/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_POWERPC_NOHASH_32_PTE_8xx_H #define _ASM_POWERPC_NOHASH_32_PTE_8xx_H #ifdef __KERNEL__ /* * The PowerPC MPC8xx uses a TLB with hardware assisted, software tablewalk. * We also use the two level tables, but we can put the real bits in them * needed for the TLB and tablewalk. These definitions require Mx_CTR.PPM = 0, * Mx_CTR.PPCS = 0, and MD_CTR.TWAM = 1. The level 2 descriptor has * additional page protection (when Mx_CTR.PPCS = 1) that allows TLB hit * based upon user/super access. The TLB does not have accessed nor write * protect. We assume that if the TLB get loaded with an entry it is * accessed, and overload the changed bit for write protect. We use * two bits in the software pte that are supposed to be set to zero in * the TLB entry (24 and 25) for these indicators. Although the level 1 * descriptor contains the guarded and writethrough/copyback bits, we can * set these at the page level since they get copied from the Mx_TWC * register when the TLB entry is loaded. We will use bit 27 for guard, since * that is where it exists in the MD_TWC, and bit 26 for writethrough. * These will get masked from the level 2 descriptor at TLB load time, and * copied to the MD_TWC before it gets loaded. * Large page sizes added. We currently support two sizes, 4K and 8M. * This also allows a TLB hander optimization because we can directly * load the PMD into MD_TWC. The 8M pages are only used for kernel * mapping of well known areas. The PMD (PGD) entries contain control * flags in addition to the address, so care must be taken that the * software no longer assumes these are only pointers. */ /* Definitions for 8xx embedded chips. */ #define _PAGE_PRESENT 0x0001 /* V: Page is valid */ #define _PAGE_NO_CACHE 0x0002 /* CI: cache inhibit */ #define _PAGE_SH 0x0004 /* SH: No ASID (context) compare */ #define _PAGE_SPS 0x0008 /* SPS: Small Page Size (1 if 16k, 512k or 8M)*/ #define _PAGE_DIRTY 0x0100 /* C: page changed */ /* These 4 software bits must be masked out when the L2 entry is loaded * into the TLB. */ #define _PAGE_GUARDED 0x0010 /* Copied to L1 G entry in DTLB */ #define _PAGE_ACCESSED 0x0020 /* Copied to L1 APG 1 entry in I/DTLB */ #define _PAGE_EXEC 0x0040 /* Copied to PP (bit 21) in ITLB */ #define _PAGE_SPECIAL 0x0080 /* SW entry */ #define _PAGE_NA 0x0200 /* Supervisor NA, User no access */ #define _PAGE_RO 0x0600 /* Supervisor RO, User no access */ #define _PAGE_HUGE 0x0800 /* Copied to L1 PS bit 29 */ #define _PAGE_NAX (_PAGE_NA | _PAGE_EXEC) #define _PAGE_ROX (_PAGE_RO | _PAGE_EXEC) #define _PAGE_RW 0 #define _PAGE_RWX _PAGE_EXEC /* cache related flags non existing on 8xx */ #define _PAGE_COHERENT 0 #define _PAGE_WRITETHRU 0 #define _PAGE_KERNEL_RO (_PAGE_SH | _PAGE_RO) #define _PAGE_KERNEL_ROX (_PAGE_SH | _PAGE_RO | _PAGE_EXEC) #define _PAGE_KERNEL_RW (_PAGE_SH | _PAGE_DIRTY) #define _PAGE_KERNEL_RWX (_PAGE_SH | _PAGE_DIRTY | _PAGE_EXEC) #define _PMD_PRESENT 0x0001 #define _PMD_PRESENT_MASK _PMD_PRESENT #define _PMD_BAD 0x0f90 #define _PMD_PAGE_MASK 0x000c #define _PMD_PAGE_8M 0x000c #define _PMD_PAGE_512K 0x0004 #define _PMD_ACCESSED 0x0020 /* APG 1 */ #define _PMD_USER 0x0040 /* APG 2 */ #define _PTE_NONE_MASK 0 #ifdef CONFIG_PPC_16K_PAGES #define _PAGE_BASE_NC (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_SPS) #else #define _PAGE_BASE_NC (_PAGE_PRESENT | _PAGE_ACCESSED) #endif #define _PAGE_BASE (_PAGE_BASE_NC) #include #ifndef __ASSEMBLY__ static inline pte_t pte_wrprotect(pte_t pte) { return __pte(pte_val(pte) | _PAGE_RO); } #define pte_wrprotect pte_wrprotect static inline int pte_read(pte_t pte) { return (pte_val(pte) & _PAGE_RO) != _PAGE_NA; } #define pte_read pte_read static inline int pte_write(pte_t pte) { return !(pte_val(pte) & _PAGE_RO); } #define pte_write pte_write static inline pte_t pte_mkwrite_novma(pte_t pte) { return __pte(pte_val(pte) & ~_PAGE_RO); } #define pte_mkwrite_novma pte_mkwrite_novma static inline pte_t pte_mkhuge(pte_t pte) { return __pte(pte_val(pte) | _PAGE_SPS | _PAGE_HUGE); } #define pte_mkhuge pte_mkhuge static inline pte_basic_t pte_update(struct mm_struct *mm, unsigned long addr, pte_t *ptep, unsigned long clr, unsigned long set, int huge); static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { pte_update(mm, addr, ptep, 0, _PAGE_RO, 0); } #define ptep_set_wrprotect ptep_set_wrprotect static inline void __ptep_set_access_flags(struct vm_area_struct *vma, pte_t *ptep, pte_t entry, unsigned long address, int psize) { unsigned long set = pte_val(entry) & (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_EXEC); unsigned long clr = ~pte_val(entry) & _PAGE_RO; int huge = psize > mmu_virtual_psize ? 1 : 0; pte_update(vma->vm_mm, address, ptep, clr, set, huge); flush_tlb_page(vma, address); } #define __ptep_set_access_flags __ptep_set_access_flags static inline unsigned long __pte_leaf_size(pmd_t pmd, pte_t pte) { pte_basic_t val = pte_val(pte); if (pmd_val(pmd) & _PMD_PAGE_8M) return SZ_8M; if (val & _PAGE_HUGE) return SZ_512K; if (val & _PAGE_SPS) return SZ_16K; return SZ_4K; } #define __pte_leaf_size __pte_leaf_size /* * On the 8xx, the page tables are a bit special. For 16k pages, we have * 4 identical entries. For 512k pages, we have 128 entries as if it was * 4k pages, but they are flagged as 512k pages for the hardware. * For 8M pages, we have 1024 entries as if it was 4M pages (PMD_SIZE) * but they are flagged as 8M pages for the hardware. * For 4k pages, we have a single entry in the table. */ static pmd_t *pmd_off(struct mm_struct *mm, unsigned long addr); static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address); static inline bool ptep_is_8m_pmdp(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { return (pmd_t *)ptep == pmd_off(mm, ALIGN_DOWN(addr, SZ_8M)); } static inline int number_of_cells_per_pte(pmd_t *pmd, pte_basic_t val, int huge) { if (!huge) return PAGE_SIZE / SZ_4K; else if ((pmd_val(*pmd) & _PMD_PAGE_MASK) == _PMD_PAGE_8M) return SZ_4M / SZ_4K; else if (IS_ENABLED(CONFIG_PPC_4K_PAGES) && !(val & _PAGE_HUGE)) return SZ_16K / SZ_4K; else return SZ_512K / SZ_4K; } static inline pte_basic_t __pte_update(struct mm_struct *mm, unsigned long addr, pte_t *p, unsigned long clr, unsigned long set, int huge) { pte_basic_t *entry = (pte_basic_t *)p; pte_basic_t old = pte_val(*p); pte_basic_t new = (old & ~(pte_basic_t)clr) | set; int num, i; pmd_t *pmd = pmd_off(mm, addr); num = number_of_cells_per_pte(pmd, new, huge); for (i = 0; i < num; i += PAGE_SIZE / SZ_4K, new += PAGE_SIZE) { *entry++ = new; if (IS_ENABLED(CONFIG_PPC_16K_PAGES)) { *entry++ = new; *entry++ = new; *entry++ = new; } } return old; } static inline pte_basic_t pte_update(struct mm_struct *mm, unsigned long addr, pte_t *ptep, unsigned long clr, unsigned long set, int huge) { pte_basic_t old; if (huge && ptep_is_8m_pmdp(mm, addr, ptep)) { pmd_t *pmdp = (pmd_t *)ptep; old = __pte_update(mm, addr, pte_offset_kernel(pmdp, 0), clr, set, huge); __pte_update(mm, addr, pte_offset_kernel(pmdp + 1, 0), clr, set, huge); } else { old = __pte_update(mm, addr, ptep, clr, set, huge); } return old; } #define pte_update pte_update #ifdef CONFIG_PPC_16K_PAGES #define ptep_get ptep_get static inline pte_t ptep_get(pte_t *ptep) { pte_basic_t val = READ_ONCE(ptep->pte); pte_t pte = {val, val, val, val}; return pte; } #endif /* CONFIG_PPC_16K_PAGES */ #endif #endif /* __KERNEL__ */ #endif /* _ASM_POWERPC_NOHASH_32_PTE_8xx_H */