 static const u16 snd_djm_opts_750mk2_cap1[] = { 0x0100, 0x0102, 0x0103, 0x0106, 0x0107, 0x0108, 0x0109, 0x010a }; static const u16 snd_djm_opts_750mk2_cap2[] = { 0x0200, 0x0202, 0x0203, 0x0206, 0x0207, 0x0208, 0x0209, 0x020a }; static const u16 snd_djm_opts_750mk2_cap3[] = { 0x0300, 0x0302, 0x0303, 0x0306, 0x0307, 0x0308, 0x0309, 0x030a }; static const u16 snd_djm_opts_750mk2_cap4[] = { 0x0400, 0x0402, 0x0403, 0x0406, 0x0407, 0x0408, 0x0409, 0x040a }; static const u16 snd_djm_opts_750mk2_cap5[] = { 0x0507, 0x0508, 0x0509, 0x050a, 0x0511, 0x0512, 0x0513, 0x0514 }; static const u16 snd_djm_opts_750mk2_pb1[] = { 0x0100, 0x0101, 0x0104 }; static const u16 snd_djm_opts_750mk2_pb2[] = { 0x0200, 0x0201, 0x0204 }; static const u16 snd_djm_opts_750mk2_pb3[] = { 0x0300, 0x0301, 0x0304 }; static const struct snd_djm_ctl snd_djm_ctls_750mk2[] = { SND_DJM_CTL("Capture Level", cap_level, 0, SND_DJM_WINDEX_CAPLVL), SND_DJM_CTL("Ch1 Input", 750mk2_cap1, 2, SND_DJM_WINDEX_CAP), SND_DJM_CTL("Ch2 Input", 750mk2_cap2, 2, SND_DJM_WINDEX_CAP), SND_DJM_CTL("Ch3 Input", 750mk2_cap3, 2, SND_DJM_WINDEX_CAP), SND_DJM_CTL("Ch4 Input", 750mk2_cap4, 2, SND_DJM_WINDEX_CAP), SND_DJM_CTL("Ch5 Input", 750mk2_cap5, 3, SND_DJM_WINDEX_CAP), SND_DJM_CTL("Ch1 Output", 750mk2_pb1, 0, SND_DJM_WINDEX_PB), SND_DJM_CTL("Ch2 Output", 750mk2_pb2, 1, SND_DJM_WINDEX_PB), SND_DJM_CTL("Ch3 Output", 750mk2_pb3, 2, SND_DJM_WINDEX_PB) }; // DJM-A9 static const u16 snd_djm_opts_a9_cap1[] = { 0x0107, 0x0108, 0x0109, 0x010a, 0x010e, 0x111, 0x112, 0x113, 0x114, 0x0131, 0x132, 0x133, 0x134 }; static const u16 snd_djm_opts_a9_cap2[] = { 0x0201, 0x0202, 0x0203, 0x0205, 0x0206, 0x0207, 0x0208, 0x0209, 0x020a, 0x020e }; static const u16 snd_djm_opts_a9_cap3[] = { 0x0301, 0x0302, 0x0303, 0x0305, 0x0306, 0x0307, 0x0308, 0x0309, 0x030a, 0x030e }; static const u16 snd_djm_opts_a9_cap4[] = { 0x0401, 0x0402, 0x0403, 0x0405, 0x0406, 0x0407, 0x0408, 0x0409, 0x040a, 0x040e }; static const u16 snd_djm_opts_a9_cap5[] = { 0x0501, 0x0502, 0x0503, 0x0505, 0x0506, 0x0507, 0x0508, 0x0509, 0x050a, 0x050e }; static const struct snd_djm_ctl snd_djm_ctls_a9[] = { SND_DJM_CTL("Capture Level", cap_level, 0, SND_DJM_WINDEX_CAPLVL), SND_DJM_CTL("Master Input", a9_cap1, 3, SND_DJM_WINDEX_CAP), SND_DJM_CTL("Ch1 Input", a9_cap2, 2, SND_DJM_WINDEX_CAP), SND_DJM_CTL("Ch2 Input", a9_cap3, 2, SND_DJM_WINDEX_CAP), SND_DJM_CTL("Ch3 Input", a9_cap4, 2, SND_DJM_WINDEX_CAP), SND_DJM_CTL("Ch4 Input", a9_cap5, 2, SND_DJM_WINDEX_CAP) }; static const struct snd_djm_device snd_djm_devices[] = { [SND_DJM_250MK2_IDX] = SND_DJM_DEVICE(250mk2), [SND_DJM_750_IDX] = SND_DJM_DEVICE(750), [SND_DJM_850_IDX] = SND_DJM_DEVICE(850), [SND_DJM_900NXS2_IDX] = SND_DJM_DEVICE(900nxs2), [SND_DJM_750MK2_IDX] = SND_DJM_DEVICE(750mk2), [SND_DJM_450_IDX] = SND_DJM_DEVICE(450), [SND_DJM_A9_IDX] = SND_DJM_DEVICE(a9), }; static int snd_djm_controls_info(struct snd_kcontrol *kctl, struct snd_ctl_elem_info *info) { unsigned long private_value = kctl->private_value; u8 device_idx = (private_value & SND_DJM_DEVICE_MASK) >> SND_DJM_DEVICE_SHIFT; u8 ctl_idx = (private_value & SND_DJM_GROUP_MASK) >> SND_DJM_GROUP_SHIFT; const struct snd_djm_device *device = &snd_djm_devices[device_idx]; const char *name; const struct snd_djm_ctl *ctl; size_t noptions; if (ctl_idx >= device->ncontrols) return -EINVAL; ctl = &device->controls[ctl_idx]; noptions = ctl->noptions; if (info->value.enumerated.item >= noptions) info->value.enumerated.item = noptions - 1; name = snd_djm_get_label(device_idx, ctl->options[info->value.enumerated.item], ctl->wIndex); if (!name) return -EINVAL; strscpy(info->value.enumerated.name, name, sizeof(info->value.enumerated.name)); info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; info->count = 1; info->value.enumerated.items = noptions; return 0; } static int snd_djm_controls_update(struct usb_mixer_interface *mixer, u8 device_idx, u8 group, u16 value) { int err; const struct snd_djm_device *device = &snd_djm_devices[device_idx]; if ((group >= device->ncontrols) || value >= device->controls[group].noptions) return -EINVAL; err = snd_usb_lock_shutdown(mixer->chip); if (err) return err; err = snd_usb_ctl_msg( mixer->chip->dev, usb_sndctrlpipe(mixer->chip->dev, 0), USB_REQ_SET_FEATURE, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE, device->controls[group].options[value], device->controls[group].wIndex, NULL, 0); snd_usb_unlock_shutdown(mixer->chip); return err; } static int snd_djm_controls_get(struct snd_kcontrol *kctl, struct snd_ctl_elem_value *elem) { elem->value.enumerated.item[0] = kctl->private_value & SND_DJM_VALUE_MASK; return 0; } static int snd_djm_controls_put(struct snd_kcontrol *kctl, struct snd_ctl_elem_value *elem) { struct usb_mixer_elem_list *list = snd_kcontrol_chip(kctl); struct usb_mixer_interface *mixer = list->mixer; unsigned long private_value = kctl->private_value; u8 device = (private_value & SND_DJM_DEVICE_MASK) >> SND_DJM_DEVICE_SHIFT; u8 group = (private_value & SND_DJM_GROUP_MASK) >> SND_DJM_GROUP_SHIFT; u16 value = elem->value.enumerated.item[0]; kctl->private_value = (((unsigned long)device << SND_DJM_DEVICE_SHIFT) | (group << SND_DJM_GROUP_SHIFT) | value); return snd_djm_controls_update(mixer, device, group, value); } static int snd_djm_controls_resume(struct usb_mixer_elem_list *list) { unsigned long private_value = list->kctl->private_value; u8 device = (private_value & SND_DJM_DEVICE_MASK) >> SND_DJM_DEVICE_SHIFT; u8 group = (private_value & SND_DJM_GROUP_MASK) >> SND_DJM_GROUP_SHIFT; u16 value = (private_value & SND_DJM_VALUE_MASK); return snd_djm_controls_update(list->mixer, device, group, value); } static int snd_djm_controls_create(struct usb_mixer_interface *mixer, const u8 device_idx) { int err, i; u16 value; const struct snd_djm_device *device = &snd_djm_devices[device_idx]; struct snd_kcontrol_new knew = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, .index = 0, .info = snd_djm_controls_info, .get = snd_djm_controls_get, .put = snd_djm_controls_put }; for (i = 0; i < device->ncontrols; i++) { value = device->controls[i].default_value; knew.name = device->controls[i].name; knew.private_value = ( ((unsigned long)device_idx << SND_DJM_DEVICE_SHIFT) | (i << SND_DJM_GROUP_SHIFT) | value); err = snd_djm_controls_update(mixer, device_idx, i, value); if (err) return err; err = add_single_ctl_with_resume(mixer, 0, snd_djm_controls_resume, &knew, NULL); if (err) return err; } return 0; } int snd_usb_mixer_apply_create_quirk(struct usb_mixer_interface *mixer) { int err = 0; err = snd_usb_soundblaster_remote_init(mixer); if (err < 0) return err; switch (mixer->chip->usb_id) { /* Tascam US-16x08 */ case USB_ID(0x0644, 0x8047): err = snd_us16x08_controls_create(mixer); break; case USB_ID(0x041e, 0x3020): case USB_ID(0x041e, 0x3040): case USB_ID(0x041e, 0x3042): case USB_ID(0x041e, 0x30df): case USB_ID(0x041e, 0x3048): err = snd_audigy2nx_controls_create(mixer); if (err < 0) break; snd_card_ro_proc_new(mixer->chip->card, "audigy2nx", mixer, snd_audigy2nx_proc_read); break; /* EMU0204 */ case USB_ID(0x041e, 0x3f19): err = snd_emu0204_controls_create(mixer); break; case USB_ID(0x0763, 0x2030): /* M-Audio Fast Track C400 */ case USB_ID(0x0763, 0x2031): /* M-Audio Fast Track C400 */ err = snd_c400_create_mixer(mixer); break; case USB_ID(0x0763, 0x2080): /* M-Audio Fast Track Ultra */ case USB_ID(0x0763, 0x2081): /* M-Audio Fast Track Ultra 8R */ err = snd_ftu_create_mixer(mixer); break; case USB_ID(0x0b05, 0x1739): /* ASUS Xonar U1 */ case USB_ID(0x0b05, 0x1743): /* ASUS Xonar U1 (2) */ case USB_ID(0x0b05, 0x17a0): /* ASUS Xonar U3 */ err = snd_xonar_u1_controls_create(mixer); break; case USB_ID(0x0d8c, 0x0103): /* Audio Advantage Micro II */ err = snd_microii_controls_create(mixer); break; case USB_ID(0x0dba, 0x1000): /* Digidesign Mbox 1 */ err = snd_mbox1_controls_create(mixer); break; case USB_ID(0x17cc, 0x1011): /* Traktor Audio 6 */ err = snd_nativeinstruments_create_mixer(mixer, snd_nativeinstruments_ta6_mixers, ARRAY_SIZE(snd_nativeinstruments_ta6_mixers)); break; case USB_ID(0x17cc, 0x1021): /* Traktor Audio 10 */ err = snd_nativeinstruments_create_mixer(mixer, snd_nativeinstruments_ta10_mixers, ARRAY_SIZE(snd_nativeinstruments_ta10_mixers)); break; case USB_ID(0x200c, 0x1018): /* Electrix Ebox-44 */ /* detection is disabled in mixer_maps.c */ err = snd_create_std_mono_table(mixer, ebox44_table); break; case USB_ID(0x1235, 0x8012): /* Focusrite Scarlett 6i6 */ case USB_ID(0x1235, 0x8002): /* Focusrite Scarlett 8i6 */ case USB_ID(0x1235, 0x8004): /* Focusrite Scarlett 18i6 */ case USB_ID(0x1235, 0x8014): /* Focusrite Scarlett 18i8 */ case USB_ID(0x1235, 0x800c): /* Focusrite Scarlett 18i20 */ err = snd_scarlett_controls_create(mixer); break; case USB_ID(0x1235, 0x8203): /* Focusrite Scarlett 6i6 2nd Gen */ case USB_ID(0x1235, 0x8204): /* Focusrite Scarlett 18i8 2nd Gen */ case USB_ID(0x1235, 0x8201): /* Focusrite Scarlett 18i20 2nd Gen */ case USB_ID(0x1235, 0x8211): /* Focusrite Scarlett Solo 3rd Gen */ case USB_ID(0x1235, 0x8210): /* Focusrite Scarlett 2i2 3rd Gen */ case USB_ID(0x1235, 0x8212): /* Focusrite Scarlett 4i4 3rd Gen */ case USB_ID(0x1235, 0x8213): /* Focusrite Scarlett 8i6 3rd Gen */ case USB_ID(0x1235, 0x8214): /* Focusrite Scarlett 18i8 3rd Gen */ case USB_ID(0x1235, 0x8215): /* Focusrite Scarlett 18i20 3rd Gen */ case USB_ID(0x1235, 0x8216): /* Focusrite Vocaster One */ case USB_ID(0x1235, 0x8217): /* Focusrite Vocaster Two */ case USB_ID(0x1235, 0x8218): /* Focusrite Scarlett Solo 4th Gen */ case USB_ID(0x1235, 0x8219): /* Focusrite Scarlett 2i2 4th Gen */ case USB_ID(0x1235, 0x821a): /* Focusrite Scarlett 4i4 4th Gen */ case USB_ID(0x1235, 0x8206): /* Focusrite Clarett 2Pre USB */ case USB_ID(0x1235, 0x8207): /* Focusrite Clarett 4Pre USB */ case USB_ID(0x1235, 0x8208): /* Focusrite Clarett 8Pre USB */ case USB_ID(0x1235, 0x820a): /* Focusrite Clarett+ 2Pre */ case USB_ID(0x1235, 0x820b): /* Focusrite Clarett+ 4Pre */ case USB_ID(0x1235, 0x820c): /* Focusrite Clarett+ 8Pre */ err = snd_scarlett2_init(mixer); break; case USB_ID(0x041e, 0x323b): /* Creative Sound Blaster E1 */ err = snd_soundblaster_e1_switch_create(mixer); break; case USB_ID(0x0bda, 0x4014): /* Dell WD15 dock */ err = dell_dock_mixer_create(mixer); if (err < 0) break; err = dell_dock_mixer_init(mixer); break; case USB_ID(0x0bda, 0x402e): /* Dell WD19 dock */ err = dell_dock_mixer_create(mixer); break; case USB_ID(0x2a39, 0x3fd2): /* RME ADI-2 Pro */ case USB_ID(0x2a39, 0x3fd3): /* RME ADI-2 DAC */ case USB_ID(0x2a39, 0x3fd4): /* RME */ err = snd_rme_controls_create(mixer); break; case USB_ID(0x194f, 0x010c): /* Presonus Studio 1810c */ err = snd_sc1810_init_mixer(mixer); break; case USB_ID(0x2a39, 0x3fb0): /* RME Babyface Pro FS */ err = snd_bbfpro_controls_create(mixer); break; case USB_ID(0x2a39, 0x3f8c): /* RME Digiface USB */ case USB_ID(0x2a39, 0x3fa0): /* RME Digiface USB (alternate) */ err = snd_rme_digiface_controls_create(mixer); break; case USB_ID(0x2b73, 0x0017): /* Pioneer DJ DJM-250MK2 */ err = snd_djm_controls_create(mixer, SND_DJM_250MK2_IDX); break; case USB_ID(0x2b73, 0x0013): /* Pioneer DJ DJM-450 */ err = snd_djm_controls_create(mixer, SND_DJM_450_IDX); break; case USB_ID(0x08e4, 0x017f): /* Pioneer DJ DJM-750 */ err = snd_djm_controls_create(mixer, SND_DJM_750_IDX); break; case USB_ID(0x2b73, 0x001b): /* Pioneer DJ DJM-750MK2 */ err = snd_djm_controls_create(mixer, SND_DJM_750MK2_IDX); break; case USB_ID(0x08e4, 0x0163): /* Pioneer DJ DJM-850 */ err = snd_djm_controls_create(mixer, SND_DJM_850_IDX); break; case USB_ID(0x2b73, 0x000a): /* Pioneer DJ DJM-900NXS2 */ err = snd_djm_controls_create(mixer, SND_DJM_900NXS2_IDX); break; case USB_ID(0x2b73, 0x003c): /* Pioneer DJ / AlphaTheta DJM-A9 */ err = snd_djm_controls_create(mixer, SND_DJM_A9_IDX); break; } return err; } void snd_usb_mixer_resume_quirk(struct usb_mixer_interface *mixer) { switch (mixer->chip->usb_id) { case USB_ID(0x0bda, 0x4014): /* Dell WD15 dock */ dell_dock_mixer_init(mixer); break; } } void snd_usb_mixer_rc_memory_change(struct usb_mixer_interface *mixer, int unitid) { if (!mixer->rc_cfg) return; /* unit ids specific to Extigy/Audigy 2 NX: */ switch (unitid) { case 0: /* remote control */ mixer->rc_urb->dev = mixer->chip->dev; usb_submit_urb(mixer->rc_urb, GFP_ATOMIC); break; case 4: /* digital in jack */ case 7: /* line in jacks */ case 19: /* speaker out jacks */ case 20: /* headphones out jack */ break; /* live24ext: 4 = line-in jack */ case 3: /* hp-out jack (may actuate Mute) */ if (mixer->chip->usb_id == USB_ID(0x041e, 0x3040) || mixer->chip->usb_id == USB_ID(0x041e, 0x3048)) snd_usb_mixer_notify_id(mixer, mixer->rc_cfg->mute_mixer_id); break; default: usb_audio_dbg(mixer->chip, "memory change in unknown unit %d\n", unitid); break; } } static void snd_dragonfly_quirk_db_scale(struct usb_mixer_interface *mixer, struct usb_mixer_elem_info *cval, struct snd_kcontrol *kctl) { /* Approximation using 10 ranges based on output measurement on hw v1.2. * This seems close to the cubic mapping e.g. alsamixer uses. */ static const DECLARE_TLV_DB_RANGE(scale, 0, 1, TLV_DB_MINMAX_ITEM(-5300, -4970), 2, 5, TLV_DB_MINMAX_ITEM(-4710, -4160), 6, 7, TLV_DB_MINMAX_ITEM(-3884, -3710), 8, 14, TLV_DB_MINMAX_ITEM(-3443, -2560), 15, 16, TLV_DB_MINMAX_ITEM(-2475, -2324), 17, 19, TLV_DB_MINMAX_ITEM(-2228, -2031), 20, 26, TLV_DB_MINMAX_ITEM(-1910, -1393), 27, 31, TLV_DB_MINMAX_ITEM(-1322, -1032), 32, 40, TLV_DB_MINMAX_ITEM(-968, -490), 41, 50, TLV_DB_MINMAX_ITEM(-441, 0), ); if (cval->min == 0 && cval->max == 50) { usb_audio_info(mixer->chip, "applying DragonFly dB scale quirk (0-50 variant)\n"); kctl->tlv.p = scale; kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_TLV_READ; kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK; } else if (cval->min == 0 && cval->max <= 1000) { /* Some other clearly broken DragonFly variant. * At least a 0..53 variant (hw v1.0) exists. */ usb_audio_info(mixer->chip, "ignoring too narrow dB range on a DragonFly device"); kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK; } } void snd_usb_mixer_fu_apply_quirk(struct usb_mixer_interface *mixer, struct usb_mixer_elem_info *cval, int unitid, struct snd_kcontrol *kctl) { switch (mixer->chip->usb_id) { case USB_ID(0x21b4, 0x0081): /* AudioQuest DragonFly */ if (unitid == 7 && cval->control == UAC_FU_VOLUME) snd_dragonfly_quirk_db_scale(mixer, cval, kctl); break; /* lowest playback value is muted on some devices */ case USB_ID(0x0d8c, 0x000c): /* C-Media */ case USB_ID(0x0d8c, 0x0014): /* C-Media */ case USB_ID(0x19f7, 0x0003): /* RODE NT-USB */ if (strstr(kctl->id.name, "Playback")) cval->min_mute = 1; break; } }