// SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com * Copyright (c) 2016 Facebook * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io */ #include <uapi/linux/btf.h> #include <linux/kernel.h> #include <linux/types.h> #include <linux/bpf.h> #include <linux/bpf_verifier.h> #include <linux/math64.h> #include <linux/string.h> #define verbose(env, fmt, args...) bpf_verifier_log_write(env, fmt, ##args) static bool bpf_verifier_log_attr_valid(const struct bpf_verifier_log *log) { /* ubuf and len_total should both be specified (or not) together */ if (!!log->ubuf != !!log->len_total) return false; /* log buf without log_level is meaningless */ if (log->ubuf && log->level == 0) return false; if (log->level & ~BPF_LOG_MASK) return false; if (log->len_total > UINT_MAX >> 2) return false; return true; } int bpf_vlog_init(struct bpf_verifier_log *log, u32 log_level, char __user *log_buf, u32 log_size) { log->level = log_level; log->ubuf = log_buf; log->len_total = log_size; /* log attributes have to be sane */ if (!bpf_verifier_log_attr_valid(log)) return -EINVAL; return 0; } static void bpf_vlog_update_len_max(struct bpf_verifier_log *log, u32 add_len) { /* add_len includes terminal \0, so no need for +1. */ u64 len = log->end_pos + add_len; /* log->len_max could be larger than our current len due to * bpf_vlog_reset() calls, so we maintain the max of any length at any * previous point */ if (len > UINT_MAX) log->len_max = UINT_MAX; else if (len > log->len_max) log->len_max = len; } void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, va_list args) { u64 cur_pos; u32 new_n, n; n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); if (log->level == BPF_LOG_KERNEL) { bool newline = n > 0 && log->kbuf[n - 1] == '\n'; pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n"); return; } n += 1; /* include terminating zero */ bpf_vlog_update_len_max(log, n); if (log->level & BPF_LOG_FIXED) { /* check if we have at least something to put into user buf */ new_n = 0; if (log->end_pos < log->len_total) { new_n = min_t(u32, log->len_total - log->end_pos, n); log->kbuf[new_n - 1] = '\0'; } cur_pos = log->end_pos; log->end_pos += n - 1; /* don't count terminating '\0' */ if (log->ubuf && new_n && copy_to_user(log->ubuf + cur_pos, log->kbuf, new_n)) goto fail; } else { u64 new_end, new_start; u32 buf_start, buf_end; new_end = log->end_pos + n; if (new_end - log->start_pos >= log->len_total) new_start = new_end - log->len_total; else new_start = log->start_pos; log->start_pos = new_start; log->end_pos = new_end - 1; /* don't count terminating '\0' */ if (!log->ubuf) return; new_n = min(n, log->len_total); cur_pos = new_end - new_n; div_u64_rem(cur_pos, log->len_total, &buf_start); div_u64_rem(new_end, log->len_total, &buf_end); /* new_end and buf_end are exclusive indices, so if buf_end is * exactly zero, then it actually points right to the end of * ubuf and there is no wrap around */ if (buf_end == 0) buf_end = log->len_total; /* if buf_start > buf_end, we wrapped around; * if buf_start == buf_end, then we fill ubuf completely; we * can't have buf_start == buf_end to mean that there is * nothing to write, because we always write at least * something, even if terminal '\0' */ if (buf_start < buf_end) { /* message fits within contiguous chunk of ubuf */ if (copy_to_user(log->ubuf + buf_start, log->kbuf + n - new_n, buf_end - buf_start)) goto fail; } else { /* message wraps around the end of ubuf, copy in two chunks */ if (copy_to_user(log->ubuf + buf_start, log->kbuf + n - new_n, log->len_total - buf_start)) goto fail; if (copy_to_user(log->ubuf, log->kbuf + n - buf_end, buf_end)) goto fail; } } return; fail: log->ubuf = NULL; } void bpf_vlog_reset(struct bpf_verifier_log *log, u64 new_pos) { char zero = 0; u32 pos; if (WARN_ON_ONCE(new_pos > log->end_pos)) return; if (!bpf_verifier_log_needed(log) || log->level == BPF_LOG_KERNEL) return; /* if position to which we reset is beyond current log window, * then we didn't preserve any useful content and should adjust * start_pos to end up with an empty log (start_pos == end_pos) */ log->end_pos = new_pos; if (log->end_pos < log->start_pos) log->start_pos = log->end_pos; if (!log->ubuf) return; if (log->level & BPF_LOG_FIXED) pos = log->end_pos + 1; else div_u64_rem(new_pos, log->len_total, &pos); if (pos < log->len_total && put_user(zero, log->ubuf + pos)) log->ubuf = NULL; } static void bpf_vlog_reverse_kbuf(char *buf, int len) { int i, j; for (i = 0, j = len - 1; i < j; i++, j--) swap(buf[i], buf[j]); } static int bpf_vlog_reverse_ubuf(struct bpf_verifier_log *log, int start, int end) { /* we split log->kbuf into two equal parts for both ends of array */ int n = sizeof(log->kbuf) / 2, nn; char *lbuf = log->kbuf, *rbuf = log->kbuf + n; /* Read ubuf's section [start, end) two chunks at a time, from left * and right side; within each chunk, swap all the bytes; after that * reverse the order of lbuf and rbuf and write result back to ubuf. * This way we'll end up with swapped contents of specified * [start, end) ubuf segment. */ while (end - start > 1) { nn = min(n, (end - start ) / 2); if (copy_from_user(lbuf, log->ubuf + start, nn)) return -EFAULT; if (copy_from_user(rbuf, log->ubuf + end - nn, nn)) return -EFAULT; bpf_vlog_reverse_kbuf(lbuf, nn); bpf_vlog_reverse_kbuf(rbuf, nn); /* we write lbuf to the right end of ubuf, while rbuf to the * left one to end up with properly reversed overall ubuf */ if (copy_to_user(log->ubuf + start, rbuf, nn)) return -EFAULT; if (copy_to_user(log->ubuf + end - nn, lbuf, nn)) return -EFAULT; start += nn; end -= nn; } return 0; } int bpf_vlog_finalize(struct bpf_verifier_log *log, u32 *log_size_actual) { u32 sublen; int err; *log_size_actual = 0; if (!log || log->level == 0 || log->level == BPF_LOG_KERNEL) return 0; if (!log->ubuf) goto skip_log_rotate; /* If we never truncated log, there is nothing to move around. */ if (log->start_pos == 0) goto skip_log_rotate; /* Otherwise we need to rotate log contents to make it start from the * buffer beginning and be a continuous zero-terminated string. Note * that if log->start_pos != 0 then we definitely filled up entire log * buffer with no gaps, and we just need to shift buffer contents to * the left by (log->start_pos % log->len_total) bytes. * * Unfortunately, user buffer could be huge and we don't want to * allocate temporary kernel memory of the same size just to shift * contents in a straightforward fashion. Instead, we'll be clever and * do in-place array rotation. This is a leetcode-style problem, which * could be solved by three rotations. * * Let's say we have log buffer that has to be shifted left by 7 bytes * (spaces and vertical bar is just for demonstrative purposes): * E F G H I J K | A B C D * * First, we reverse entire array: * D C B A | K J I H G F E * * Then we rotate first 4 bytes (DCBA) and separately last 7 bytes * (KJIHGFE), resulting in a properly rotated array: * A B C D | E F G H I J K * * We'll utilize log->kbuf to read user memory chunk by chunk, swap * bytes, and write them back. Doing it byte-by-byte would be * unnecessarily inefficient. Altogether we are going to read and * write each byte twice, for total 4 memory copies between kernel and * user space. */ /* length of the chopped off part that will be the beginning; * len(ABCD) in the example above */ div_u64_rem(log->start_pos, log->len_total, &sublen); sublen = log->len_total - sublen; err = bpf_vlog_reverse_ubuf(log, 0, log->len_total); err = err ?: bpf_vlog_reverse_ubuf(log, 0, sublen); err = err ?: bpf_vlog_reverse_ubuf(log, sublen, log->len_total); if (err) log->ubuf = NULL; skip_log_rotate: *log_size_actual = log->len_max; /* properly initialized log has either both ubuf!=NULL and len_total>0 * or ubuf==NULL and len_total==0, so if this condition doesn't hold, * we got a fault somewhere along the way, so report it back */ if (!!log->ubuf != !!log->len_total) return -EFAULT; /* did truncation actually happen? */ if (log->ubuf && log->len_max > log->len_total) return -ENOSPC; return 0; } /* log_level controls verbosity level of eBPF verifier. * bpf_verifier_log_write() is used to dump the verification trace to the log, * so the user can figure out what's wrong with the program */ __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, const char *fmt, ...) { va_list args; if (!bpf_verifier_log_needed(&env->log)) return; va_start(args, fmt); bpf_verifier_vlog(&env->log, fmt, args); va_end(args); } EXPORT_SYMBOL_GPL(bpf_verifier_log_write); __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, const char *fmt, ...) { va_list args; if (!bpf_verifier_log_needed(log)) return; va_start(args, fmt); bpf_verifier_vlog(log, fmt, args); va_end(args); } EXPORT_SYMBOL_GPL(bpf_log); static const struct bpf_line_info * find_linfo(const struct bpf_verifier_env *env, u32 insn_off) { const struct bpf_line_info *linfo; const struct bpf_prog *prog; u32 nr_linfo; int l, r, m; prog = env->prog; nr_linfo = prog->aux->nr_linfo; if (!nr_linfo || insn_off >= prog->len) return NULL; linfo = prog->aux->linfo; /* Loop invariant: linfo[l].insn_off <= insns_off. * linfo[0].insn_off == 0 which always satisfies above condition. * Binary search is searching for rightmost linfo entry that satisfies * the above invariant, giving us the desired record that covers given * instruction offset. */ l = 0; r = nr_linfo - 1; while (l < r) { /* (r - l + 1) / 2 means we break a tie to the right, so if: * l=1, r=2, linfo[l].insn_off <= insn_off, linfo[r].insn_off > insn_off, * then m=2, we see that linfo[m].insn_off > insn_off, and so * r becomes 1 and we exit the loop with correct l==1. * If the tie was broken to the left, m=1 would end us up in * an endless loop where l and m stay at 1 and r stays at 2. */ m = l + (r - l + 1) / 2; if (linfo[m].insn_off <= insn_off) l = m; else r = m - 1; } return &linfo[l]; } static const char *ltrim(const char *s) { while (isspace(*s)) s++; return s; } __printf(3, 4) void verbose_linfo(struct bpf_verifier_env *env, u32 insn_off, const char *prefix_fmt, ...) { const struct bpf_line_info *linfo, *prev_linfo; const struct btf *btf; const char *s, *fname; if (!bpf_verifier_log_needed(&env->log)) return; prev_linfo = env->prev_linfo; linfo = find_linfo(env, insn_off); if (!linfo || linfo == prev_linfo) return; /* It often happens that two separate linfo records point to the same * source code line, but have differing column numbers. Given verifier * log doesn't emit column information, from user perspective we just * end up emitting the same source code line twice unnecessarily. * So instead check that previous and current linfo record point to * the same file (file_name_offs match) and the same line number, and * avoid emitting duplicated source code line in such case. */ if (prev_linfo && linfo->file_name_off == prev_linfo->file_name_off && BPF_LINE_INFO_LINE_NUM(linfo->line_col) == BPF_LINE_INFO_LINE_NUM(prev_linfo->line_col)) return; if (prefix_fmt) { va_list args; va_start(args, prefix_fmt); bpf_verifier_vlog(&env->log, prefix_fmt, args); va_end(args); } btf = env->prog->aux->btf; s = ltrim(btf_name_by_offset(btf, linfo->line_off)); verbose(env, "%s", s); /* source code line */ s = btf_name_by_offset(btf, linfo->file_name_off); /* leave only file name */ fname = strrchr(s, '/'); fname = fname ? fname + 1 : s; verbose(env, " @ %s:%u\n", fname, BPF_LINE_INFO_LINE_NUM(linfo->line_col)); env->prev_linfo = linfo; } static const char *btf_type_name(const struct btf *btf, u32 id) { return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); } /* string representation of 'enum bpf_reg_type' * * Note that reg_type_str() can not appear more than once in a single verbose() * statement. */ const char *reg_type_str(struct bpf_verifier_env *env, enum bpf_reg_type type) { char postfix[16] = {0}, prefix[64] = {0}; static const char * const str[] = { [NOT_INIT] = "?", [SCALAR_VALUE] = "scalar", [PTR_TO_CTX] = "ctx", [CONST_PTR_TO_MAP] = "map_ptr", [PTR_TO_MAP_VALUE] = "map_value", [PTR_TO_STACK] = "fp", [PTR_TO_PACKET] = "pkt", [PTR_TO_PACKET_META] = "pkt_meta", [PTR_TO_PACKET_END] = "pkt_end", [PTR_TO_FLOW_KEYS] = "flow_keys", [PTR_TO_SOCKET] = "sock", [PTR_TO_SOCK_COMMON] = "sock_common", [PTR_TO_TCP_SOCK] = "tcp_sock", [PTR_TO_TP_BUFFER] = "tp_buffer", [PTR_TO_XDP_SOCK] = "xdp_sock", [PTR_TO_BTF_ID] = "ptr_", [PTR_TO_MEM] = "mem", [PTR_TO_ARENA] = "arena", [PTR_TO_BUF] = "buf", [PTR_TO_FUNC] = "func", [PTR_TO_MAP_KEY] = "map_key", [CONST_PTR_TO_DYNPTR] = "dynptr_ptr", }; if (type & PTR_MAYBE_NULL) { if (base_type(type) == PTR_TO_BTF_ID) strscpy(postfix, "or_null_"); else strscpy(postfix, "_or_null"); } snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s", type & MEM_RDONLY ? "rdonly_" : "", type & MEM_RINGBUF ? "ringbuf_" : "", type & MEM_USER ? "user_" : "", type & MEM_PERCPU ? "percpu_" : "", type & MEM_RCU ? "rcu_" : "", type & PTR_UNTRUSTED ? "untrusted_" : "", type & PTR_TRUSTED ? "trusted_" : "" ); snprintf(env->tmp_str_buf, TMP_STR_BUF_LEN, "%s%s%s", prefix, str[base_type(type)], postfix); return env->tmp_str_buf; } const char *dynptr_type_str(enum bpf_dynptr_type type) { switch (type) { case BPF_DYNPTR_TYPE_LOCAL: return "local"; case BPF_DYNPTR_TYPE_RINGBUF: return "ringbuf"; case BPF_DYNPTR_TYPE_SKB: return "skb"; case BPF_DYNPTR_TYPE_XDP: return "xdp"; case BPF_DYNPTR_TYPE_INVALID: return "<invalid>"; default: WARN_ONCE(1, "unknown dynptr type %d\n", type); return "<unknown>"; } } const char *iter_type_str(const struct btf *btf, u32 btf_id) { if (!btf || btf_id == 0) return "<invalid>"; /* we already validated that type is valid and has conforming name */ return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1; } const char *iter_state_str(enum bpf_iter_state state) { switch (state) { case BPF_ITER_STATE_ACTIVE: return "active"; case BPF_ITER_STATE_DRAINED: return "drained"; case BPF_ITER_STATE_INVALID: return "<invalid>"; default: WARN_ONCE(1, "unknown iter state %d\n", state); return "<unknown>"; } } static char slot_type_char[] = { [STACK_INVALID] = '?', [STACK_SPILL] = 'r', [STACK_MISC] = 'm', [STACK_ZERO] = '0', [STACK_DYNPTR] = 'd', [STACK_ITER] = 'i', }; static void print_liveness(struct bpf_verifier_env *env, enum bpf_reg_liveness live) { if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) verbose(env, "_"); if (live & REG_LIVE_READ) verbose(env, "r"); if (live & REG_LIVE_WRITTEN) verbose(env, "w"); if (live & REG_LIVE_DONE) verbose(env, "D"); } #define UNUM_MAX_DECIMAL U16_MAX #define SNUM_MAX_DECIMAL S16_MAX #define SNUM_MIN_DECIMAL S16_MIN static bool is_unum_decimal(u64 num) { return num <= UNUM_MAX_DECIMAL; } static bool is_snum_decimal(s64 num) { return num >= SNUM_MIN_DECIMAL && num <= SNUM_MAX_DECIMAL; } static void verbose_unum(struct bpf_verifier_env *env, u64 num) { if (is_unum_decimal(num)) verbose(env, "%llu", num); else verbose(env, "%#llx", num); } static void verbose_snum(struct bpf_verifier_env *env, s64 num) { if (is_snum_decimal(num)) verbose(env, "%lld", num); else verbose(env, "%#llx", num); } int tnum_strn(char *str, size_t size, struct tnum a) { /* print as a constant, if tnum is fully known */ if (a.mask == 0) { if (is_unum_decimal(a.value)) return snprintf(str, size, "%llu", a.value); else return snprintf(str, size, "%#llx", a.value); } return snprintf(str, size, "(%#llx; %#llx)", a.value, a.mask); } EXPORT_SYMBOL_GPL(tnum_strn); static void print_scalar_ranges(struct bpf_verifier_env *env, const struct bpf_reg_state *reg, const char **sep) { /* For signed ranges, we want to unify 64-bit and 32-bit values in the * output as much as possible, but there is a bit of a complication. * If we choose to print values as decimals, this is natural to do, * because negative 64-bit and 32-bit values >= -S32_MIN have the same * representation due to sign extension. But if we choose to print * them in hex format (see is_snum_decimal()), then sign extension is * misleading. * E.g., smin=-2 and smin32=-2 are exactly the same in decimal, but in * hex they will be smin=0xfffffffffffffffe and smin32=0xfffffffe, two * very different numbers. * So we avoid sign extension if we choose to print values in hex. */ struct { const char *name; u64 val; bool omit; } minmaxs[] = { {"smin", reg->smin_value, reg->smin_value == S64_MIN}, {"smax", reg->smax_value, reg->smax_value == S64_MAX}, {"umin", reg->umin_value, reg->umin_value == 0}, {"umax", reg->umax_value, reg->umax_value == U64_MAX}, {"smin32", is_snum_decimal((s64)reg->s32_min_value) ? (s64)reg->s32_min_value : (u32)reg->s32_min_value, reg->s32_min_value == S32_MIN}, {"smax32", is_snum_decimal((s64)reg->s32_max_value) ? (s64)reg->s32_max_value : (u32)reg->s32_max_value, reg->s32_max_value == S32_MAX}, {"umin32", reg->u32_min_value, reg->u32_min_value == 0}, {"umax32", reg->u32_max_value, reg->u32_max_value == U32_MAX}, }, *m1, *m2, *mend = &minmaxs[ARRAY_SIZE(minmaxs)]; bool neg1, neg2; for (m1 = &minmaxs[0]; m1 < mend; m1++) { if (m1->omit) continue; neg1 = m1->name[0] == 's' && (s64)m1->val < 0; verbose(env, "%s%s=", *sep, m1->name); *sep = ","; for (m2 = m1 + 2; m2 < mend; m2 += 2) { if (m2->omit || m2->val != m1->val) continue; /* don't mix negatives with positives */ neg2 = m2->name[0] == 's' && (s64)m2->val < 0; if (neg2 != neg1) continue; m2->omit = true; verbose(env, "%s=", m2->name); } if (m1->name[0] == 's') verbose_snum(env, m1->val); else verbose_unum(env, m1->val); } } static bool type_is_map_ptr(enum bpf_reg_type t) { switch (base_type(t)) { case CONST_PTR_TO_MAP: case PTR_TO_MAP_KEY: case PTR_TO_MAP_VALUE: return true; default: return false; } } /* * _a stands for append, was shortened to avoid multiline statements below. * This macro is used to output a comma separated list of attributes. */ #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, ##__VA_ARGS__); sep = ","; }) static void print_reg_state(struct bpf_verifier_env *env, const struct bpf_func_state *state, const struct bpf_reg_state *reg) { enum bpf_reg_type t; const char *sep = ""; t = reg->type; if (t == SCALAR_VALUE && reg->precise) verbose(env, "P"); if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) { verbose_snum(env, reg->var_off.value); return; } verbose(env, "%s", reg_type_str(env, t)); if (t == PTR_TO_ARENA) return; if (t == PTR_TO_STACK) { if (state->frameno != reg->frameno) verbose(env, "[%d]", reg->frameno); if (tnum_is_const(reg->var_off)) { verbose_snum(env, reg->var_off.value + reg->off); return; } } if (base_type(t) == PTR_TO_BTF_ID) verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id)); verbose(env, "("); if (reg->id) verbose_a("id=%d", reg->id & ~BPF_ADD_CONST); if (reg->id & BPF_ADD_CONST) verbose(env, "%+d", reg->off); if (reg->ref_obj_id) verbose_a("ref_obj_id=%d", reg->ref_obj_id); if (type_is_non_owning_ref(reg->type)) verbose_a("%s", "non_own_ref"); if (type_is_map_ptr(t)) { if (reg->map_ptr->name[0]) verbose_a("map=%s", reg->map_ptr->name); verbose_a("ks=%d,vs=%d", reg->map_ptr->key_size, reg->map_ptr->value_size); } if (t != SCALAR_VALUE && reg->off) { verbose_a("off="); verbose_snum(env, reg->off); } if (type_is_pkt_pointer(t)) { verbose_a("r="); verbose_unum(env, reg->range); } if (base_type(t) == PTR_TO_MEM) { verbose_a("sz="); verbose_unum(env, reg->mem_size); } if (t == CONST_PTR_TO_DYNPTR) verbose_a("type=%s", dynptr_type_str(reg->dynptr.type)); if (tnum_is_const(reg->var_off)) { /* a pointer register with fixed offset */ if (reg->var_off.value) { verbose_a("imm="); verbose_snum(env, reg->var_off.value); } } else { print_scalar_ranges(env, reg, &sep); if (!tnum_is_unknown(reg->var_off)) { char tn_buf[48]; tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); verbose_a("var_off=%s", tn_buf); } } verbose(env, ")"); } void print_verifier_state(struct bpf_verifier_env *env, const struct bpf_func_state *state, bool print_all) { const struct bpf_reg_state *reg; int i; if (state->frameno) verbose(env, " frame%d:", state->frameno); for (i = 0; i < MAX_BPF_REG; i++) { reg = &state->regs[i]; if (reg->type == NOT_INIT) continue; if (!print_all && !reg_scratched(env, i)) continue; verbose(env, " R%d", i); print_liveness(env, reg->live); verbose(env, "="); print_reg_state(env, state, reg); } for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { char types_buf[BPF_REG_SIZE + 1]; const char *sep = ""; bool valid = false; u8 slot_type; int j; if (!print_all && !stack_slot_scratched(env, i)) continue; for (j = 0; j < BPF_REG_SIZE; j++) { slot_type = state->stack[i].slot_type[j]; if (slot_type != STACK_INVALID) valid = true; types_buf[j] = slot_type_char[slot_type]; } types_buf[BPF_REG_SIZE] = 0; if (!valid) continue; reg = &state->stack[i].spilled_ptr; switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) { case STACK_SPILL: /* print MISC/ZERO/INVALID slots above subreg spill */ for (j = 0; j < BPF_REG_SIZE; j++) if (state->stack[i].slot_type[j] == STACK_SPILL) break; types_buf[j] = '\0'; verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); print_liveness(env, reg->live); verbose(env, "=%s", types_buf); print_reg_state(env, state, reg); break; case STACK_DYNPTR: /* skip to main dynptr slot */ i += BPF_DYNPTR_NR_SLOTS - 1; reg = &state->stack[i].spilled_ptr; verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); print_liveness(env, reg->live); verbose(env, "=dynptr_%s(", dynptr_type_str(reg->dynptr.type)); if (reg->id) verbose_a("id=%d", reg->id); if (reg->ref_obj_id) verbose_a("ref_id=%d", reg->ref_obj_id); if (reg->dynptr_id) verbose_a("dynptr_id=%d", reg->dynptr_id); verbose(env, ")"); break; case STACK_ITER: /* only main slot has ref_obj_id set; skip others */ if (!reg->ref_obj_id) continue; verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); print_liveness(env, reg->live); verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)", iter_type_str(reg->iter.btf, reg->iter.btf_id), reg->ref_obj_id, iter_state_str(reg->iter.state), reg->iter.depth); break; case STACK_MISC: case STACK_ZERO: default: verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); print_liveness(env, reg->live); verbose(env, "=%s", types_buf); break; } } if (state->acquired_refs && state->refs[0].id) { verbose(env, " refs=%d", state->refs[0].id); for (i = 1; i < state->acquired_refs; i++) if (state->refs[i].id) verbose(env, ",%d", state->refs[i].id); } if (state->in_callback_fn) verbose(env, " cb"); if (state->in_async_callback_fn) verbose(env, " async_cb"); verbose(env, "\n"); if (!print_all) mark_verifier_state_clean(env); } static inline u32 vlog_alignment(u32 pos) { return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT), BPF_LOG_MIN_ALIGNMENT) - pos - 1; } void print_insn_state(struct bpf_verifier_env *env, const struct bpf_func_state *state) { if (env->prev_log_pos && env->prev_log_pos == env->log.end_pos) { /* remove new line character */ bpf_vlog_reset(&env->log, env->prev_log_pos - 1); verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_pos), ' '); } else { verbose(env, "%d:", env->insn_idx); } print_verifier_state(env, state, false); }