// SPDX-License-Identifier: GPL-2.0-only /* * kernel/sched/debug.c * * Print the CFS rbtree and other debugging details * * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar */ /* * This allows printing both to /sys/kernel/debug/sched/debug and * to the console */ #define SEQ_printf(m, x...) \ do { \ if (m) \ seq_printf(m, x); \ else \ pr_cont(x); \ } while (0) /* * Ease the printing of nsec fields: */ static long long nsec_high(unsigned long long nsec) { if ((long long)nsec < 0) { nsec = -nsec; do_div(nsec, 1000000); return -nsec; } do_div(nsec, 1000000); return nsec; } static unsigned long nsec_low(unsigned long long nsec) { if ((long long)nsec < 0) nsec = -nsec; return do_div(nsec, 1000000); } #define SPLIT_NS(x) nsec_high(x), nsec_low(x) #define SCHED_FEAT(name, enabled) \ #name , static const char * const sched_feat_names[] = { #include "features.h" }; #undef SCHED_FEAT static int sched_feat_show(struct seq_file *m, void *v) { int i; for (i = 0; i < __SCHED_FEAT_NR; i++) { if (!(sysctl_sched_features & (1UL << i))) seq_puts(m, "NO_"); seq_printf(m, "%s ", sched_feat_names[i]); } seq_puts(m, "\n"); return 0; } #ifdef CONFIG_JUMP_LABEL #define jump_label_key__true STATIC_KEY_INIT_TRUE #define jump_label_key__false STATIC_KEY_INIT_FALSE #define SCHED_FEAT(name, enabled) \ jump_label_key__##enabled , struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { #include "features.h" }; #undef SCHED_FEAT static void sched_feat_disable(int i) { static_key_disable_cpuslocked(&sched_feat_keys[i]); } static void sched_feat_enable(int i) { static_key_enable_cpuslocked(&sched_feat_keys[i]); } #else static void sched_feat_disable(int i) { }; static void sched_feat_enable(int i) { }; #endif /* CONFIG_JUMP_LABEL */ static int sched_feat_set(char *cmp) { int i; int neg = 0; if (strncmp(cmp, "NO_", 3) == 0) { neg = 1; cmp += 3; } i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp); if (i < 0) return i; if (neg) { sysctl_sched_features &= ~(1UL << i); sched_feat_disable(i); } else { sysctl_sched_features |= (1UL << i); sched_feat_enable(i); } return 0; } static ssize_t sched_feat_write(struct file *filp, const char __user *ubuf, size_t cnt, loff_t *ppos) { char buf[64]; char *cmp; int ret; struct inode *inode; if (cnt > 63) cnt = 63; if (copy_from_user(&buf, ubuf, cnt)) return -EFAULT; buf[cnt] = 0; cmp = strstrip(buf); /* Ensure the static_key remains in a consistent state */ inode = file_inode(filp); cpus_read_lock(); inode_lock(inode); ret = sched_feat_set(cmp); inode_unlock(inode); cpus_read_unlock(); if (ret < 0) return ret; *ppos += cnt; return cnt; } static int sched_feat_open(struct inode *inode, struct file *filp) { return single_open(filp, sched_feat_show, NULL); } static const struct file_operations sched_feat_fops = { .open = sched_feat_open, .write = sched_feat_write, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; #ifdef CONFIG_SMP static ssize_t sched_scaling_write(struct file *filp, const char __user *ubuf, size_t cnt, loff_t *ppos) { char buf[16]; unsigned int scaling; if (cnt > 15) cnt = 15; if (copy_from_user(&buf, ubuf, cnt)) return -EFAULT; buf[cnt] = '\0'; if (kstrtouint(buf, 10, &scaling)) return -EINVAL; if (scaling >= SCHED_TUNABLESCALING_END) return -EINVAL; sysctl_sched_tunable_scaling = scaling; if (sched_update_scaling()) return -EINVAL; *ppos += cnt; return cnt; } static int sched_scaling_show(struct seq_file *m, void *v) { seq_printf(m, "%d\n", sysctl_sched_tunable_scaling); return 0; } static int sched_scaling_open(struct inode *inode, struct file *filp) { return single_open(filp, sched_scaling_show, NULL); } static const struct file_operations sched_scaling_fops = { .open = sched_scaling_open, .write = sched_scaling_write, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; #endif /* SMP */ #ifdef CONFIG_PREEMPT_DYNAMIC static ssize_t sched_dynamic_write(struct file *filp, const char __user *ubuf, size_t cnt, loff_t *ppos) { char buf[16]; int mode; if (cnt > 15) cnt = 15; if (copy_from_user(&buf, ubuf, cnt)) return -EFAULT; buf[cnt] = 0; mode = sched_dynamic_mode(strstrip(buf)); if (mode < 0) return mode; sched_dynamic_update(mode); *ppos += cnt; return cnt; } static int sched_dynamic_show(struct seq_file *m, void *v) { static const char * preempt_modes[] = { "none", "voluntary", "full", "lazy", }; int j = ARRAY_SIZE(preempt_modes) - !IS_ENABLED(CONFIG_ARCH_HAS_PREEMPT_LAZY); int i = IS_ENABLED(CONFIG_PREEMPT_RT) * 2; for (; i < j; i++) { if (preempt_dynamic_mode == i) seq_puts(m, "("); seq_puts(m, preempt_modes[i]); if (preempt_dynamic_mode == i) seq_puts(m, ")"); seq_puts(m, " "); } seq_puts(m, "\n"); return 0; } static int sched_dynamic_open(struct inode *inode, struct file *filp) { return single_open(filp, sched_dynamic_show, NULL); } static const struct file_operations sched_dynamic_fops = { .open = sched_dynamic_open, .write = sched_dynamic_write, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; #endif /* CONFIG_PREEMPT_DYNAMIC */ __read_mostly bool sched_debug_verbose; #ifdef CONFIG_SMP static struct dentry *sd_dentry; static ssize_t sched_verbose_write(struct file *filp, const char __user *ubuf, size_t cnt, loff_t *ppos) { ssize_t result; bool orig; cpus_read_lock(); mutex_lock(&sched_domains_mutex); orig = sched_debug_verbose; result = debugfs_write_file_bool(filp, ubuf, cnt, ppos); if (sched_debug_verbose && !orig) update_sched_domain_debugfs(); else if (!sched_debug_verbose && orig) { debugfs_remove(sd_dentry); sd_dentry = NULL; } mutex_unlock(&sched_domains_mutex); cpus_read_unlock(); return result; } #else #define sched_verbose_write debugfs_write_file_bool #endif static const struct file_operations sched_verbose_fops = { .read = debugfs_read_file_bool, .write = sched_verbose_write, .open = simple_open, .llseek = default_llseek, }; static const struct seq_operations sched_debug_sops; static int sched_debug_open(struct inode *inode, struct file *filp) { return seq_open(filp, &sched_debug_sops); } static const struct file_operations sched_debug_fops = { .open = sched_debug_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, }; enum dl_param { DL_RUNTIME = 0, DL_PERIOD, }; static unsigned long fair_server_period_max = (1UL << 22) * NSEC_PER_USEC; /* ~4 seconds */ static unsigned long fair_server_period_min = (100) * NSEC_PER_USEC; /* 100 us */ static ssize_t sched_fair_server_write(struct file *filp, const char __user *ubuf, size_t cnt, loff_t *ppos, enum dl_param param) { long cpu = (long) ((struct seq_file *) filp->private_data)->private; struct rq *rq = cpu_rq(cpu); u64 runtime, period; size_t err; int retval; u64 value; err = kstrtoull_from_user(ubuf, cnt, 10, &value); if (err) return err; scoped_guard (rq_lock_irqsave, rq) { runtime = rq->fair_server.dl_runtime; period = rq->fair_server.dl_period; switch (param) { case DL_RUNTIME: if (runtime == value) break; runtime = value; break; case DL_PERIOD: if (value == period) break; period = value; break; } if (runtime > period || period > fair_server_period_max || period < fair_server_period_min) { return -EINVAL; } if (rq->cfs.h_nr_running) { update_rq_clock(rq); dl_server_stop(&rq->fair_server); } retval = dl_server_apply_params(&rq->fair_server, runtime, period, 0); if (retval) cnt = retval; if (!runtime) printk_deferred("Fair server disabled in CPU %d, system may crash due to starvation.\n", cpu_of(rq)); if (rq->cfs.h_nr_running) dl_server_start(&rq->fair_server); } *ppos += cnt; return cnt; } static size_t sched_fair_server_show(struct seq_file *m, void *v, enum dl_param param) { unsigned long cpu = (unsigned long) m->private; struct rq *rq = cpu_rq(cpu); u64 value; switch (param) { case DL_RUNTIME: value = rq->fair_server.dl_runtime; break; case DL_PERIOD: value = rq->fair_server.dl_period; break; } seq_printf(m, "%llu\n", value); return 0; } static ssize_t sched_fair_server_runtime_write(struct file *filp, const char __user *ubuf, size_t cnt, loff_t *ppos) { return sched_fair_server_write(filp, ubuf, cnt, ppos, DL_RUNTIME); } static int sched_fair_server_runtime_show(struct seq_file *m, void *v) { return sched_fair_server_show(m, v, DL_RUNTIME); } static int sched_fair_server_runtime_open(struct inode *inode, struct file *filp) { return single_open(filp, sched_fair_server_runtime_show, inode->i_private); } static const struct file_operations fair_server_runtime_fops = { .open = sched_fair_server_runtime_open, .write = sched_fair_server_runtime_write, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static ssize_t sched_fair_server_period_write(struct file *filp, const char __user *ubuf, size_t cnt, loff_t *ppos) { return sched_fair_server_write(filp, ubuf, cnt, ppos, DL_PERIOD); } static int sched_fair_server_period_show(struct seq_file *m, void *v) { return sched_fair_server_show(m, v, DL_PERIOD); } static int sched_fair_server_period_open(struct inode *inode, struct file *filp) { return single_open(filp, sched_fair_server_period_show, inode->i_private); } static const struct file_operations fair_server_period_fops = { .open = sched_fair_server_period_open, .write = sched_fair_server_period_write, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static struct dentry *debugfs_sched; static void debugfs_fair_server_init(void) { struct dentry *d_fair; unsigned long cpu; d_fair = debugfs_create_dir("fair_server", debugfs_sched); if (!d_fair) return; for_each_possible_cpu(cpu) { struct dentry *d_cpu; char buf[32]; snprintf(buf, sizeof(buf), "cpu%lu", cpu); d_cpu = debugfs_create_dir(buf, d_fair); debugfs_create_file("runtime", 0644, d_cpu, (void *) cpu, &fair_server_runtime_fops); debugfs_create_file("period", 0644, d_cpu, (void *) cpu, &fair_server_period_fops); } } static __init int sched_init_debug(void) { struct dentry __maybe_unused *numa; debugfs_sched = debugfs_create_dir("sched", NULL); debugfs_create_file("features", 0644, debugfs_sched, NULL, &sched_feat_fops); debugfs_create_file_unsafe("verbose", 0644, debugfs_sched, &sched_debug_verbose, &sched_verbose_fops); #ifdef CONFIG_PREEMPT_DYNAMIC debugfs_create_file("preempt", 0644, debugfs_sched, NULL, &sched_dynamic_fops); #endif debugfs_create_u32("base_slice_ns", 0644, debugfs_sched, &sysctl_sched_base_slice); debugfs_create_u32("latency_warn_ms", 0644, debugfs_sched, &sysctl_resched_latency_warn_ms); debugfs_create_u32("latency_warn_once", 0644, debugfs_sched, &sysctl_resched_latency_warn_once); #ifdef CONFIG_SMP debugfs_create_file("tunable_scaling", 0644, debugfs_sched, NULL, &sched_scaling_fops); debugfs_create_u32("migration_cost_ns", 0644, debugfs_sched, &sysctl_sched_migration_cost); debugfs_create_u32("nr_migrate", 0644, debugfs_sched, &sysctl_sched_nr_migrate); mutex_lock(&sched_domains_mutex); update_sched_domain_debugfs(); mutex_unlock(&sched_domains_mutex); #endif #ifdef CONFIG_NUMA_BALANCING numa = debugfs_create_dir("numa_balancing", debugfs_sched); debugfs_create_u32("scan_delay_ms", 0644, numa, &sysctl_numa_balancing_scan_delay); debugfs_create_u32("scan_period_min_ms", 0644, numa, &sysctl_numa_balancing_scan_period_min); debugfs_create_u32("scan_period_max_ms", 0644, numa, &sysctl_numa_balancing_scan_period_max); debugfs_create_u32("scan_size_mb", 0644, numa, &sysctl_numa_balancing_scan_size); debugfs_create_u32("hot_threshold_ms", 0644, numa, &sysctl_numa_balancing_hot_threshold); #endif debugfs_create_file("debug", 0444, debugfs_sched, NULL, &sched_debug_fops); debugfs_fair_server_init(); return 0; } late_initcall(sched_init_debug); #ifdef CONFIG_SMP static cpumask_var_t sd_sysctl_cpus; static int sd_flags_show(struct seq_file *m, void *v) { unsigned long flags = *(unsigned int *)m->private; int idx; for_each_set_bit(idx, &flags, __SD_FLAG_CNT) { seq_puts(m, sd_flag_debug[idx].name); seq_puts(m, " "); } seq_puts(m, "\n"); return 0; } static int sd_flags_open(struct inode *inode, struct file *file) { return single_open(file, sd_flags_show, inode->i_private); } static const struct file_operations sd_flags_fops = { .open = sd_flags_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static void register_sd(struct sched_domain *sd, struct dentry *parent) { #define SDM(type, mode, member) \ debugfs_create_##type(#member, mode, parent, &sd->member) SDM(ulong, 0644, min_interval); SDM(ulong, 0644, max_interval); SDM(u64, 0644, max_newidle_lb_cost); SDM(u32, 0644, busy_factor); SDM(u32, 0644, imbalance_pct); SDM(u32, 0644, cache_nice_tries); SDM(str, 0444, name); #undef SDM debugfs_create_file("flags", 0444, parent, &sd->flags, &sd_flags_fops); debugfs_create_file("groups_flags", 0444, parent, &sd->groups->flags, &sd_flags_fops); debugfs_create_u32("level", 0444, parent, (u32 *)&sd->level); } void update_sched_domain_debugfs(void) { int cpu, i; /* * This can unfortunately be invoked before sched_debug_init() creates * the debug directory. Don't touch sd_sysctl_cpus until then. */ if (!debugfs_sched) return; if (!sched_debug_verbose) return; if (!cpumask_available(sd_sysctl_cpus)) { if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL)) return; cpumask_copy(sd_sysctl_cpus, cpu_possible_mask); } if (!sd_dentry) { sd_dentry = debugfs_create_dir("domains", debugfs_sched); /* rebuild sd_sysctl_cpus if empty since it gets cleared below */ if (cpumask_empty(sd_sysctl_cpus)) cpumask_copy(sd_sysctl_cpus, cpu_online_mask); } for_each_cpu(cpu, sd_sysctl_cpus) { struct sched_domain *sd; struct dentry *d_cpu; char buf[32]; snprintf(buf, sizeof(buf), "cpu%d", cpu); debugfs_lookup_and_remove(buf, sd_dentry); d_cpu = debugfs_create_dir(buf, sd_dentry); i = 0; for_each_domain(cpu, sd) { struct dentry *d_sd; snprintf(buf, sizeof(buf), "domain%d", i); d_sd = debugfs_create_dir(buf, d_cpu); register_sd(sd, d_sd); i++; } __cpumask_clear_cpu(cpu, sd_sysctl_cpus); } } void dirty_sched_domain_sysctl(int cpu) { if (cpumask_available(sd_sysctl_cpus)) __cpumask_set_cpu(cpu, sd_sysctl_cpus); } #endif /* CONFIG_SMP */ #ifdef CONFIG_FAIR_GROUP_SCHED static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg) { struct sched_entity *se = tg->se[cpu]; #define P(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F) #define P_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld\n", \ #F, (long long)schedstat_val(stats->F)) #define PN(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F)) #define PN_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", \ #F, SPLIT_NS((long long)schedstat_val(stats->F))) if (!se) return; PN(se->exec_start); PN(se->vruntime); PN(se->sum_exec_runtime); if (schedstat_enabled()) { struct sched_statistics *stats; stats = __schedstats_from_se(se); PN_SCHEDSTAT(wait_start); PN_SCHEDSTAT(sleep_start); PN_SCHEDSTAT(block_start); PN_SCHEDSTAT(sleep_max); PN_SCHEDSTAT(block_max); PN_SCHEDSTAT(exec_max); PN_SCHEDSTAT(slice_max); PN_SCHEDSTAT(wait_max); PN_SCHEDSTAT(wait_sum); P_SCHEDSTAT(wait_count); } P(se->load.weight); #ifdef CONFIG_SMP P(se->avg.load_avg); P(se->avg.util_avg); P(se->avg.runnable_avg); #endif #undef PN_SCHEDSTAT #undef PN #undef P_SCHEDSTAT #undef P } #endif #ifdef CONFIG_CGROUP_SCHED static DEFINE_SPINLOCK(sched_debug_lock); static char group_path[PATH_MAX]; static void task_group_path(struct task_group *tg, char *path, int plen) { if (autogroup_path(tg, path, plen)) return; cgroup_path(tg->css.cgroup, path, plen); } /* * Only 1 SEQ_printf_task_group_path() caller can use the full length * group_path[] for cgroup path. Other simultaneous callers will have * to use a shorter stack buffer. A "..." suffix is appended at the end * of the stack buffer so that it will show up in case the output length * matches the given buffer size to indicate possible path name truncation. */ #define SEQ_printf_task_group_path(m, tg, fmt...) \ { \ if (spin_trylock(&sched_debug_lock)) { \ task_group_path(tg, group_path, sizeof(group_path)); \ SEQ_printf(m, fmt, group_path); \ spin_unlock(&sched_debug_lock); \ } else { \ char buf[128]; \ char *bufend = buf + sizeof(buf) - 3; \ task_group_path(tg, buf, bufend - buf); \ strcpy(bufend - 1, "..."); \ SEQ_printf(m, fmt, buf); \ } \ } #endif static void print_task(struct seq_file *m, struct rq *rq, struct task_struct *p) { if (task_current(rq, p)) SEQ_printf(m, ">R"); else SEQ_printf(m, " %c", task_state_to_char(p)); SEQ_printf(m, " %15s %5d %9Ld.%06ld %c %9Ld.%06ld %c %9Ld.%06ld %9Ld.%06ld %9Ld %5d ", p->comm, task_pid_nr(p), SPLIT_NS(p->se.vruntime), entity_eligible(cfs_rq_of(&p->se), &p->se) ? 'E' : 'N', SPLIT_NS(p->se.deadline), p->se.custom_slice ? 'S' : ' ', SPLIT_NS(p->se.slice), SPLIT_NS(p->se.sum_exec_runtime), (long long)(p->nvcsw + p->nivcsw), p->prio); SEQ_printf(m, "%9lld.%06ld %9lld.%06ld %9lld.%06ld", SPLIT_NS(schedstat_val_or_zero(p->stats.wait_sum)), SPLIT_NS(schedstat_val_or_zero(p->stats.sum_sleep_runtime)), SPLIT_NS(schedstat_val_or_zero(p->stats.sum_block_runtime))); #ifdef CONFIG_NUMA_BALANCING SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p)); #endif #ifdef CONFIG_CGROUP_SCHED SEQ_printf_task_group_path(m, task_group(p), " %s") #endif SEQ_printf(m, "\n"); } static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu) { struct task_struct *g, *p; SEQ_printf(m, "\n"); SEQ_printf(m, "runnable tasks:\n"); SEQ_printf(m, " S task PID vruntime eligible " "deadline slice sum-exec switches " "prio wait-time sum-sleep sum-block" #ifdef CONFIG_NUMA_BALANCING " node group-id" #endif #ifdef CONFIG_CGROUP_SCHED " group-path" #endif "\n"); SEQ_printf(m, "-------------------------------------------------------" "------------------------------------------------------" "------------------------------------------------------" #ifdef CONFIG_NUMA_BALANCING "--------------" #endif #ifdef CONFIG_CGROUP_SCHED "--------------" #endif "\n"); rcu_read_lock(); for_each_process_thread(g, p) { if (task_cpu(p) != rq_cpu) continue; print_task(m, rq, p); } rcu_read_unlock(); } void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) { s64 left_vruntime = -1, min_vruntime, right_vruntime = -1, left_deadline = -1, spread; struct sched_entity *last, *first, *root; struct rq *rq = cpu_rq(cpu); unsigned long flags; #ifdef CONFIG_FAIR_GROUP_SCHED SEQ_printf(m, "\n"); SEQ_printf_task_group_path(m, cfs_rq->tg, "cfs_rq[%d]:%s\n", cpu); #else SEQ_printf(m, "\n"); SEQ_printf(m, "cfs_rq[%d]:\n", cpu); #endif raw_spin_rq_lock_irqsave(rq, flags); root = __pick_root_entity(cfs_rq); if (root) left_vruntime = root->min_vruntime; first = __pick_first_entity(cfs_rq); if (first) left_deadline = first->deadline; last = __pick_last_entity(cfs_rq); if (last) right_vruntime = last->vruntime; min_vruntime = cfs_rq->min_vruntime; raw_spin_rq_unlock_irqrestore(rq, flags); SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "left_deadline", SPLIT_NS(left_deadline)); SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "left_vruntime", SPLIT_NS(left_vruntime)); SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime", SPLIT_NS(min_vruntime)); SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "avg_vruntime", SPLIT_NS(avg_vruntime(cfs_rq))); SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "right_vruntime", SPLIT_NS(right_vruntime)); spread = right_vruntime - left_vruntime; SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread", SPLIT_NS(spread)); SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running); SEQ_printf(m, " .%-30s: %d\n", "h_nr_running", cfs_rq->h_nr_running); SEQ_printf(m, " .%-30s: %d\n", "h_nr_delayed", cfs_rq->h_nr_delayed); SEQ_printf(m, " .%-30s: %d\n", "idle_nr_running", cfs_rq->idle_nr_running); SEQ_printf(m, " .%-30s: %d\n", "idle_h_nr_running", cfs_rq->idle_h_nr_running); SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight); #ifdef CONFIG_SMP SEQ_printf(m, " .%-30s: %lu\n", "load_avg", cfs_rq->avg.load_avg); SEQ_printf(m, " .%-30s: %lu\n", "runnable_avg", cfs_rq->avg.runnable_avg); SEQ_printf(m, " .%-30s: %lu\n", "util_avg", cfs_rq->avg.util_avg); SEQ_printf(m, " .%-30s: %u\n", "util_est", cfs_rq->avg.util_est); SEQ_printf(m, " .%-30s: %ld\n", "removed.load_avg", cfs_rq->removed.load_avg); SEQ_printf(m, " .%-30s: %ld\n", "removed.util_avg", cfs_rq->removed.util_avg); SEQ_printf(m, " .%-30s: %ld\n", "removed.runnable_avg", cfs_rq->removed.runnable_avg); #ifdef CONFIG_FAIR_GROUP_SCHED SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib", cfs_rq->tg_load_avg_contrib); SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg", atomic_long_read(&cfs_rq->tg->load_avg)); #endif #endif #ifdef CONFIG_CFS_BANDWIDTH SEQ_printf(m, " .%-30s: %d\n", "throttled", cfs_rq->throttled); SEQ_printf(m, " .%-30s: %d\n", "throttle_count", cfs_rq->throttle_count); #endif #ifdef CONFIG_FAIR_GROUP_SCHED print_cfs_group_stats(m, cpu, cfs_rq->tg); #endif } void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq) { #ifdef CONFIG_RT_GROUP_SCHED SEQ_printf(m, "\n"); SEQ_printf_task_group_path(m, rt_rq->tg, "rt_rq[%d]:%s\n", cpu); #else SEQ_printf(m, "\n"); SEQ_printf(m, "rt_rq[%d]:\n", cpu); #endif #define P(x) \ SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x)) #define PU(x) \ SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x)) #define PN(x) \ SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x)) PU(rt_nr_running); #ifdef CONFIG_RT_GROUP_SCHED P(rt_throttled); PN(rt_time); PN(rt_runtime); #endif #undef PN #undef PU #undef P } void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq) { struct dl_bw *dl_bw; SEQ_printf(m, "\n"); SEQ_printf(m, "dl_rq[%d]:\n", cpu); #define PU(x) \ SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x)) PU(dl_nr_running); #ifdef CONFIG_SMP dl_bw = &cpu_rq(cpu)->rd->dl_bw; #else dl_bw = &dl_rq->dl_bw; #endif SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw); SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw); #undef PU } static void print_cpu(struct seq_file *m, int cpu) { struct rq *rq = cpu_rq(cpu); #ifdef CONFIG_X86 { unsigned int freq = cpu_khz ? : 1; SEQ_printf(m, "cpu#%d, %u.%03u MHz\n", cpu, freq / 1000, (freq % 1000)); } #else SEQ_printf(m, "cpu#%d\n", cpu); #endif #define P(x) \ do { \ if (sizeof(rq->x) == 4) \ SEQ_printf(m, " .%-30s: %d\n", #x, (int)(rq->x)); \ else \ SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\ } while (0) #define PN(x) \ SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x)) P(nr_running); P(nr_switches); P(nr_uninterruptible); PN(next_balance); SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr))); PN(clock); PN(clock_task); #undef P #undef PN #ifdef CONFIG_SMP #define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n); P64(avg_idle); P64(max_idle_balance_cost); #undef P64 #endif #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, schedstat_val(rq->n)); if (schedstat_enabled()) { P(yld_count); P(sched_count); P(sched_goidle); P(ttwu_count); P(ttwu_local); } #undef P print_cfs_stats(m, cpu); print_rt_stats(m, cpu); print_dl_stats(m, cpu); print_rq(m, rq, cpu); SEQ_printf(m, "\n"); } static const char *sched_tunable_scaling_names[] = { "none", "logarithmic", "linear" }; static void sched_debug_header(struct seq_file *m) { u64 ktime, sched_clk, cpu_clk; unsigned long flags; local_irq_save(flags); ktime = ktime_to_ns(ktime_get()); sched_clk = sched_clock(); cpu_clk = local_clock(); local_irq_restore(flags); SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n", init_utsname()->release, (int)strcspn(init_utsname()->version, " "), init_utsname()->version); #define P(x) \ SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x)) #define PN(x) \ SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) PN(ktime); PN(sched_clk); PN(cpu_clk); P(jiffies); #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK P(sched_clock_stable()); #endif #undef PN #undef P SEQ_printf(m, "\n"); SEQ_printf(m, "sysctl_sched\n"); #define P(x) \ SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x)) #define PN(x) \ SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) PN(sysctl_sched_base_slice); P(sysctl_sched_features); #undef PN #undef P SEQ_printf(m, " .%-40s: %d (%s)\n", "sysctl_sched_tunable_scaling", sysctl_sched_tunable_scaling, sched_tunable_scaling_names[sysctl_sched_tunable_scaling]); SEQ_printf(m, "\n"); } static int sched_debug_show(struct seq_file *m, void *v) { int cpu = (unsigned long)(v - 2); if (cpu != -1) print_cpu(m, cpu); else sched_debug_header(m); return 0; } void sysrq_sched_debug_show(void) { int cpu; sched_debug_header(NULL); for_each_online_cpu(cpu) { /* * Need to reset softlockup watchdogs on all CPUs, because * another CPU might be blocked waiting for us to process * an IPI or stop_machine. */ touch_nmi_watchdog(); touch_all_softlockup_watchdogs(); print_cpu(NULL, cpu); } } /* * This iterator needs some explanation. * It returns 1 for the header position. * This means 2 is CPU 0. * In a hotplugged system some CPUs, including CPU 0, may be missing so we have * to use cpumask_* to iterate over the CPUs. */ static void *sched_debug_start(struct seq_file *file, loff_t *offset) { unsigned long n = *offset; if (n == 0) return (void *) 1; n--; if (n > 0) n = cpumask_next(n - 1, cpu_online_mask); else n = cpumask_first(cpu_online_mask); *offset = n + 1; if (n < nr_cpu_ids) return (void *)(unsigned long)(n + 2); return NULL; } static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset) { (*offset)++; return sched_debug_start(file, offset); } static void sched_debug_stop(struct seq_file *file, void *data) { } static const struct seq_operations sched_debug_sops = { .start = sched_debug_start, .next = sched_debug_next, .stop = sched_debug_stop, .show = sched_debug_show, }; #define __PS(S, F) SEQ_printf(m, "%-45s:%21Ld\n", S, (long long)(F)) #define __P(F) __PS(#F, F) #define P(F) __PS(#F, p->F) #define PM(F, M) __PS(#F, p->F & (M)) #define __PSN(S, F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", S, SPLIT_NS((long long)(F))) #define __PN(F) __PSN(#F, F) #define PN(F) __PSN(#F, p->F) #ifdef CONFIG_NUMA_BALANCING void print_numa_stats(struct seq_file *m, int node, unsigned long tsf, unsigned long tpf, unsigned long gsf, unsigned long gpf) { SEQ_printf(m, "numa_faults node=%d ", node); SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf); SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf); } #endif static void sched_show_numa(struct task_struct *p, struct seq_file *m) { #ifdef CONFIG_NUMA_BALANCING if (p->mm) P(mm->numa_scan_seq); P(numa_pages_migrated); P(numa_preferred_nid); P(total_numa_faults); SEQ_printf(m, "current_node=%d, numa_group_id=%d\n", task_node(p), task_numa_group_id(p)); show_numa_stats(p, m); #endif } void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns, struct seq_file *m) { unsigned long nr_switches; SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns), get_nr_threads(p)); SEQ_printf(m, "---------------------------------------------------------" "----------\n"); #define P_SCHEDSTAT(F) __PS(#F, schedstat_val(p->stats.F)) #define PN_SCHEDSTAT(F) __PSN(#F, schedstat_val(p->stats.F)) PN(se.exec_start); PN(se.vruntime); PN(se.sum_exec_runtime); nr_switches = p->nvcsw + p->nivcsw; P(se.nr_migrations); if (schedstat_enabled()) { u64 avg_atom, avg_per_cpu; PN_SCHEDSTAT(sum_sleep_runtime); PN_SCHEDSTAT(sum_block_runtime); PN_SCHEDSTAT(wait_start); PN_SCHEDSTAT(sleep_start); PN_SCHEDSTAT(block_start); PN_SCHEDSTAT(sleep_max); PN_SCHEDSTAT(block_max); PN_SCHEDSTAT(exec_max); PN_SCHEDSTAT(slice_max); PN_SCHEDSTAT(wait_max); PN_SCHEDSTAT(wait_sum); P_SCHEDSTAT(wait_count); PN_SCHEDSTAT(iowait_sum); P_SCHEDSTAT(iowait_count); P_SCHEDSTAT(nr_migrations_cold); P_SCHEDSTAT(nr_failed_migrations_affine); P_SCHEDSTAT(nr_failed_migrations_running); P_SCHEDSTAT(nr_failed_migrations_hot); P_SCHEDSTAT(nr_forced_migrations); P_SCHEDSTAT(nr_wakeups); P_SCHEDSTAT(nr_wakeups_sync); P_SCHEDSTAT(nr_wakeups_migrate); P_SCHEDSTAT(nr_wakeups_local); P_SCHEDSTAT(nr_wakeups_remote); P_SCHEDSTAT(nr_wakeups_affine); P_SCHEDSTAT(nr_wakeups_affine_attempts); P_SCHEDSTAT(nr_wakeups_passive); P_SCHEDSTAT(nr_wakeups_idle); avg_atom = p->se.sum_exec_runtime; if (nr_switches) avg_atom = div64_ul(avg_atom, nr_switches); else avg_atom = -1LL; avg_per_cpu = p->se.sum_exec_runtime; if (p->se.nr_migrations) { avg_per_cpu = div64_u64(avg_per_cpu, p->se.nr_migrations); } else { avg_per_cpu = -1LL; } __PN(avg_atom); __PN(avg_per_cpu); #ifdef CONFIG_SCHED_CORE PN_SCHEDSTAT(core_forceidle_sum); #endif } __P(nr_switches); __PS("nr_voluntary_switches", p->nvcsw); __PS("nr_involuntary_switches", p->nivcsw); P(se.load.weight); #ifdef CONFIG_SMP P(se.avg.load_sum); P(se.avg.runnable_sum); P(se.avg.util_sum); P(se.avg.load_avg); P(se.avg.runnable_avg); P(se.avg.util_avg); P(se.avg.last_update_time); PM(se.avg.util_est, ~UTIL_AVG_UNCHANGED); #endif #ifdef CONFIG_UCLAMP_TASK __PS("uclamp.min", p->uclamp_req[UCLAMP_MIN].value); __PS("uclamp.max", p->uclamp_req[UCLAMP_MAX].value); __PS("effective uclamp.min", uclamp_eff_value(p, UCLAMP_MIN)); __PS("effective uclamp.max", uclamp_eff_value(p, UCLAMP_MAX)); #endif P(policy); P(prio); if (task_has_dl_policy(p)) { P(dl.runtime); P(dl.deadline); } #ifdef CONFIG_SCHED_CLASS_EXT __PS("ext.enabled", task_on_scx(p)); #endif #undef PN_SCHEDSTAT #undef P_SCHEDSTAT { unsigned int this_cpu = raw_smp_processor_id(); u64 t0, t1; t0 = cpu_clock(this_cpu); t1 = cpu_clock(this_cpu); __PS("clock-delta", t1-t0); } sched_show_numa(p, m); } void proc_sched_set_task(struct task_struct *p) { #ifdef CONFIG_SCHEDSTATS memset(&p->stats, 0, sizeof(p->stats)); #endif } void resched_latency_warn(int cpu, u64 latency) { static DEFINE_RATELIMIT_STATE(latency_check_ratelimit, 60 * 60 * HZ, 1); WARN(__ratelimit(&latency_check_ratelimit), "sched: CPU %d need_resched set for > %llu ns (%d ticks) " "without schedule\n", cpu, latency, cpu_rq(cpu)->ticks_without_resched); }