// SPDX-License-Identifier: GPL-2.0-only /* * AD7904/AD7914/AD7923/AD7924/AD7908/AD7918/AD7928 SPI ADC driver * * Copyright 2011 Analog Devices Inc (from AD7923 Driver) * Copyright 2012 CS Systemes d'Information */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define AD7923_WRITE_CR BIT(11) /* write control register */ #define AD7923_RANGE BIT(1) /* range to REFin */ #define AD7923_CODING BIT(0) /* coding is straight binary */ #define AD7923_PM_MODE_AS (1) /* auto shutdown */ #define AD7923_PM_MODE_FS (2) /* full shutdown */ #define AD7923_PM_MODE_OPS (3) /* normal operation */ #define AD7923_SEQUENCE_OFF (0) /* no sequence fonction */ #define AD7923_SEQUENCE_PROTECT (2) /* no interrupt write cycle */ #define AD7923_SEQUENCE_ON (3) /* continuous sequence */ #define AD7923_PM_MODE_WRITE(mode) ((mode) << 4) /* write mode */ #define AD7923_CHANNEL_WRITE(channel) ((channel) << 6) /* write channel */ #define AD7923_SEQUENCE_WRITE(sequence) ((((sequence) & 1) << 3) \ + (((sequence) & 2) << 9)) /* write sequence fonction */ /* left shift for CR : bit 11 transmit in first */ #define AD7923_SHIFT_REGISTER 4 /* val = value, dec = left shift, bits = number of bits of the mask */ #define EXTRACT(val, dec, bits) (((val) >> (dec)) & ((1 << (bits)) - 1)) struct ad7923_state { struct spi_device *spi; struct spi_transfer ring_xfer[9]; struct spi_transfer scan_single_xfer[2]; struct spi_message ring_msg; struct spi_message scan_single_msg; struct regulator *reg; unsigned int settings; /* * DMA (thus cache coherency maintenance) may require the * transfer buffers to live in their own cache lines. * Ensure rx_buf can be directly used in iio_push_to_buffers_with_timetamp * Length = 8 channels + 4 extra for 8 byte timestamp */ __be16 rx_buf[12] __aligned(IIO_DMA_MINALIGN); __be16 tx_buf[8]; }; struct ad7923_chip_info { const struct iio_chan_spec *channels; unsigned int num_channels; }; enum ad7923_id { AD7904, AD7914, AD7924, AD7908, AD7918, AD7928 }; #define AD7923_V_CHAN(index, bits) \ { \ .type = IIO_VOLTAGE, \ .indexed = 1, \ .channel = index, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \ .address = index, \ .scan_index = index, \ .scan_type = { \ .sign = 'u', \ .realbits = (bits), \ .storagebits = 16, \ .shift = 12 - (bits), \ .endianness = IIO_BE, \ }, \ } #define DECLARE_AD7923_CHANNELS(name, bits) \ const struct iio_chan_spec name ## _channels[] = { \ AD7923_V_CHAN(0, bits), \ AD7923_V_CHAN(1, bits), \ AD7923_V_CHAN(2, bits), \ AD7923_V_CHAN(3, bits), \ IIO_CHAN_SOFT_TIMESTAMP(4), \ } #define DECLARE_AD7908_CHANNELS(name, bits) \ const struct iio_chan_spec name ## _channels[] = { \ AD7923_V_CHAN(0, bits), \ AD7923_V_CHAN(1, bits), \ AD7923_V_CHAN(2, bits), \ AD7923_V_CHAN(3, bits), \ AD7923_V_CHAN(4, bits), \ AD7923_V_CHAN(5, bits), \ AD7923_V_CHAN(6, bits), \ AD7923_V_CHAN(7, bits), \ IIO_CHAN_SOFT_TIMESTAMP(8), \ } static DECLARE_AD7923_CHANNELS(ad7904, 8); static DECLARE_AD7923_CHANNELS(ad7914, 10); static DECLARE_AD7923_CHANNELS(ad7924, 12); static DECLARE_AD7908_CHANNELS(ad7908, 8); static DECLARE_AD7908_CHANNELS(ad7918, 10); static DECLARE_AD7908_CHANNELS(ad7928, 12); static const struct ad7923_chip_info ad7923_chip_info[] = { [AD7904] = { .channels = ad7904_channels, .num_channels = ARRAY_SIZE(ad7904_channels), }, [AD7914] = { .channels = ad7914_channels, .num_channels = ARRAY_SIZE(ad7914_channels), }, [AD7924] = { .channels = ad7924_channels, .num_channels = ARRAY_SIZE(ad7924_channels), }, [AD7908] = { .channels = ad7908_channels, .num_channels = ARRAY_SIZE(ad7908_channels), }, [AD7918] = { .channels = ad7918_channels, .num_channels = ARRAY_SIZE(ad7918_channels), }, [AD7928] = { .channels = ad7928_channels, .num_channels = ARRAY_SIZE(ad7928_channels), }, }; /* * ad7923_update_scan_mode() setup the spi transfer buffer for the new scan mask */ static int ad7923_update_scan_mode(struct iio_dev *indio_dev, const unsigned long *active_scan_mask) { struct ad7923_state *st = iio_priv(indio_dev); int i, cmd, len; len = 0; /* * For this driver the last channel is always the software timestamp so * skip that one. */ for_each_set_bit(i, active_scan_mask, indio_dev->num_channels - 1) { cmd = AD7923_WRITE_CR | AD7923_CHANNEL_WRITE(i) | AD7923_SEQUENCE_WRITE(AD7923_SEQUENCE_OFF) | st->settings; cmd <<= AD7923_SHIFT_REGISTER; st->tx_buf[len++] = cpu_to_be16(cmd); } /* build spi ring message */ st->ring_xfer[0].tx_buf = &st->tx_buf[0]; st->ring_xfer[0].len = len; st->ring_xfer[0].cs_change = 1; spi_message_init(&st->ring_msg); spi_message_add_tail(&st->ring_xfer[0], &st->ring_msg); for (i = 0; i < len; i++) { st->ring_xfer[i + 1].rx_buf = &st->rx_buf[i]; st->ring_xfer[i + 1].len = 2; st->ring_xfer[i + 1].cs_change = 1; spi_message_add_tail(&st->ring_xfer[i + 1], &st->ring_msg); } /* make sure last transfer cs_change is not set */ st->ring_xfer[i + 1].cs_change = 0; return 0; } static irqreturn_t ad7923_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct ad7923_state *st = iio_priv(indio_dev); int b_sent; b_sent = spi_sync(st->spi, &st->ring_msg); if (b_sent) goto done; iio_push_to_buffers_with_timestamp(indio_dev, st->rx_buf, iio_get_time_ns(indio_dev)); done: iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static int ad7923_scan_direct(struct ad7923_state *st, unsigned int ch) { int ret, cmd; cmd = AD7923_WRITE_CR | AD7923_CHANNEL_WRITE(ch) | AD7923_SEQUENCE_WRITE(AD7923_SEQUENCE_OFF) | st->settings; cmd <<= AD7923_SHIFT_REGISTER; st->tx_buf[0] = cpu_to_be16(cmd); ret = spi_sync(st->spi, &st->scan_single_msg); if (ret) return ret; return be16_to_cpu(st->rx_buf[0]); } static int ad7923_get_range(struct ad7923_state *st) { int vref; vref = regulator_get_voltage(st->reg); if (vref < 0) return vref; vref /= 1000; if (!(st->settings & AD7923_RANGE)) vref *= 2; return vref; } static int ad7923_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long m) { int ret; struct ad7923_state *st = iio_priv(indio_dev); switch (m) { case IIO_CHAN_INFO_RAW: ret = iio_device_claim_direct_mode(indio_dev); if (ret) return ret; ret = ad7923_scan_direct(st, chan->address); iio_device_release_direct_mode(indio_dev); if (ret < 0) return ret; if (chan->address == EXTRACT(ret, 12, 4)) *val = EXTRACT(ret, chan->scan_type.shift, chan->scan_type.realbits); else return -EIO; return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: ret = ad7923_get_range(st); if (ret < 0) return ret; *val = ret; *val2 = chan->scan_type.realbits; return IIO_VAL_FRACTIONAL_LOG2; } return -EINVAL; } static const struct iio_info ad7923_info = { .read_raw = &ad7923_read_raw, .update_scan_mode = ad7923_update_scan_mode, }; static void ad7923_regulator_disable(void *data) { struct ad7923_state *st = data; regulator_disable(st->reg); } static int ad7923_probe(struct spi_device *spi) { u32 ad7923_range = AD7923_RANGE; struct ad7923_state *st; struct iio_dev *indio_dev; const struct ad7923_chip_info *info; int ret; indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st)); if (!indio_dev) return -ENOMEM; st = iio_priv(indio_dev); if (device_property_read_bool(&spi->dev, "adi,range-double")) ad7923_range = 0; st->spi = spi; st->settings = AD7923_CODING | ad7923_range | AD7923_PM_MODE_WRITE(AD7923_PM_MODE_OPS); info = &ad7923_chip_info[spi_get_device_id(spi)->driver_data]; indio_dev->name = spi_get_device_id(spi)->name; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->channels = info->channels; indio_dev->num_channels = info->num_channels; indio_dev->info = &ad7923_info; /* Setup default message */ st->scan_single_xfer[0].tx_buf = &st->tx_buf[0]; st->scan_single_xfer[0].len = 2; st->scan_single_xfer[0].cs_change = 1; st->scan_single_xfer[1].rx_buf = &st->rx_buf[0]; st->scan_single_xfer[1].len = 2; spi_message_init(&st->scan_single_msg); spi_message_add_tail(&st->scan_single_xfer[0], &st->scan_single_msg); spi_message_add_tail(&st->scan_single_xfer[1], &st->scan_single_msg); st->reg = devm_regulator_get(&spi->dev, "refin"); if (IS_ERR(st->reg)) return PTR_ERR(st->reg); ret = regulator_enable(st->reg); if (ret) return ret; ret = devm_add_action_or_reset(&spi->dev, ad7923_regulator_disable, st); if (ret) return ret; ret = devm_iio_triggered_buffer_setup(&spi->dev, indio_dev, NULL, &ad7923_trigger_handler, NULL); if (ret) return ret; return devm_iio_device_register(&spi->dev, indio_dev); } static const struct spi_device_id ad7923_id[] = { { "ad7904", AD7904 }, { "ad7914", AD7914 }, { "ad7923", AD7924 }, { "ad7924", AD7924 }, { "ad7908", AD7908 }, { "ad7918", AD7918 }, { "ad7928", AD7928 }, { } }; MODULE_DEVICE_TABLE(spi, ad7923_id); static const struct of_device_id ad7923_of_match[] = { { .compatible = "adi,ad7904", }, { .compatible = "adi,ad7914", }, { .compatible = "adi,ad7923", }, { .compatible = "adi,ad7924", }, { .compatible = "adi,ad7908", }, { .compatible = "adi,ad7918", }, { .compatible = "adi,ad7928", }, { } }; MODULE_DEVICE_TABLE(of, ad7923_of_match); static struct spi_driver ad7923_driver = { .driver = { .name = "ad7923", .of_match_table = ad7923_of_match, }, .probe = ad7923_probe, .id_table = ad7923_id, }; module_spi_driver(ad7923_driver); MODULE_AUTHOR("Michael Hennerich "); MODULE_AUTHOR("Patrick Vasseur "); MODULE_DESCRIPTION("Analog Devices AD7923 and similar ADC"); MODULE_LICENSE("GPL v2");