/* SPDX-License-Identifier: GPL-2.0 */ #ifndef ARCH_X86_KVM_REVERSE_CPUID_H #define ARCH_X86_KVM_REVERSE_CPUID_H #include #include #include /* * Hardware-defined CPUID leafs that are either scattered by the kernel or are * unknown to the kernel, but need to be directly used by KVM. Note, these * word values conflict with the kernel's "bug" caps, but KVM doesn't use those. */ enum kvm_only_cpuid_leafs { CPUID_12_EAX = NCAPINTS, CPUID_7_1_EDX, CPUID_8000_0007_EDX, CPUID_8000_0022_EAX, CPUID_7_2_EDX, CPUID_24_0_EBX, NR_KVM_CPU_CAPS, NKVMCAPINTS = NR_KVM_CPU_CAPS - NCAPINTS, }; /* * Define a KVM-only feature flag. * * For features that are scattered by cpufeatures.h, __feature_translate() also * needs to be updated to translate the kernel-defined feature into the * KVM-defined feature. * * For features that are 100% KVM-only, i.e. not defined by cpufeatures.h, * forego the intermediate KVM_X86_FEATURE and directly define X86_FEATURE_* so * that X86_FEATURE_* can be used in KVM. No __feature_translate() handling is * needed in this case. */ #define KVM_X86_FEATURE(w, f) ((w)*32 + (f)) /* Intel-defined SGX sub-features, CPUID level 0x12 (EAX). */ #define KVM_X86_FEATURE_SGX1 KVM_X86_FEATURE(CPUID_12_EAX, 0) #define KVM_X86_FEATURE_SGX2 KVM_X86_FEATURE(CPUID_12_EAX, 1) #define KVM_X86_FEATURE_SGX_EDECCSSA KVM_X86_FEATURE(CPUID_12_EAX, 11) /* Intel-defined sub-features, CPUID level 0x00000007:1 (EDX) */ #define X86_FEATURE_AVX_VNNI_INT8 KVM_X86_FEATURE(CPUID_7_1_EDX, 4) #define X86_FEATURE_AVX_NE_CONVERT KVM_X86_FEATURE(CPUID_7_1_EDX, 5) #define X86_FEATURE_AMX_COMPLEX KVM_X86_FEATURE(CPUID_7_1_EDX, 8) #define X86_FEATURE_AVX_VNNI_INT16 KVM_X86_FEATURE(CPUID_7_1_EDX, 10) #define X86_FEATURE_PREFETCHITI KVM_X86_FEATURE(CPUID_7_1_EDX, 14) #define X86_FEATURE_AVX10 KVM_X86_FEATURE(CPUID_7_1_EDX, 19) /* Intel-defined sub-features, CPUID level 0x00000007:2 (EDX) */ #define X86_FEATURE_INTEL_PSFD KVM_X86_FEATURE(CPUID_7_2_EDX, 0) #define X86_FEATURE_IPRED_CTRL KVM_X86_FEATURE(CPUID_7_2_EDX, 1) #define KVM_X86_FEATURE_RRSBA_CTRL KVM_X86_FEATURE(CPUID_7_2_EDX, 2) #define X86_FEATURE_DDPD_U KVM_X86_FEATURE(CPUID_7_2_EDX, 3) #define KVM_X86_FEATURE_BHI_CTRL KVM_X86_FEATURE(CPUID_7_2_EDX, 4) #define X86_FEATURE_MCDT_NO KVM_X86_FEATURE(CPUID_7_2_EDX, 5) /* Intel-defined sub-features, CPUID level 0x00000024:0 (EBX) */ #define X86_FEATURE_AVX10_128 KVM_X86_FEATURE(CPUID_24_0_EBX, 16) #define X86_FEATURE_AVX10_256 KVM_X86_FEATURE(CPUID_24_0_EBX, 17) #define X86_FEATURE_AVX10_512 KVM_X86_FEATURE(CPUID_24_0_EBX, 18) /* CPUID level 0x80000007 (EDX). */ #define KVM_X86_FEATURE_CONSTANT_TSC KVM_X86_FEATURE(CPUID_8000_0007_EDX, 8) /* CPUID level 0x80000022 (EAX) */ #define KVM_X86_FEATURE_PERFMON_V2 KVM_X86_FEATURE(CPUID_8000_0022_EAX, 0) struct cpuid_reg { u32 function; u32 index; int reg; }; static const struct cpuid_reg reverse_cpuid[] = { [CPUID_1_EDX] = { 1, 0, CPUID_EDX}, [CPUID_8000_0001_EDX] = {0x80000001, 0, CPUID_EDX}, [CPUID_8086_0001_EDX] = {0x80860001, 0, CPUID_EDX}, [CPUID_1_ECX] = { 1, 0, CPUID_ECX}, [CPUID_C000_0001_EDX] = {0xc0000001, 0, CPUID_EDX}, [CPUID_8000_0001_ECX] = {0x80000001, 0, CPUID_ECX}, [CPUID_7_0_EBX] = { 7, 0, CPUID_EBX}, [CPUID_D_1_EAX] = { 0xd, 1, CPUID_EAX}, [CPUID_8000_0008_EBX] = {0x80000008, 0, CPUID_EBX}, [CPUID_6_EAX] = { 6, 0, CPUID_EAX}, [CPUID_8000_000A_EDX] = {0x8000000a, 0, CPUID_EDX}, [CPUID_7_ECX] = { 7, 0, CPUID_ECX}, [CPUID_8000_0007_EBX] = {0x80000007, 0, CPUID_EBX}, [CPUID_7_EDX] = { 7, 0, CPUID_EDX}, [CPUID_7_1_EAX] = { 7, 1, CPUID_EAX}, [CPUID_12_EAX] = {0x00000012, 0, CPUID_EAX}, [CPUID_8000_001F_EAX] = {0x8000001f, 0, CPUID_EAX}, [CPUID_7_1_EDX] = { 7, 1, CPUID_EDX}, [CPUID_8000_0007_EDX] = {0x80000007, 0, CPUID_EDX}, [CPUID_8000_0021_EAX] = {0x80000021, 0, CPUID_EAX}, [CPUID_8000_0022_EAX] = {0x80000022, 0, CPUID_EAX}, [CPUID_7_2_EDX] = { 7, 2, CPUID_EDX}, [CPUID_24_0_EBX] = { 0x24, 0, CPUID_EBX}, }; /* * Reverse CPUID and its derivatives can only be used for hardware-defined * feature words, i.e. words whose bits directly correspond to a CPUID leaf. * Retrieving a feature bit or masking guest CPUID from a Linux-defined word * is nonsensical as the bit number/mask is an arbitrary software-defined value * and can't be used by KVM to query/control guest capabilities. And obviously * the leaf being queried must have an entry in the lookup table. */ static __always_inline void reverse_cpuid_check(unsigned int x86_leaf) { BUILD_BUG_ON(NR_CPUID_WORDS != NCAPINTS); BUILD_BUG_ON(x86_leaf == CPUID_LNX_1); BUILD_BUG_ON(x86_leaf == CPUID_LNX_2); BUILD_BUG_ON(x86_leaf == CPUID_LNX_3); BUILD_BUG_ON(x86_leaf == CPUID_LNX_4); BUILD_BUG_ON(x86_leaf == CPUID_LNX_5); BUILD_BUG_ON(x86_leaf >= ARRAY_SIZE(reverse_cpuid)); BUILD_BUG_ON(reverse_cpuid[x86_leaf].function == 0); } /* * Translate feature bits that are scattered in the kernel's cpufeatures word * into KVM feature words that align with hardware's definitions. */ static __always_inline u32 __feature_translate(int x86_feature) { #define KVM_X86_TRANSLATE_FEATURE(f) \ case X86_FEATURE_##f: return KVM_X86_FEATURE_##f switch (x86_feature) { KVM_X86_TRANSLATE_FEATURE(SGX1); KVM_X86_TRANSLATE_FEATURE(SGX2); KVM_X86_TRANSLATE_FEATURE(SGX_EDECCSSA); KVM_X86_TRANSLATE_FEATURE(CONSTANT_TSC); KVM_X86_TRANSLATE_FEATURE(PERFMON_V2); KVM_X86_TRANSLATE_FEATURE(RRSBA_CTRL); KVM_X86_TRANSLATE_FEATURE(BHI_CTRL); default: return x86_feature; } } static __always_inline u32 __feature_leaf(int x86_feature) { return __feature_translate(x86_feature) / 32; } /* * Retrieve the bit mask from an X86_FEATURE_* definition. Features contain * the hardware defined bit number (stored in bits 4:0) and a software defined * "word" (stored in bits 31:5). The word is used to index into arrays of * bit masks that hold the per-cpu feature capabilities, e.g. this_cpu_has(). */ static __always_inline u32 __feature_bit(int x86_feature) { x86_feature = __feature_translate(x86_feature); reverse_cpuid_check(x86_feature / 32); return 1 << (x86_feature & 31); } #define feature_bit(name) __feature_bit(X86_FEATURE_##name) static __always_inline struct cpuid_reg x86_feature_cpuid(unsigned int x86_feature) { unsigned int x86_leaf = __feature_leaf(x86_feature); reverse_cpuid_check(x86_leaf); return reverse_cpuid[x86_leaf]; } static __always_inline u32 *__cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, u32 reg) { switch (reg) { case CPUID_EAX: return &entry->eax; case CPUID_EBX: return &entry->ebx; case CPUID_ECX: return &entry->ecx; case CPUID_EDX: return &entry->edx; default: BUILD_BUG(); return NULL; } } static __always_inline u32 *cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, unsigned int x86_feature) { const struct cpuid_reg cpuid = x86_feature_cpuid(x86_feature); return __cpuid_entry_get_reg(entry, cpuid.reg); } static __always_inline u32 cpuid_entry_get(struct kvm_cpuid_entry2 *entry, unsigned int x86_feature) { u32 *reg = cpuid_entry_get_reg(entry, x86_feature); return *reg & __feature_bit(x86_feature); } static __always_inline bool cpuid_entry_has(struct kvm_cpuid_entry2 *entry, unsigned int x86_feature) { return cpuid_entry_get(entry, x86_feature); } static __always_inline void cpuid_entry_clear(struct kvm_cpuid_entry2 *entry, unsigned int x86_feature) { u32 *reg = cpuid_entry_get_reg(entry, x86_feature); *reg &= ~__feature_bit(x86_feature); } static __always_inline void cpuid_entry_set(struct kvm_cpuid_entry2 *entry, unsigned int x86_feature) { u32 *reg = cpuid_entry_get_reg(entry, x86_feature); *reg |= __feature_bit(x86_feature); } static __always_inline void cpuid_entry_change(struct kvm_cpuid_entry2 *entry, unsigned int x86_feature, bool set) { u32 *reg = cpuid_entry_get_reg(entry, x86_feature); /* * Open coded instead of using cpuid_entry_{clear,set}() to coerce the * compiler into using CMOV instead of Jcc when possible. */ if (set) *reg |= __feature_bit(x86_feature); else *reg &= ~__feature_bit(x86_feature); } #endif /* ARCH_X86_KVM_REVERSE_CPUID_H */