// SPDX-License-Identifier: GPL-2.0+ /* * APM X-Gene PCIe Driver * * Copyright (c) 2014 Applied Micro Circuits Corporation. * * Author: Tanmay Inamdar . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../pci.h" #define PCIECORE_CTLANDSTATUS 0x50 #define PIM1_1L 0x80 #define IBAR2 0x98 #define IR2MSK 0x9c #define PIM2_1L 0xa0 #define IBAR3L 0xb4 #define IR3MSKL 0xbc #define PIM3_1L 0xc4 #define OMR1BARL 0x100 #define OMR2BARL 0x118 #define OMR3BARL 0x130 #define CFGBARL 0x154 #define CFGBARH 0x158 #define CFGCTL 0x15c #define RTDID 0x160 #define BRIDGE_CFG_0 0x2000 #define BRIDGE_CFG_4 0x2010 #define BRIDGE_STATUS_0 0x2600 #define LINK_UP_MASK 0x00000100 #define AXI_EP_CFG_ACCESS 0x10000 #define EN_COHERENCY 0xF0000000 #define EN_REG 0x00000001 #define OB_LO_IO 0x00000002 #define XGENE_PCIE_DEVICEID 0xE004 #define PIPE_PHY_RATE_RD(src) ((0xc000 & (u32)(src)) >> 0xe) #define XGENE_V1_PCI_EXP_CAP 0x40 /* PCIe IP version */ #define XGENE_PCIE_IP_VER_UNKN 0 #define XGENE_PCIE_IP_VER_1 1 #define XGENE_PCIE_IP_VER_2 2 #if defined(CONFIG_PCI_XGENE) || (defined(CONFIG_ACPI) && defined(CONFIG_PCI_QUIRKS)) struct xgene_pcie { struct device_node *node; struct device *dev; struct clk *clk; void __iomem *csr_base; void __iomem *cfg_base; unsigned long cfg_addr; bool link_up; u32 version; }; static u32 xgene_pcie_readl(struct xgene_pcie *port, u32 reg) { return readl(port->csr_base + reg); } static void xgene_pcie_writel(struct xgene_pcie *port, u32 reg, u32 val) { writel(val, port->csr_base + reg); } static inline u32 pcie_bar_low_val(u32 addr, u32 flags) { return (addr & PCI_BASE_ADDRESS_MEM_MASK) | flags; } static inline struct xgene_pcie *pcie_bus_to_port(struct pci_bus *bus) { struct pci_config_window *cfg; if (acpi_disabled) return (struct xgene_pcie *)(bus->sysdata); cfg = bus->sysdata; return (struct xgene_pcie *)(cfg->priv); } /* * When the address bit [17:16] is 2'b01, the Configuration access will be * treated as Type 1 and it will be forwarded to external PCIe device. */ static void __iomem *xgene_pcie_get_cfg_base(struct pci_bus *bus) { struct xgene_pcie *port = pcie_bus_to_port(bus); if (bus->number >= (bus->primary + 1)) return port->cfg_base + AXI_EP_CFG_ACCESS; return port->cfg_base; } /* * For Configuration request, RTDID register is used as Bus Number, * Device Number and Function number of the header fields. */ static void xgene_pcie_set_rtdid_reg(struct pci_bus *bus, uint devfn) { struct xgene_pcie *port = pcie_bus_to_port(bus); unsigned int b, d, f; u32 rtdid_val = 0; b = bus->number; d = PCI_SLOT(devfn); f = PCI_FUNC(devfn); if (!pci_is_root_bus(bus)) rtdid_val = (b << 8) | (d << 3) | f; xgene_pcie_writel(port, RTDID, rtdid_val); /* read the register back to ensure flush */ xgene_pcie_readl(port, RTDID); } /* * X-Gene PCIe port uses BAR0-BAR1 of RC's configuration space as * the translation from PCI bus to native BUS. Entire DDR region * is mapped into PCIe space using these registers, so it can be * reached by DMA from EP devices. The BAR0/1 of bridge should be * hidden during enumeration to avoid the sizing and resource allocation * by PCIe core. */ static bool xgene_pcie_hide_rc_bars(struct pci_bus *bus, int offset) { if (pci_is_root_bus(bus) && ((offset == PCI_BASE_ADDRESS_0) || (offset == PCI_BASE_ADDRESS_1))) return true; return false; } static void __iomem *xgene_pcie_map_bus(struct pci_bus *bus, unsigned int devfn, int offset) { if ((pci_is_root_bus(bus) && devfn != 0) || xgene_pcie_hide_rc_bars(bus, offset)) return NULL; xgene_pcie_set_rtdid_reg(bus, devfn); return xgene_pcie_get_cfg_base(bus) + offset; } static int xgene_pcie_config_read32(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *val) { struct xgene_pcie *port = pcie_bus_to_port(bus); int ret; ret = pci_generic_config_read32(bus, devfn, where & ~0x3, 4, val); if (ret != PCIBIOS_SUCCESSFUL) return ret; /* * The v1 controller has a bug in its Configuration Request Retry * Status (RRS) logic: when RRS Software Visibility is enabled and * we read the Vendor and Device ID of a non-existent device, the * controller fabricates return data of 0xFFFF0001 ("device exists * but is not ready") instead of 0xFFFFFFFF (PCI_ERROR_RESPONSE) * ("device does not exist"). This causes the PCI core to retry * the read until it times out. Avoid this by not claiming to * support RRS SV. */ if (pci_is_root_bus(bus) && (port->version == XGENE_PCIE_IP_VER_1) && ((where & ~0x3) == XGENE_V1_PCI_EXP_CAP + PCI_EXP_RTCTL)) *val &= ~(PCI_EXP_RTCAP_RRS_SV << 16); if (size <= 2) *val = (*val >> (8 * (where & 3))) & ((1 << (size * 8)) - 1); return PCIBIOS_SUCCESSFUL; } #endif #if defined(CONFIG_ACPI) && defined(CONFIG_PCI_QUIRKS) static int xgene_get_csr_resource(struct acpi_device *adev, struct resource *res) { struct device *dev = &adev->dev; struct resource_entry *entry; struct list_head list; unsigned long flags; int ret; INIT_LIST_HEAD(&list); flags = IORESOURCE_MEM; ret = acpi_dev_get_resources(adev, &list, acpi_dev_filter_resource_type_cb, (void *) flags); if (ret < 0) { dev_err(dev, "failed to parse _CRS method, error code %d\n", ret); return ret; } if (ret == 0) { dev_err(dev, "no IO and memory resources present in _CRS\n"); return -EINVAL; } entry = list_first_entry(&list, struct resource_entry, node); *res = *entry->res; acpi_dev_free_resource_list(&list); return 0; } static int xgene_pcie_ecam_init(struct pci_config_window *cfg, u32 ipversion) { struct device *dev = cfg->parent; struct acpi_device *adev = to_acpi_device(dev); struct xgene_pcie *port; struct resource csr; int ret; port = devm_kzalloc(dev, sizeof(*port), GFP_KERNEL); if (!port) return -ENOMEM; ret = xgene_get_csr_resource(adev, &csr); if (ret) { dev_err(dev, "can't get CSR resource\n"); return ret; } port->csr_base = devm_pci_remap_cfg_resource(dev, &csr); if (IS_ERR(port->csr_base)) return PTR_ERR(port->csr_base); port->cfg_base = cfg->win; port->version = ipversion; cfg->priv = port; return 0; } static int xgene_v1_pcie_ecam_init(struct pci_config_window *cfg) { return xgene_pcie_ecam_init(cfg, XGENE_PCIE_IP_VER_1); } const struct pci_ecam_ops xgene_v1_pcie_ecam_ops = { .init = xgene_v1_pcie_ecam_init, .pci_ops = { .map_bus = xgene_pcie_map_bus, .read = xgene_pcie_config_read32, .write = pci_generic_config_write, } }; static int xgene_v2_pcie_ecam_init(struct pci_config_window *cfg) { return xgene_pcie_ecam_init(cfg, XGENE_PCIE_IP_VER_2); } const struct pci_ecam_ops xgene_v2_pcie_ecam_ops = { .init = xgene_v2_pcie_ecam_init, .pci_ops = { .map_bus = xgene_pcie_map_bus, .read = xgene_pcie_config_read32, .write = pci_generic_config_write, } }; #endif #if defined(CONFIG_PCI_XGENE) static u64 xgene_pcie_set_ib_mask(struct xgene_pcie *port, u32 addr, u32 flags, u64 size) { u64 mask = (~(size - 1) & PCI_BASE_ADDRESS_MEM_MASK) | flags; u32 val32 = 0; u32 val; val32 = xgene_pcie_readl(port, addr); val = (val32 & 0x0000ffff) | (lower_32_bits(mask) << 16); xgene_pcie_writel(port, addr, val); val32 = xgene_pcie_readl(port, addr + 0x04); val = (val32 & 0xffff0000) | (lower_32_bits(mask) >> 16); xgene_pcie_writel(port, addr + 0x04, val); val32 = xgene_pcie_readl(port, addr + 0x04); val = (val32 & 0x0000ffff) | (upper_32_bits(mask) << 16); xgene_pcie_writel(port, addr + 0x04, val); val32 = xgene_pcie_readl(port, addr + 0x08); val = (val32 & 0xffff0000) | (upper_32_bits(mask) >> 16); xgene_pcie_writel(port, addr + 0x08, val); return mask; } static void xgene_pcie_linkup(struct xgene_pcie *port, u32 *lanes, u32 *speed) { u32 val32; port->link_up = false; val32 = xgene_pcie_readl(port, PCIECORE_CTLANDSTATUS); if (val32 & LINK_UP_MASK) { port->link_up = true; *speed = PIPE_PHY_RATE_RD(val32); val32 = xgene_pcie_readl(port, BRIDGE_STATUS_0); *lanes = val32 >> 26; } } static int xgene_pcie_init_port(struct xgene_pcie *port) { struct device *dev = port->dev; int rc; port->clk = clk_get(dev, NULL); if (IS_ERR(port->clk)) { dev_err(dev, "clock not available\n"); return -ENODEV; } rc = clk_prepare_enable(port->clk); if (rc) { dev_err(dev, "clock enable failed\n"); return rc; } return 0; } static int xgene_pcie_map_reg(struct xgene_pcie *port, struct platform_device *pdev) { struct device *dev = port->dev; struct resource *res; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "csr"); port->csr_base = devm_pci_remap_cfg_resource(dev, res); if (IS_ERR(port->csr_base)) return PTR_ERR(port->csr_base); res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cfg"); port->cfg_base = devm_ioremap_resource(dev, res); if (IS_ERR(port->cfg_base)) return PTR_ERR(port->cfg_base); port->cfg_addr = res->start; return 0; } static void xgene_pcie_setup_ob_reg(struct xgene_pcie *port, struct resource *res, u32 offset, u64 cpu_addr, u64 pci_addr) { struct device *dev = port->dev; resource_size_t size = resource_size(res); u64 restype = resource_type(res); u64 mask = 0; u32 min_size; u32 flag = EN_REG; if (restype == IORESOURCE_MEM) { min_size = SZ_128M; } else { min_size = 128; flag |= OB_LO_IO; } if (size >= min_size) mask = ~(size - 1) | flag; else dev_warn(dev, "res size 0x%llx less than minimum 0x%x\n", (u64)size, min_size); xgene_pcie_writel(port, offset, lower_32_bits(cpu_addr)); xgene_pcie_writel(port, offset + 0x04, upper_32_bits(cpu_addr)); xgene_pcie_writel(port, offset + 0x08, lower_32_bits(mask)); xgene_pcie_writel(port, offset + 0x0c, upper_32_bits(mask)); xgene_pcie_writel(port, offset + 0x10, lower_32_bits(pci_addr)); xgene_pcie_writel(port, offset + 0x14, upper_32_bits(pci_addr)); } static void xgene_pcie_setup_cfg_reg(struct xgene_pcie *port) { u64 addr = port->cfg_addr; xgene_pcie_writel(port, CFGBARL, lower_32_bits(addr)); xgene_pcie_writel(port, CFGBARH, upper_32_bits(addr)); xgene_pcie_writel(port, CFGCTL, EN_REG); } static int xgene_pcie_map_ranges(struct xgene_pcie *port) { struct pci_host_bridge *bridge = pci_host_bridge_from_priv(port); struct resource_entry *window; struct device *dev = port->dev; resource_list_for_each_entry(window, &bridge->windows) { struct resource *res = window->res; u64 restype = resource_type(res); dev_dbg(dev, "%pR\n", res); switch (restype) { case IORESOURCE_IO: xgene_pcie_setup_ob_reg(port, res, OMR3BARL, pci_pio_to_address(res->start), res->start - window->offset); break; case IORESOURCE_MEM: if (res->flags & IORESOURCE_PREFETCH) xgene_pcie_setup_ob_reg(port, res, OMR2BARL, res->start, res->start - window->offset); else xgene_pcie_setup_ob_reg(port, res, OMR1BARL, res->start, res->start - window->offset); break; case IORESOURCE_BUS: break; default: dev_err(dev, "invalid resource %pR\n", res); return -EINVAL; } } xgene_pcie_setup_cfg_reg(port); return 0; } static void xgene_pcie_setup_pims(struct xgene_pcie *port, u32 pim_reg, u64 pim, u64 size) { xgene_pcie_writel(port, pim_reg, lower_32_bits(pim)); xgene_pcie_writel(port, pim_reg + 0x04, upper_32_bits(pim) | EN_COHERENCY); xgene_pcie_writel(port, pim_reg + 0x10, lower_32_bits(size)); xgene_pcie_writel(port, pim_reg + 0x14, upper_32_bits(size)); } /* * X-Gene PCIe support maximum 3 inbound memory regions * This function helps to select a region based on size of region */ static int xgene_pcie_select_ib_reg(u8 *ib_reg_mask, u64 size) { if ((size > 4) && (size < SZ_16M) && !(*ib_reg_mask & (1 << 1))) { *ib_reg_mask |= (1 << 1); return 1; } if ((size > SZ_1K) && (size < SZ_1T) && !(*ib_reg_mask & (1 << 0))) { *ib_reg_mask |= (1 << 0); return 0; } if ((size > SZ_1M) && (size < SZ_1T) && !(*ib_reg_mask & (1 << 2))) { *ib_reg_mask |= (1 << 2); return 2; } return -EINVAL; } static void xgene_pcie_setup_ib_reg(struct xgene_pcie *port, struct of_pci_range *range, u8 *ib_reg_mask) { void __iomem *cfg_base = port->cfg_base; struct device *dev = port->dev; void __iomem *bar_addr; u32 pim_reg; u64 cpu_addr = range->cpu_addr; u64 pci_addr = range->pci_addr; u64 size = range->size; u64 mask = ~(size - 1) | EN_REG; u32 flags = PCI_BASE_ADDRESS_MEM_TYPE_64; u32 bar_low; int region; region = xgene_pcie_select_ib_reg(ib_reg_mask, range->size); if (region < 0) { dev_warn(dev, "invalid pcie dma-range config\n"); return; } if (range->flags & IORESOURCE_PREFETCH) flags |= PCI_BASE_ADDRESS_MEM_PREFETCH; bar_low = pcie_bar_low_val((u32)cpu_addr, flags); switch (region) { case 0: xgene_pcie_set_ib_mask(port, BRIDGE_CFG_4, flags, size); bar_addr = cfg_base + PCI_BASE_ADDRESS_0; writel(bar_low, bar_addr); writel(upper_32_bits(cpu_addr), bar_addr + 0x4); pim_reg = PIM1_1L; break; case 1: xgene_pcie_writel(port, IBAR2, bar_low); xgene_pcie_writel(port, IR2MSK, lower_32_bits(mask)); pim_reg = PIM2_1L; break; case 2: xgene_pcie_writel(port, IBAR3L, bar_low); xgene_pcie_writel(port, IBAR3L + 0x4, upper_32_bits(cpu_addr)); xgene_pcie_writel(port, IR3MSKL, lower_32_bits(mask)); xgene_pcie_writel(port, IR3MSKL + 0x4, upper_32_bits(mask)); pim_reg = PIM3_1L; break; } xgene_pcie_setup_pims(port, pim_reg, pci_addr, ~(size - 1)); } static int xgene_pcie_parse_map_dma_ranges(struct xgene_pcie *port) { struct device_node *np = port->node; struct of_pci_range range; struct of_pci_range_parser parser; struct device *dev = port->dev; u8 ib_reg_mask = 0; if (of_pci_dma_range_parser_init(&parser, np)) { dev_err(dev, "missing dma-ranges property\n"); return -EINVAL; } /* Get the dma-ranges from DT */ for_each_of_pci_range(&parser, &range) { u64 end = range.cpu_addr + range.size - 1; dev_dbg(dev, "0x%08x 0x%016llx..0x%016llx -> 0x%016llx\n", range.flags, range.cpu_addr, end, range.pci_addr); xgene_pcie_setup_ib_reg(port, &range, &ib_reg_mask); } return 0; } /* clear BAR configuration which was done by firmware */ static void xgene_pcie_clear_config(struct xgene_pcie *port) { int i; for (i = PIM1_1L; i <= CFGCTL; i += 4) xgene_pcie_writel(port, i, 0); } static int xgene_pcie_setup(struct xgene_pcie *port) { struct device *dev = port->dev; u32 val, lanes = 0, speed = 0; int ret; xgene_pcie_clear_config(port); /* setup the vendor and device IDs correctly */ val = (XGENE_PCIE_DEVICEID << 16) | PCI_VENDOR_ID_AMCC; xgene_pcie_writel(port, BRIDGE_CFG_0, val); ret = xgene_pcie_map_ranges(port); if (ret) return ret; ret = xgene_pcie_parse_map_dma_ranges(port); if (ret) return ret; xgene_pcie_linkup(port, &lanes, &speed); if (!port->link_up) dev_info(dev, "(rc) link down\n"); else dev_info(dev, "(rc) x%d gen-%d link up\n", lanes, speed + 1); return 0; } static struct pci_ops xgene_pcie_ops = { .map_bus = xgene_pcie_map_bus, .read = xgene_pcie_config_read32, .write = pci_generic_config_write32, }; static int xgene_pcie_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *dn = dev->of_node; struct xgene_pcie *port; struct pci_host_bridge *bridge; int ret; bridge = devm_pci_alloc_host_bridge(dev, sizeof(*port)); if (!bridge) return -ENOMEM; port = pci_host_bridge_priv(bridge); port->node = of_node_get(dn); port->dev = dev; port->version = XGENE_PCIE_IP_VER_UNKN; if (of_device_is_compatible(port->node, "apm,xgene-pcie")) port->version = XGENE_PCIE_IP_VER_1; ret = xgene_pcie_map_reg(port, pdev); if (ret) return ret; ret = xgene_pcie_init_port(port); if (ret) return ret; ret = xgene_pcie_setup(port); if (ret) return ret; bridge->sysdata = port; bridge->ops = &xgene_pcie_ops; return pci_host_probe(bridge); } static const struct of_device_id xgene_pcie_match_table[] = { {.compatible = "apm,xgene-pcie",}, {}, }; static struct platform_driver xgene_pcie_driver = { .driver = { .name = "xgene-pcie", .of_match_table = xgene_pcie_match_table, .suppress_bind_attrs = true, }, .probe = xgene_pcie_probe, }; builtin_platform_driver(xgene_pcie_driver); #endif