// SPDX-License-Identifier: GPL-2.0-only /* * mm_init.c - Memory initialisation verification and debugging * * Copyright 2008 IBM Corporation, 2008 * Author Mel Gorman * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "internal.h" #include "slab.h" #include "shuffle.h" #include #ifdef CONFIG_DEBUG_MEMORY_INIT int __meminitdata mminit_loglevel; /* The zonelists are simply reported, validation is manual. */ void __init mminit_verify_zonelist(void) { int nid; if (mminit_loglevel < MMINIT_VERIFY) return; for_each_online_node(nid) { pg_data_t *pgdat = NODE_DATA(nid); struct zone *zone; struct zoneref *z; struct zonelist *zonelist; int i, listid, zoneid; for (i = 0; i < MAX_ZONELISTS * MAX_NR_ZONES; i++) { /* Identify the zone and nodelist */ zoneid = i % MAX_NR_ZONES; listid = i / MAX_NR_ZONES; zonelist = &pgdat->node_zonelists[listid]; zone = &pgdat->node_zones[zoneid]; if (!populated_zone(zone)) continue; /* Print information about the zonelist */ printk(KERN_DEBUG "mminit::zonelist %s %d:%s = ", listid > 0 ? "thisnode" : "general", nid, zone->name); /* Iterate the zonelist */ for_each_zone_zonelist(zone, z, zonelist, zoneid) pr_cont("%d:%s ", zone_to_nid(zone), zone->name); pr_cont("\n"); } } } void __init mminit_verify_pageflags_layout(void) { int shift, width; unsigned long or_mask, add_mask; shift = BITS_PER_LONG; width = shift - NR_NON_PAGEFLAG_BITS; mminit_dprintk(MMINIT_TRACE, "pageflags_layout_widths", "Section %d Node %d Zone %d Lastcpupid %d Kasantag %d Gen %d Tier %d Flags %d\n", SECTIONS_WIDTH, NODES_WIDTH, ZONES_WIDTH, LAST_CPUPID_WIDTH, KASAN_TAG_WIDTH, LRU_GEN_WIDTH, LRU_REFS_WIDTH, NR_PAGEFLAGS); mminit_dprintk(MMINIT_TRACE, "pageflags_layout_shifts", "Section %d Node %d Zone %d Lastcpupid %d Kasantag %d\n", SECTIONS_SHIFT, NODES_SHIFT, ZONES_SHIFT, LAST_CPUPID_SHIFT, KASAN_TAG_WIDTH); mminit_dprintk(MMINIT_TRACE, "pageflags_layout_pgshifts", "Section %lu Node %lu Zone %lu Lastcpupid %lu Kasantag %lu\n", (unsigned long)SECTIONS_PGSHIFT, (unsigned long)NODES_PGSHIFT, (unsigned long)ZONES_PGSHIFT, (unsigned long)LAST_CPUPID_PGSHIFT, (unsigned long)KASAN_TAG_PGSHIFT); mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodezoneid", "Node/Zone ID: %lu -> %lu\n", (unsigned long)(ZONEID_PGOFF + ZONEID_SHIFT), (unsigned long)ZONEID_PGOFF); mminit_dprintk(MMINIT_TRACE, "pageflags_layout_usage", "location: %d -> %d layout %d -> %d unused %d -> %d page-flags\n", shift, width, width, NR_PAGEFLAGS, NR_PAGEFLAGS, 0); #ifdef NODE_NOT_IN_PAGE_FLAGS mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags", "Node not in page flags"); #endif #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags", "Last cpupid not in page flags"); #endif if (SECTIONS_WIDTH) { shift -= SECTIONS_WIDTH; BUG_ON(shift != SECTIONS_PGSHIFT); } if (NODES_WIDTH) { shift -= NODES_WIDTH; BUG_ON(shift != NODES_PGSHIFT); } if (ZONES_WIDTH) { shift -= ZONES_WIDTH; BUG_ON(shift != ZONES_PGSHIFT); } /* Check for bitmask overlaps */ or_mask = (ZONES_MASK << ZONES_PGSHIFT) | (NODES_MASK << NODES_PGSHIFT) | (SECTIONS_MASK << SECTIONS_PGSHIFT); add_mask = (ZONES_MASK << ZONES_PGSHIFT) + (NODES_MASK << NODES_PGSHIFT) + (SECTIONS_MASK << SECTIONS_PGSHIFT); BUG_ON(or_mask != add_mask); } static __init int set_mminit_loglevel(char *str) { get_option(&str, &mminit_loglevel); return 0; } early_param("mminit_loglevel", set_mminit_loglevel); #endif /* CONFIG_DEBUG_MEMORY_INIT */ struct kobject *mm_kobj; #ifdef CONFIG_SMP s32 vm_committed_as_batch = 32; void mm_compute_batch(int overcommit_policy) { u64 memsized_batch; s32 nr = num_present_cpus(); s32 batch = max_t(s32, nr*2, 32); unsigned long ram_pages = totalram_pages(); /* * For policy OVERCOMMIT_NEVER, set batch size to 0.4% of * (total memory/#cpus), and lift it to 25% for other policies * to easy the possible lock contention for percpu_counter * vm_committed_as, while the max limit is INT_MAX */ if (overcommit_policy == OVERCOMMIT_NEVER) memsized_batch = min_t(u64, ram_pages/nr/256, INT_MAX); else memsized_batch = min_t(u64, ram_pages/nr/4, INT_MAX); vm_committed_as_batch = max_t(s32, memsized_batch, batch); } static int __meminit mm_compute_batch_notifier(struct notifier_block *self, unsigned long action, void *arg) { switch (action) { case MEM_ONLINE: case MEM_OFFLINE: mm_compute_batch(sysctl_overcommit_memory); break; default: break; } return NOTIFY_OK; } static int __init mm_compute_batch_init(void) { mm_compute_batch(sysctl_overcommit_memory); hotplug_memory_notifier(mm_compute_batch_notifier, MM_COMPUTE_BATCH_PRI); return 0; } __initcall(mm_compute_batch_init); #endif static int __init mm_sysfs_init(void) { mm_kobj = kobject_create_and_add("mm", kernel_kobj); if (!mm_kobj) return -ENOMEM; return 0; } postcore_initcall(mm_sysfs_init); static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; static unsigned long required_kernelcore __initdata; static unsigned long required_kernelcore_percent __initdata; static unsigned long required_movablecore __initdata; static unsigned long required_movablecore_percent __initdata; static unsigned long nr_kernel_pages __initdata; static unsigned long nr_all_pages __initdata; static bool deferred_struct_pages __meminitdata; static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); static int __init cmdline_parse_core(char *p, unsigned long *core, unsigned long *percent) { unsigned long long coremem; char *endptr; if (!p) return -EINVAL; /* Value may be a percentage of total memory, otherwise bytes */ coremem = simple_strtoull(p, &endptr, 0); if (*endptr == '%') { /* Paranoid check for percent values greater than 100 */ WARN_ON(coremem > 100); *percent = coremem; } else { coremem = memparse(p, &p); /* Paranoid check that UL is enough for the coremem value */ WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); *core = coremem >> PAGE_SHIFT; *percent = 0UL; } return 0; } bool mirrored_kernelcore __initdata_memblock; /* * kernelcore=size sets the amount of memory for use for allocations that * cannot be reclaimed or migrated. */ static int __init cmdline_parse_kernelcore(char *p) { /* parse kernelcore=mirror */ if (parse_option_str(p, "mirror")) { mirrored_kernelcore = true; return 0; } return cmdline_parse_core(p, &required_kernelcore, &required_kernelcore_percent); } early_param("kernelcore", cmdline_parse_kernelcore); /* * movablecore=size sets the amount of memory for use for allocations that * can be reclaimed or migrated. */ static int __init cmdline_parse_movablecore(char *p) { return cmdline_parse_core(p, &required_movablecore, &required_movablecore_percent); } early_param("movablecore", cmdline_parse_movablecore); /* * early_calculate_totalpages() * Sum pages in active regions for movable zone. * Populate N_MEMORY for calculating usable_nodes. */ static unsigned long __init early_calculate_totalpages(void) { unsigned long totalpages = 0; unsigned long start_pfn, end_pfn; int i, nid; for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { unsigned long pages = end_pfn - start_pfn; totalpages += pages; if (pages) node_set_state(nid, N_MEMORY); } return totalpages; } /* * This finds a zone that can be used for ZONE_MOVABLE pages. The * assumption is made that zones within a node are ordered in monotonic * increasing memory addresses so that the "highest" populated zone is used */ static void __init find_usable_zone_for_movable(void) { int zone_index; for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { if (zone_index == ZONE_MOVABLE) continue; if (arch_zone_highest_possible_pfn[zone_index] > arch_zone_lowest_possible_pfn[zone_index]) break; } VM_BUG_ON(zone_index == -1); movable_zone = zone_index; } /* * Find the PFN the Movable zone begins in each node. Kernel memory * is spread evenly between nodes as long as the nodes have enough * memory. When they don't, some nodes will have more kernelcore than * others */ static void __init find_zone_movable_pfns_for_nodes(void) { int i, nid; unsigned long usable_startpfn; unsigned long kernelcore_node, kernelcore_remaining; /* save the state before borrow the nodemask */ nodemask_t saved_node_state = node_states[N_MEMORY]; unsigned long totalpages = early_calculate_totalpages(); int usable_nodes = nodes_weight(node_states[N_MEMORY]); struct memblock_region *r; /* Need to find movable_zone earlier when movable_node is specified. */ find_usable_zone_for_movable(); /* * If movable_node is specified, ignore kernelcore and movablecore * options. */ if (movable_node_is_enabled()) { for_each_mem_region(r) { if (!memblock_is_hotpluggable(r)) continue; nid = memblock_get_region_node(r); usable_startpfn = memblock_region_memory_base_pfn(r); zone_movable_pfn[nid] = zone_movable_pfn[nid] ? min(usable_startpfn, zone_movable_pfn[nid]) : usable_startpfn; } goto out2; } /* * If kernelcore=mirror is specified, ignore movablecore option */ if (mirrored_kernelcore) { bool mem_below_4gb_not_mirrored = false; if (!memblock_has_mirror()) { pr_warn("The system has no mirror memory, ignore kernelcore=mirror.\n"); goto out; } if (is_kdump_kernel()) { pr_warn("The system is under kdump, ignore kernelcore=mirror.\n"); goto out; } for_each_mem_region(r) { if (memblock_is_mirror(r)) continue; nid = memblock_get_region_node(r); usable_startpfn = memblock_region_memory_base_pfn(r); if (usable_startpfn < PHYS_PFN(SZ_4G)) { mem_below_4gb_not_mirrored = true; continue; } zone_movable_pfn[nid] = zone_movable_pfn[nid] ? min(usable_startpfn, zone_movable_pfn[nid]) : usable_startpfn; } if (mem_below_4gb_not_mirrored) pr_warn("This configuration results in unmirrored kernel memory.\n"); goto out2; } /* * If kernelcore=nn% or movablecore=nn% was specified, calculate the * amount of necessary memory. */ if (required_kernelcore_percent) required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 10000UL; if (required_movablecore_percent) required_movablecore = (totalpages * 100 * required_movablecore_percent) / 10000UL; /* * If movablecore= was specified, calculate what size of * kernelcore that corresponds so that memory usable for * any allocation type is evenly spread. If both kernelcore * and movablecore are specified, then the value of kernelcore * will be used for required_kernelcore if it's greater than * what movablecore would have allowed. */ if (required_movablecore) { unsigned long corepages; /* * Round-up so that ZONE_MOVABLE is at least as large as what * was requested by the user */ required_movablecore = roundup(required_movablecore, MAX_ORDER_NR_PAGES); required_movablecore = min(totalpages, required_movablecore); corepages = totalpages - required_movablecore; required_kernelcore = max(required_kernelcore, corepages); } /* * If kernelcore was not specified or kernelcore size is larger * than totalpages, there is no ZONE_MOVABLE. */ if (!required_kernelcore || required_kernelcore >= totalpages) goto out; /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; restart: /* Spread kernelcore memory as evenly as possible throughout nodes */ kernelcore_node = required_kernelcore / usable_nodes; for_each_node_state(nid, N_MEMORY) { unsigned long start_pfn, end_pfn; /* * Recalculate kernelcore_node if the division per node * now exceeds what is necessary to satisfy the requested * amount of memory for the kernel */ if (required_kernelcore < kernelcore_node) kernelcore_node = required_kernelcore / usable_nodes; /* * As the map is walked, we track how much memory is usable * by the kernel using kernelcore_remaining. When it is * 0, the rest of the node is usable by ZONE_MOVABLE */ kernelcore_remaining = kernelcore_node; /* Go through each range of PFNs within this node */ for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { unsigned long size_pages; start_pfn = max(start_pfn, zone_movable_pfn[nid]); if (start_pfn >= end_pfn) continue; /* Account for what is only usable for kernelcore */ if (start_pfn < usable_startpfn) { unsigned long kernel_pages; kernel_pages = min(end_pfn, usable_startpfn) - start_pfn; kernelcore_remaining -= min(kernel_pages, kernelcore_remaining); required_kernelcore -= min(kernel_pages, required_kernelcore); /* Continue if range is now fully accounted */ if (end_pfn <= usable_startpfn) { /* * Push zone_movable_pfn to the end so * that if we have to rebalance * kernelcore across nodes, we will * not double account here */ zone_movable_pfn[nid] = end_pfn; continue; } start_pfn = usable_startpfn; } /* * The usable PFN range for ZONE_MOVABLE is from * start_pfn->end_pfn. Calculate size_pages as the * number of pages used as kernelcore */ size_pages = end_pfn - start_pfn; if (size_pages > kernelcore_remaining) size_pages = kernelcore_remaining; zone_movable_pfn[nid] = start_pfn + size_pages; /* * Some kernelcore has been met, update counts and * break if the kernelcore for this node has been * satisfied */ required_kernelcore -= min(required_kernelcore, size_pages); kernelcore_remaining -= size_pages; if (!kernelcore_remaining) break; } } /* * If there is still required_kernelcore, we do another pass with one * less node in the count. This will push zone_movable_pfn[nid] further * along on the nodes that still have memory until kernelcore is * satisfied */ usable_nodes--; if (usable_nodes && required_kernelcore > usable_nodes) goto restart; out2: /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ for (nid = 0; nid < MAX_NUMNODES; nid++) { unsigned long start_pfn, end_pfn; zone_movable_pfn[nid] = roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); if (zone_movable_pfn[nid] >= end_pfn) zone_movable_pfn[nid] = 0; } out: /* restore the node_state */ node_states[N_MEMORY] = saved_node_state; } void __meminit __init_single_page(struct page *page, unsigned long pfn, unsigned long zone, int nid) { mm_zero_struct_page(page); set_page_links(page, zone, nid, pfn); init_page_count(page); atomic_set(&page->_mapcount, -1); page_cpupid_reset_last(page); page_kasan_tag_reset(page); INIT_LIST_HEAD(&page->lru); #ifdef WANT_PAGE_VIRTUAL /* The shift won't overflow because ZONE_NORMAL is below 4G. */ if (!is_highmem_idx(zone)) set_page_address(page, __va(pfn << PAGE_SHIFT)); #endif } #ifdef CONFIG_NUMA /* * During memory init memblocks map pfns to nids. The search is expensive and * this caches recent lookups. The implementation of __early_pfn_to_nid * treats start/end as pfns. */ struct mminit_pfnnid_cache { unsigned long last_start; unsigned long last_end; int last_nid; }; static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; /* * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. */ static int __meminit __early_pfn_to_nid(unsigned long pfn, struct mminit_pfnnid_cache *state) { unsigned long start_pfn, end_pfn; int nid; if (state->last_start <= pfn && pfn < state->last_end) return state->last_nid; nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); if (nid != NUMA_NO_NODE) { state->last_start = start_pfn; state->last_end = end_pfn; state->last_nid = nid; } return nid; } int __meminit early_pfn_to_nid(unsigned long pfn) { static DEFINE_SPINLOCK(early_pfn_lock); int nid; spin_lock(&early_pfn_lock); nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); if (nid < 0) nid = first_online_node; spin_unlock(&early_pfn_lock); return nid; } int hashdist = HASHDIST_DEFAULT; static int __init set_hashdist(char *str) { if (!str) return 0; hashdist = simple_strtoul(str, &str, 0); return 1; } __setup("hashdist=", set_hashdist); static inline void fixup_hashdist(void) { if (num_node_state(N_MEMORY) == 1) hashdist = 0; } #else static inline void fixup_hashdist(void) {} #endif /* CONFIG_NUMA */ #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT static inline void pgdat_set_deferred_range(pg_data_t *pgdat) { pgdat->first_deferred_pfn = ULONG_MAX; } /* Returns true if the struct page for the pfn is initialised */ static inline bool __meminit early_page_initialised(unsigned long pfn, int nid) { if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) return false; return true; } /* * Returns true when the remaining initialisation should be deferred until * later in the boot cycle when it can be parallelised. */ static bool __meminit defer_init(int nid, unsigned long pfn, unsigned long end_pfn) { static unsigned long prev_end_pfn, nr_initialised; if (early_page_ext_enabled()) return false; /* Always populate low zones for address-constrained allocations */ if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) return false; if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX) return true; /* * prev_end_pfn static that contains the end of previous zone * No need to protect because called very early in boot before smp_init. */ if (prev_end_pfn != end_pfn) { prev_end_pfn = end_pfn; nr_initialised = 0; } /* * We start only with one section of pages, more pages are added as * needed until the rest of deferred pages are initialized. */ nr_initialised++; if ((nr_initialised > PAGES_PER_SECTION) && (pfn & (PAGES_PER_SECTION - 1)) == 0) { NODE_DATA(nid)->first_deferred_pfn = pfn; return true; } return false; } static void __meminit init_reserved_page(unsigned long pfn, int nid) { pg_data_t *pgdat; int zid; if (early_page_initialised(pfn, nid)) return; pgdat = NODE_DATA(nid); for (zid = 0; zid < MAX_NR_ZONES; zid++) { struct zone *zone = &pgdat->node_zones[zid]; if (zone_spans_pfn(zone, pfn)) break; } __init_single_page(pfn_to_page(pfn), pfn, zid, nid); if (pageblock_aligned(pfn)) set_pageblock_migratetype(pfn_to_page(pfn), MIGRATE_MOVABLE); } #else static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} static inline bool early_page_initialised(unsigned long pfn, int nid) { return true; } static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) { return false; } static inline void init_reserved_page(unsigned long pfn, int nid) { } #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ /* * Initialised pages do not have PageReserved set. This function is * called for each range allocated by the bootmem allocator and * marks the pages PageReserved. The remaining valid pages are later * sent to the buddy page allocator. */ void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end, int nid) { unsigned long start_pfn = PFN_DOWN(start); unsigned long end_pfn = PFN_UP(end); for (; start_pfn < end_pfn; start_pfn++) { if (pfn_valid(start_pfn)) { struct page *page = pfn_to_page(start_pfn); init_reserved_page(start_pfn, nid); /* * no need for atomic set_bit because the struct * page is not visible yet so nobody should * access it yet. */ __SetPageReserved(page); } } } /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ static bool __meminit overlap_memmap_init(unsigned long zone, unsigned long *pfn) { static struct memblock_region *r; if (mirrored_kernelcore && zone == ZONE_MOVABLE) { if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { for_each_mem_region(r) { if (*pfn < memblock_region_memory_end_pfn(r)) break; } } if (*pfn >= memblock_region_memory_base_pfn(r) && memblock_is_mirror(r)) { *pfn = memblock_region_memory_end_pfn(r); return true; } } return false; } /* * Only struct pages that correspond to ranges defined by memblock.memory * are zeroed and initialized by going through __init_single_page() during * memmap_init_zone_range(). * * But, there could be struct pages that correspond to holes in * memblock.memory. This can happen because of the following reasons: * - physical memory bank size is not necessarily the exact multiple of the * arbitrary section size * - early reserved memory may not be listed in memblock.memory * - non-memory regions covered by the contigious flatmem mapping * - memory layouts defined with memmap= kernel parameter may not align * nicely with memmap sections * * Explicitly initialize those struct pages so that: * - PG_Reserved is set * - zone and node links point to zone and node that span the page if the * hole is in the middle of a zone * - zone and node links point to adjacent zone/node if the hole falls on * the zone boundary; the pages in such holes will be prepended to the * zone/node above the hole except for the trailing pages in the last * section that will be appended to the zone/node below. */ static void __init init_unavailable_range(unsigned long spfn, unsigned long epfn, int zone, int node) { unsigned long pfn; u64 pgcnt = 0; for (pfn = spfn; pfn < epfn; pfn++) { if (!pfn_valid(pageblock_start_pfn(pfn))) { pfn = pageblock_end_pfn(pfn) - 1; continue; } __init_single_page(pfn_to_page(pfn), pfn, zone, node); __SetPageReserved(pfn_to_page(pfn)); pgcnt++; } if (pgcnt) pr_info("On node %d, zone %s: %lld pages in unavailable ranges\n", node, zone_names[zone], pgcnt); } /* * Initially all pages are reserved - free ones are freed * up by memblock_free_all() once the early boot process is * done. Non-atomic initialization, single-pass. * * All aligned pageblocks are initialized to the specified migratetype * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related * zone stats (e.g., nr_isolate_pageblock) are touched. */ void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone, unsigned long start_pfn, unsigned long zone_end_pfn, enum meminit_context context, struct vmem_altmap *altmap, int migratetype) { unsigned long pfn, end_pfn = start_pfn + size; struct page *page; if (highest_memmap_pfn < end_pfn - 1) highest_memmap_pfn = end_pfn - 1; #ifdef CONFIG_ZONE_DEVICE /* * Honor reservation requested by the driver for this ZONE_DEVICE * memory. We limit the total number of pages to initialize to just * those that might contain the memory mapping. We will defer the * ZONE_DEVICE page initialization until after we have released * the hotplug lock. */ if (zone == ZONE_DEVICE) { if (!altmap) return; if (start_pfn == altmap->base_pfn) start_pfn += altmap->reserve; end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); } #endif for (pfn = start_pfn; pfn < end_pfn; ) { /* * There can be holes in boot-time mem_map[]s handed to this * function. They do not exist on hotplugged memory. */ if (context == MEMINIT_EARLY) { if (overlap_memmap_init(zone, &pfn)) continue; if (defer_init(nid, pfn, zone_end_pfn)) { deferred_struct_pages = true; break; } } page = pfn_to_page(pfn); __init_single_page(page, pfn, zone, nid); if (context == MEMINIT_HOTPLUG) { #ifdef CONFIG_ZONE_DEVICE if (zone == ZONE_DEVICE) __SetPageReserved(page); else #endif __SetPageOffline(page); } /* * Usually, we want to mark the pageblock MIGRATE_MOVABLE, * such that unmovable allocations won't be scattered all * over the place during system boot. */ if (pageblock_aligned(pfn)) { set_pageblock_migratetype(page, migratetype); cond_resched(); } pfn++; } } static void __init memmap_init_zone_range(struct zone *zone, unsigned long start_pfn, unsigned long end_pfn, unsigned long *hole_pfn) { unsigned long zone_start_pfn = zone->zone_start_pfn; unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages; int nid = zone_to_nid(zone), zone_id = zone_idx(zone); start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn); end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn); if (start_pfn >= end_pfn) return; memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn, zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE); if (*hole_pfn < start_pfn) init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid); *hole_pfn = end_pfn; } static void __init memmap_init(void) { unsigned long start_pfn, end_pfn; unsigned long hole_pfn = 0; int i, j, zone_id = 0, nid; for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { struct pglist_data *node = NODE_DATA(nid); for (j = 0; j < MAX_NR_ZONES; j++) { struct zone *zone = node->node_zones + j; if (!populated_zone(zone)) continue; memmap_init_zone_range(zone, start_pfn, end_pfn, &hole_pfn); zone_id = j; } } #ifdef CONFIG_SPARSEMEM /* * Initialize the memory map for hole in the range [memory_end, * section_end]. * Append the pages in this hole to the highest zone in the last * node. * The call to init_unavailable_range() is outside the ifdef to * silence the compiler warining about zone_id set but not used; * for FLATMEM it is a nop anyway */ end_pfn = round_up(end_pfn, PAGES_PER_SECTION); if (hole_pfn < end_pfn) #endif init_unavailable_range(hole_pfn, end_pfn, zone_id, nid); } #ifdef CONFIG_ZONE_DEVICE static void __ref __init_zone_device_page(struct page *page, unsigned long pfn, unsigned long zone_idx, int nid, struct dev_pagemap *pgmap) { __init_single_page(page, pfn, zone_idx, nid); /* * Mark page reserved as it will need to wait for onlining * phase for it to be fully associated with a zone. * * We can use the non-atomic __set_bit operation for setting * the flag as we are still initializing the pages. */ __SetPageReserved(page); /* * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer * and zone_device_data. It is a bug if a ZONE_DEVICE page is * ever freed or placed on a driver-private list. */ page->pgmap = pgmap; page->zone_device_data = NULL; /* * Mark the block movable so that blocks are reserved for * movable at startup. This will force kernel allocations * to reserve their blocks rather than leaking throughout * the address space during boot when many long-lived * kernel allocations are made. * * Please note that MEMINIT_HOTPLUG path doesn't clear memmap * because this is done early in section_activate() */ if (pageblock_aligned(pfn)) { set_pageblock_migratetype(page, MIGRATE_MOVABLE); cond_resched(); } /* * ZONE_DEVICE pages are released directly to the driver page allocator * which will set the page count to 1 when allocating the page. */ if (pgmap->type == MEMORY_DEVICE_PRIVATE || pgmap->type == MEMORY_DEVICE_COHERENT) set_page_count(page, 0); } /* * With compound page geometry and when struct pages are stored in ram most * tail pages are reused. Consequently, the amount of unique struct pages to * initialize is a lot smaller that the total amount of struct pages being * mapped. This is a paired / mild layering violation with explicit knowledge * of how the sparse_vmemmap internals handle compound pages in the lack * of an altmap. See vmemmap_populate_compound_pages(). */ static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap, struct dev_pagemap *pgmap) { if (!vmemmap_can_optimize(altmap, pgmap)) return pgmap_vmemmap_nr(pgmap); return VMEMMAP_RESERVE_NR * (PAGE_SIZE / sizeof(struct page)); } static void __ref memmap_init_compound(struct page *head, unsigned long head_pfn, unsigned long zone_idx, int nid, struct dev_pagemap *pgmap, unsigned long nr_pages) { unsigned long pfn, end_pfn = head_pfn + nr_pages; unsigned int order = pgmap->vmemmap_shift; __SetPageHead(head); for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) { struct page *page = pfn_to_page(pfn); __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); prep_compound_tail(head, pfn - head_pfn); set_page_count(page, 0); /* * The first tail page stores important compound page info. * Call prep_compound_head() after the first tail page has * been initialized, to not have the data overwritten. */ if (pfn == head_pfn + 1) prep_compound_head(head, order); } } void __ref memmap_init_zone_device(struct zone *zone, unsigned long start_pfn, unsigned long nr_pages, struct dev_pagemap *pgmap) { unsigned long pfn, end_pfn = start_pfn + nr_pages; struct pglist_data *pgdat = zone->zone_pgdat; struct vmem_altmap *altmap = pgmap_altmap(pgmap); unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap); unsigned long zone_idx = zone_idx(zone); unsigned long start = jiffies; int nid = pgdat->node_id; if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE)) return; /* * The call to memmap_init should have already taken care * of the pages reserved for the memmap, so we can just jump to * the end of that region and start processing the device pages. */ if (altmap) { start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); nr_pages = end_pfn - start_pfn; } for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) { struct page *page = pfn_to_page(pfn); __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); if (pfns_per_compound == 1) continue; memmap_init_compound(page, pfn, zone_idx, nid, pgmap, compound_nr_pages(altmap, pgmap)); } pr_debug("%s initialised %lu pages in %ums\n", __func__, nr_pages, jiffies_to_msecs(jiffies - start)); } #endif /* * The zone ranges provided by the architecture do not include ZONE_MOVABLE * because it is sized independent of architecture. Unlike the other zones, * the starting point for ZONE_MOVABLE is not fixed. It may be different * in each node depending on the size of each node and how evenly kernelcore * is distributed. This helper function adjusts the zone ranges * provided by the architecture for a given node by using the end of the * highest usable zone for ZONE_MOVABLE. This preserves the assumption that * zones within a node are in order of monotonic increases memory addresses */ static void __init adjust_zone_range_for_zone_movable(int nid, unsigned long zone_type, unsigned long node_end_pfn, unsigned long *zone_start_pfn, unsigned long *zone_end_pfn) { /* Only adjust if ZONE_MOVABLE is on this node */ if (zone_movable_pfn[nid]) { /* Size ZONE_MOVABLE */ if (zone_type == ZONE_MOVABLE) { *zone_start_pfn = zone_movable_pfn[nid]; *zone_end_pfn = min(node_end_pfn, arch_zone_highest_possible_pfn[movable_zone]); /* Adjust for ZONE_MOVABLE starting within this range */ } else if (!mirrored_kernelcore && *zone_start_pfn < zone_movable_pfn[nid] && *zone_end_pfn > zone_movable_pfn[nid]) { *zone_end_pfn = zone_movable_pfn[nid]; /* Check if this whole range is within ZONE_MOVABLE */ } else if (*zone_start_pfn >= zone_movable_pfn[nid]) *zone_start_pfn = *zone_end_pfn; } } /* * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, * then all holes in the requested range will be accounted for. */ static unsigned long __init __absent_pages_in_range(int nid, unsigned long range_start_pfn, unsigned long range_end_pfn) { unsigned long nr_absent = range_end_pfn - range_start_pfn; unsigned long start_pfn, end_pfn; int i; for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); nr_absent -= end_pfn - start_pfn; } return nr_absent; } /** * absent_pages_in_range - Return number of page frames in holes within a range * @start_pfn: The start PFN to start searching for holes * @end_pfn: The end PFN to stop searching for holes * * Return: the number of pages frames in memory holes within a range. */ unsigned long __init absent_pages_in_range(unsigned long start_pfn, unsigned long end_pfn) { return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); } /* Return the number of page frames in holes in a zone on a node */ static unsigned long __init zone_absent_pages_in_node(int nid, unsigned long zone_type, unsigned long zone_start_pfn, unsigned long zone_end_pfn) { unsigned long nr_absent; /* zone is empty, we don't have any absent pages */ if (zone_start_pfn == zone_end_pfn) return 0; nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); /* * ZONE_MOVABLE handling. * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages * and vice versa. */ if (mirrored_kernelcore && zone_movable_pfn[nid]) { unsigned long start_pfn, end_pfn; struct memblock_region *r; for_each_mem_region(r) { start_pfn = clamp(memblock_region_memory_base_pfn(r), zone_start_pfn, zone_end_pfn); end_pfn = clamp(memblock_region_memory_end_pfn(r), zone_start_pfn, zone_end_pfn); if (zone_type == ZONE_MOVABLE && memblock_is_mirror(r)) nr_absent += end_pfn - start_pfn; if (zone_type == ZONE_NORMAL && !memblock_is_mirror(r)) nr_absent += end_pfn - start_pfn; } } return nr_absent; } /* * Return the number of pages a zone spans in a node, including holes * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() */ static unsigned long __init zone_spanned_pages_in_node(int nid, unsigned long zone_type, unsigned long node_start_pfn, unsigned long node_end_pfn, unsigned long *zone_start_pfn, unsigned long *zone_end_pfn) { unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; /* Get the start and end of the zone */ *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); adjust_zone_range_for_zone_movable(nid, zone_type, node_end_pfn, zone_start_pfn, zone_end_pfn); /* Check that this node has pages within the zone's required range */ if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) return 0; /* Move the zone boundaries inside the node if necessary */ *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); /* Return the spanned pages */ return *zone_end_pfn - *zone_start_pfn; } static void __init reset_memoryless_node_totalpages(struct pglist_data *pgdat) { struct zone *z; for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) { z->zone_start_pfn = 0; z->spanned_pages = 0; z->present_pages = 0; #if defined(CONFIG_MEMORY_HOTPLUG) z->present_early_pages = 0; #endif } pgdat->node_spanned_pages = 0; pgdat->node_present_pages = 0; pr_debug("On node %d totalpages: 0\n", pgdat->node_id); } static void __init calc_nr_kernel_pages(void) { unsigned long start_pfn, end_pfn; phys_addr_t start_addr, end_addr; u64 u; #ifdef CONFIG_HIGHMEM unsigned long high_zone_low = arch_zone_lowest_possible_pfn[ZONE_HIGHMEM]; #endif for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) { start_pfn = PFN_UP(start_addr); end_pfn = PFN_DOWN(end_addr); if (start_pfn < end_pfn) { nr_all_pages += end_pfn - start_pfn; #ifdef CONFIG_HIGHMEM start_pfn = clamp(start_pfn, 0, high_zone_low); end_pfn = clamp(end_pfn, 0, high_zone_low); #endif nr_kernel_pages += end_pfn - start_pfn; } } } static void __init calculate_node_totalpages(struct pglist_data *pgdat, unsigned long node_start_pfn, unsigned long node_end_pfn) { unsigned long realtotalpages = 0, totalpages = 0; enum zone_type i; for (i = 0; i < MAX_NR_ZONES; i++) { struct zone *zone = pgdat->node_zones + i; unsigned long zone_start_pfn, zone_end_pfn; unsigned long spanned, absent; unsigned long real_size; spanned = zone_spanned_pages_in_node(pgdat->node_id, i, node_start_pfn, node_end_pfn, &zone_start_pfn, &zone_end_pfn); absent = zone_absent_pages_in_node(pgdat->node_id, i, zone_start_pfn, zone_end_pfn); real_size = spanned - absent; if (spanned) zone->zone_start_pfn = zone_start_pfn; else zone->zone_start_pfn = 0; zone->spanned_pages = spanned; zone->present_pages = real_size; #if defined(CONFIG_MEMORY_HOTPLUG) zone->present_early_pages = real_size; #endif totalpages += spanned; realtotalpages += real_size; } pgdat->node_spanned_pages = totalpages; pgdat->node_present_pages = realtotalpages; pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); } #ifdef CONFIG_TRANSPARENT_HUGEPAGE static void pgdat_init_split_queue(struct pglist_data *pgdat) { struct deferred_split *ds_queue = &pgdat->deferred_split_queue; spin_lock_init(&ds_queue->split_queue_lock); INIT_LIST_HEAD(&ds_queue->split_queue); ds_queue->split_queue_len = 0; } #else static void pgdat_init_split_queue(struct pglist_data *pgdat) {} #endif #ifdef CONFIG_COMPACTION static void pgdat_init_kcompactd(struct pglist_data *pgdat) { init_waitqueue_head(&pgdat->kcompactd_wait); } #else static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} #endif static void __meminit pgdat_init_internals(struct pglist_data *pgdat) { int i; pgdat_resize_init(pgdat); pgdat_kswapd_lock_init(pgdat); pgdat_init_split_queue(pgdat); pgdat_init_kcompactd(pgdat); init_waitqueue_head(&pgdat->kswapd_wait); init_waitqueue_head(&pgdat->pfmemalloc_wait); for (i = 0; i < NR_VMSCAN_THROTTLE; i++) init_waitqueue_head(&pgdat->reclaim_wait[i]); pgdat_page_ext_init(pgdat); lruvec_init(&pgdat->__lruvec); } static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, unsigned long remaining_pages) { atomic_long_set(&zone->managed_pages, remaining_pages); zone_set_nid(zone, nid); zone->name = zone_names[idx]; zone->zone_pgdat = NODE_DATA(nid); spin_lock_init(&zone->lock); zone_seqlock_init(zone); zone_pcp_init(zone); } static void __meminit zone_init_free_lists(struct zone *zone) { unsigned int order, t; for_each_migratetype_order(order, t) { INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); zone->free_area[order].nr_free = 0; } #ifdef CONFIG_UNACCEPTED_MEMORY INIT_LIST_HEAD(&zone->unaccepted_pages); #endif } void __meminit init_currently_empty_zone(struct zone *zone, unsigned long zone_start_pfn, unsigned long size) { struct pglist_data *pgdat = zone->zone_pgdat; int zone_idx = zone_idx(zone) + 1; if (zone_idx > pgdat->nr_zones) pgdat->nr_zones = zone_idx; zone->zone_start_pfn = zone_start_pfn; mminit_dprintk(MMINIT_TRACE, "memmap_init", "Initialising map node %d zone %lu pfns %lu -> %lu\n", pgdat->node_id, (unsigned long)zone_idx(zone), zone_start_pfn, (zone_start_pfn + size)); zone_init_free_lists(zone); zone->initialized = 1; } #ifndef CONFIG_SPARSEMEM /* * Calculate the size of the zone->blockflags rounded to an unsigned long * Start by making sure zonesize is a multiple of pageblock_order by rounding * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally * round what is now in bits to nearest long in bits, then return it in * bytes. */ static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) { unsigned long usemapsize; zonesize += zone_start_pfn & (pageblock_nr_pages-1); usemapsize = roundup(zonesize, pageblock_nr_pages); usemapsize = usemapsize >> pageblock_order; usemapsize *= NR_PAGEBLOCK_BITS; usemapsize = roundup(usemapsize, BITS_PER_LONG); return usemapsize / BITS_PER_BYTE; } static void __ref setup_usemap(struct zone *zone) { unsigned long usemapsize = usemap_size(zone->zone_start_pfn, zone->spanned_pages); zone->pageblock_flags = NULL; if (usemapsize) { zone->pageblock_flags = memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, zone_to_nid(zone)); if (!zone->pageblock_flags) panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", usemapsize, zone->name, zone_to_nid(zone)); } } #else static inline void setup_usemap(struct zone *zone) {} #endif /* CONFIG_SPARSEMEM */ #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ void __init set_pageblock_order(void) { unsigned int order = MAX_PAGE_ORDER; /* Check that pageblock_nr_pages has not already been setup */ if (pageblock_order) return; /* Don't let pageblocks exceed the maximum allocation granularity. */ if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order) order = HUGETLB_PAGE_ORDER; /* * Assume the largest contiguous order of interest is a huge page. * This value may be variable depending on boot parameters on powerpc. */ pageblock_order = order; } #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ /* * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() * is unused as pageblock_order is set at compile-time. See * include/linux/pageblock-flags.h for the values of pageblock_order based on * the kernel config */ void __init set_pageblock_order(void) { } #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ /* * Set up the zone data structures * - init pgdat internals * - init all zones belonging to this node * * NOTE: this function is only called during memory hotplug */ #ifdef CONFIG_MEMORY_HOTPLUG void __ref free_area_init_core_hotplug(struct pglist_data *pgdat) { int nid = pgdat->node_id; enum zone_type z; int cpu; pgdat_init_internals(pgdat); if (pgdat->per_cpu_nodestats == &boot_nodestats) pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat); /* * Reset the nr_zones, order and highest_zoneidx before reuse. * Note that kswapd will init kswapd_highest_zoneidx properly * when it starts in the near future. */ pgdat->nr_zones = 0; pgdat->kswapd_order = 0; pgdat->kswapd_highest_zoneidx = 0; pgdat->node_start_pfn = 0; pgdat->node_present_pages = 0; for_each_online_cpu(cpu) { struct per_cpu_nodestat *p; p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); memset(p, 0, sizeof(*p)); } /* * When memory is hot-added, all the memory is in offline state. So * clear all zones' present_pages and managed_pages because they will * be updated in online_pages() and offline_pages(). */ for (z = 0; z < MAX_NR_ZONES; z++) { struct zone *zone = pgdat->node_zones + z; zone->present_pages = 0; zone_init_internals(zone, z, nid, 0); } } #endif static void __init free_area_init_core(struct pglist_data *pgdat) { enum zone_type j; int nid = pgdat->node_id; pgdat_init_internals(pgdat); pgdat->per_cpu_nodestats = &boot_nodestats; for (j = 0; j < MAX_NR_ZONES; j++) { struct zone *zone = pgdat->node_zones + j; unsigned long size = zone->spanned_pages; /* * Initialize zone->managed_pages as 0 , it will be reset * when memblock allocator frees pages into buddy system. */ zone_init_internals(zone, j, nid, zone->present_pages); if (!size) continue; setup_usemap(zone); init_currently_empty_zone(zone, zone->zone_start_pfn, size); } } void __init *memmap_alloc(phys_addr_t size, phys_addr_t align, phys_addr_t min_addr, int nid, bool exact_nid) { void *ptr; if (exact_nid) ptr = memblock_alloc_exact_nid_raw(size, align, min_addr, MEMBLOCK_ALLOC_ACCESSIBLE, nid); else ptr = memblock_alloc_try_nid_raw(size, align, min_addr, MEMBLOCK_ALLOC_ACCESSIBLE, nid); if (ptr && size > 0) page_init_poison(ptr, size); return ptr; } #ifdef CONFIG_FLATMEM static void __init alloc_node_mem_map(struct pglist_data *pgdat) { unsigned long start, offset, size, end; struct page *map; /* Skip empty nodes */ if (!pgdat->node_spanned_pages) return; start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); offset = pgdat->node_start_pfn - start; /* * The zone's endpoints aren't required to be MAX_PAGE_ORDER * aligned but the node_mem_map endpoints must be in order * for the buddy allocator to function correctly. */ end = ALIGN(pgdat_end_pfn(pgdat), MAX_ORDER_NR_PAGES); size = (end - start) * sizeof(struct page); map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT, pgdat->node_id, false); if (!map) panic("Failed to allocate %ld bytes for node %d memory map\n", size, pgdat->node_id); pgdat->node_mem_map = map + offset; memmap_boot_pages_add(DIV_ROUND_UP(size, PAGE_SIZE)); pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", __func__, pgdat->node_id, (unsigned long)pgdat, (unsigned long)pgdat->node_mem_map); #ifndef CONFIG_NUMA /* the global mem_map is just set as node 0's */ if (pgdat == NODE_DATA(0)) { mem_map = NODE_DATA(0)->node_mem_map; if (page_to_pfn(mem_map) != pgdat->node_start_pfn) mem_map -= offset; } #endif } #else static inline void alloc_node_mem_map(struct pglist_data *pgdat) { } #endif /* CONFIG_FLATMEM */ /** * get_pfn_range_for_nid - Return the start and end page frames for a node * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. * @start_pfn: Passed by reference. On return, it will have the node start_pfn. * @end_pfn: Passed by reference. On return, it will have the node end_pfn. * * It returns the start and end page frame of a node based on information * provided by memblock_set_node(). If called for a node * with no available memory, the start and end PFNs will be 0. */ void __init get_pfn_range_for_nid(unsigned int nid, unsigned long *start_pfn, unsigned long *end_pfn) { unsigned long this_start_pfn, this_end_pfn; int i; *start_pfn = -1UL; *end_pfn = 0; for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { *start_pfn = min(*start_pfn, this_start_pfn); *end_pfn = max(*end_pfn, this_end_pfn); } if (*start_pfn == -1UL) *start_pfn = 0; } static void __init free_area_init_node(int nid) { pg_data_t *pgdat = NODE_DATA(nid); unsigned long start_pfn = 0; unsigned long end_pfn = 0; /* pg_data_t should be reset to zero when it's allocated */ WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); pgdat->node_id = nid; pgdat->node_start_pfn = start_pfn; pgdat->per_cpu_nodestats = NULL; if (start_pfn != end_pfn) { pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, (u64)start_pfn << PAGE_SHIFT, end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); calculate_node_totalpages(pgdat, start_pfn, end_pfn); } else { pr_info("Initmem setup node %d as memoryless\n", nid); reset_memoryless_node_totalpages(pgdat); } alloc_node_mem_map(pgdat); pgdat_set_deferred_range(pgdat); free_area_init_core(pgdat); lru_gen_init_pgdat(pgdat); } /* Any regular or high memory on that node ? */ static void __init check_for_memory(pg_data_t *pgdat) { enum zone_type zone_type; for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { struct zone *zone = &pgdat->node_zones[zone_type]; if (populated_zone(zone)) { if (IS_ENABLED(CONFIG_HIGHMEM)) node_set_state(pgdat->node_id, N_HIGH_MEMORY); if (zone_type <= ZONE_NORMAL) node_set_state(pgdat->node_id, N_NORMAL_MEMORY); break; } } } #if MAX_NUMNODES > 1 /* * Figure out the number of possible node ids. */ void __init setup_nr_node_ids(void) { unsigned int highest; highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); nr_node_ids = highest + 1; } #endif /* * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For * such cases we allow max_zone_pfn sorted in the descending order */ static bool arch_has_descending_max_zone_pfns(void) { return IS_ENABLED(CONFIG_ARC) && !IS_ENABLED(CONFIG_ARC_HAS_PAE40); } /** * free_area_init - Initialise all pg_data_t and zone data * @max_zone_pfn: an array of max PFNs for each zone * * This will call free_area_init_node() for each active node in the system. * Using the page ranges provided by memblock_set_node(), the size of each * zone in each node and their holes is calculated. If the maximum PFN * between two adjacent zones match, it is assumed that the zone is empty. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed * that arch_max_dma32_pfn has no pages. It is also assumed that a zone * starts where the previous one ended. For example, ZONE_DMA32 starts * at arch_max_dma_pfn. */ void __init free_area_init(unsigned long *max_zone_pfn) { unsigned long start_pfn, end_pfn; int i, nid, zone; bool descending; /* Record where the zone boundaries are */ memset(arch_zone_lowest_possible_pfn, 0, sizeof(arch_zone_lowest_possible_pfn)); memset(arch_zone_highest_possible_pfn, 0, sizeof(arch_zone_highest_possible_pfn)); start_pfn = PHYS_PFN(memblock_start_of_DRAM()); descending = arch_has_descending_max_zone_pfns(); for (i = 0; i < MAX_NR_ZONES; i++) { if (descending) zone = MAX_NR_ZONES - i - 1; else zone = i; if (zone == ZONE_MOVABLE) continue; end_pfn = max(max_zone_pfn[zone], start_pfn); arch_zone_lowest_possible_pfn[zone] = start_pfn; arch_zone_highest_possible_pfn[zone] = end_pfn; start_pfn = end_pfn; } /* Find the PFNs that ZONE_MOVABLE begins at in each node */ memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); find_zone_movable_pfns_for_nodes(); /* Print out the zone ranges */ pr_info("Zone ranges:\n"); for (i = 0; i < MAX_NR_ZONES; i++) { if (i == ZONE_MOVABLE) continue; pr_info(" %-8s ", zone_names[i]); if (arch_zone_lowest_possible_pfn[i] == arch_zone_highest_possible_pfn[i]) pr_cont("empty\n"); else pr_cont("[mem %#018Lx-%#018Lx]\n", (u64)arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT, ((u64)arch_zone_highest_possible_pfn[i] << PAGE_SHIFT) - 1); } /* Print out the PFNs ZONE_MOVABLE begins at in each node */ pr_info("Movable zone start for each node\n"); for (i = 0; i < MAX_NUMNODES; i++) { if (zone_movable_pfn[i]) pr_info(" Node %d: %#018Lx\n", i, (u64)zone_movable_pfn[i] << PAGE_SHIFT); } /* * Print out the early node map, and initialize the * subsection-map relative to active online memory ranges to * enable future "sub-section" extensions of the memory map. */ pr_info("Early memory node ranges\n"); for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, (u64)start_pfn << PAGE_SHIFT, ((u64)end_pfn << PAGE_SHIFT) - 1); subsection_map_init(start_pfn, end_pfn - start_pfn); } /* Initialise every node */ mminit_verify_pageflags_layout(); setup_nr_node_ids(); set_pageblock_order(); for_each_node(nid) { pg_data_t *pgdat; if (!node_online(nid)) alloc_offline_node_data(nid); pgdat = NODE_DATA(nid); free_area_init_node(nid); /* * No sysfs hierarcy will be created via register_one_node() *for memory-less node because here it's not marked as N_MEMORY *and won't be set online later. The benefit is userspace *program won't be confused by sysfs files/directories of *memory-less node. The pgdat will get fully initialized by *hotadd_init_pgdat() when memory is hotplugged into this node. */ if (pgdat->node_present_pages) { node_set_state(nid, N_MEMORY); check_for_memory(pgdat); } } calc_nr_kernel_pages(); memmap_init(); /* disable hash distribution for systems with a single node */ fixup_hashdist(); } /** * node_map_pfn_alignment - determine the maximum internode alignment * * This function should be called after node map is populated and sorted. * It calculates the maximum power of two alignment which can distinguish * all the nodes. * * For example, if all nodes are 1GiB and aligned to 1GiB, the return value * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is * shifted, 1GiB is enough and this function will indicate so. * * This is used to test whether pfn -> nid mapping of the chosen memory * model has fine enough granularity to avoid incorrect mapping for the * populated node map. * * Return: the determined alignment in pfn's. 0 if there is no alignment * requirement (single node). */ unsigned long __init node_map_pfn_alignment(void) { unsigned long accl_mask = 0, last_end = 0; unsigned long start, end, mask; int last_nid = NUMA_NO_NODE; int i, nid; for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { if (!start || last_nid < 0 || last_nid == nid) { last_nid = nid; last_end = end; continue; } /* * Start with a mask granular enough to pin-point to the * start pfn and tick off bits one-by-one until it becomes * too coarse to separate the current node from the last. */ mask = ~((1 << __ffs(start)) - 1); while (mask && last_end <= (start & (mask << 1))) mask <<= 1; /* accumulate all internode masks */ accl_mask |= mask; } /* convert mask to number of pages */ return ~accl_mask + 1; } #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT static void __init deferred_free_pages(unsigned long pfn, unsigned long nr_pages) { struct page *page; unsigned long i; if (!nr_pages) return; page = pfn_to_page(pfn); /* Free a large naturally-aligned chunk if possible */ if (nr_pages == MAX_ORDER_NR_PAGES && IS_MAX_ORDER_ALIGNED(pfn)) { for (i = 0; i < nr_pages; i += pageblock_nr_pages) set_pageblock_migratetype(page + i, MIGRATE_MOVABLE); __free_pages_core(page, MAX_PAGE_ORDER, MEMINIT_EARLY); return; } /* Accept chunks smaller than MAX_PAGE_ORDER upfront */ accept_memory(PFN_PHYS(pfn), nr_pages * PAGE_SIZE); for (i = 0; i < nr_pages; i++, page++, pfn++) { if (pageblock_aligned(pfn)) set_pageblock_migratetype(page, MIGRATE_MOVABLE); __free_pages_core(page, 0, MEMINIT_EARLY); } } /* Completion tracking for deferred_init_memmap() threads */ static atomic_t pgdat_init_n_undone __initdata; static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); static inline void __init pgdat_init_report_one_done(void) { if (atomic_dec_and_test(&pgdat_init_n_undone)) complete(&pgdat_init_all_done_comp); } /* * Initialize struct pages. We minimize pfn page lookups and scheduler checks * by performing it only once every MAX_ORDER_NR_PAGES. * Return number of pages initialized. */ static unsigned long __init deferred_init_pages(struct zone *zone, unsigned long pfn, unsigned long end_pfn) { int nid = zone_to_nid(zone); unsigned long nr_pages = end_pfn - pfn; int zid = zone_idx(zone); struct page *page = pfn_to_page(pfn); for (; pfn < end_pfn; pfn++, page++) __init_single_page(page, pfn, zid, nid); return nr_pages; } /* * This function is meant to pre-load the iterator for the zone init from * a given point. * Specifically it walks through the ranges starting with initial index * passed to it until we are caught up to the first_init_pfn value and * exits there. If we never encounter the value we return false indicating * there are no valid ranges left. */ static bool __init deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, unsigned long *spfn, unsigned long *epfn, unsigned long first_init_pfn) { u64 j = *i; if (j == 0) __next_mem_pfn_range_in_zone(&j, zone, spfn, epfn); /* * Start out by walking through the ranges in this zone that have * already been initialized. We don't need to do anything with them * so we just need to flush them out of the system. */ for_each_free_mem_pfn_range_in_zone_from(j, zone, spfn, epfn) { if (*epfn <= first_init_pfn) continue; if (*spfn < first_init_pfn) *spfn = first_init_pfn; *i = j; return true; } return false; } /* * Initialize and free pages. We do it in two loops: first we initialize * struct page, then free to buddy allocator, because while we are * freeing pages we can access pages that are ahead (computing buddy * page in __free_one_page()). * * In order to try and keep some memory in the cache we have the loop * broken along max page order boundaries. This way we will not cause * any issues with the buddy page computation. */ static unsigned long __init deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, unsigned long *end_pfn) { unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); unsigned long spfn = *start_pfn, epfn = *end_pfn; unsigned long nr_pages = 0; u64 j = *i; /* First we loop through and initialize the page values */ for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { unsigned long t; if (mo_pfn <= *start_pfn) break; t = min(mo_pfn, *end_pfn); nr_pages += deferred_init_pages(zone, *start_pfn, t); if (mo_pfn < *end_pfn) { *start_pfn = mo_pfn; break; } } /* Reset values and now loop through freeing pages as needed */ swap(j, *i); for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { unsigned long t; if (mo_pfn <= spfn) break; t = min(mo_pfn, epfn); deferred_free_pages(spfn, t - spfn); if (mo_pfn <= epfn) break; } return nr_pages; } static void __init deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, void *arg) { unsigned long spfn, epfn; struct zone *zone = arg; u64 i = 0; deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); /* * Initialize and free pages in MAX_PAGE_ORDER sized increments so that * we can avoid introducing any issues with the buddy allocator. */ while (spfn < end_pfn) { deferred_init_maxorder(&i, zone, &spfn, &epfn); cond_resched(); } } static unsigned int __init deferred_page_init_max_threads(const struct cpumask *node_cpumask) { return max(cpumask_weight(node_cpumask), 1U); } /* Initialise remaining memory on a node */ static int __init deferred_init_memmap(void *data) { pg_data_t *pgdat = data; const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); unsigned long spfn = 0, epfn = 0; unsigned long first_init_pfn, flags; unsigned long start = jiffies; struct zone *zone; int max_threads; u64 i = 0; /* Bind memory initialisation thread to a local node if possible */ if (!cpumask_empty(cpumask)) set_cpus_allowed_ptr(current, cpumask); pgdat_resize_lock(pgdat, &flags); first_init_pfn = pgdat->first_deferred_pfn; if (first_init_pfn == ULONG_MAX) { pgdat_resize_unlock(pgdat, &flags); pgdat_init_report_one_done(); return 0; } /* Sanity check boundaries */ BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); pgdat->first_deferred_pfn = ULONG_MAX; /* * Once we unlock here, the zone cannot be grown anymore, thus if an * interrupt thread must allocate this early in boot, zone must be * pre-grown prior to start of deferred page initialization. */ pgdat_resize_unlock(pgdat, &flags); /* Only the highest zone is deferred */ zone = pgdat->node_zones + pgdat->nr_zones - 1; max_threads = deferred_page_init_max_threads(cpumask); while (deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, first_init_pfn)) { first_init_pfn = ALIGN(epfn, PAGES_PER_SECTION); struct padata_mt_job job = { .thread_fn = deferred_init_memmap_chunk, .fn_arg = zone, .start = spfn, .size = first_init_pfn - spfn, .align = PAGES_PER_SECTION, .min_chunk = PAGES_PER_SECTION, .max_threads = max_threads, .numa_aware = false, }; padata_do_multithreaded(&job); } /* Sanity check that the next zone really is unpopulated */ WARN_ON(pgdat->nr_zones < MAX_NR_ZONES && populated_zone(++zone)); pr_info("node %d deferred pages initialised in %ums\n", pgdat->node_id, jiffies_to_msecs(jiffies - start)); pgdat_init_report_one_done(); return 0; } /* * If this zone has deferred pages, try to grow it by initializing enough * deferred pages to satisfy the allocation specified by order, rounded up to * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments * of SECTION_SIZE bytes by initializing struct pages in increments of * PAGES_PER_SECTION * sizeof(struct page) bytes. * * Return true when zone was grown, otherwise return false. We return true even * when we grow less than requested, to let the caller decide if there are * enough pages to satisfy the allocation. */ bool __init deferred_grow_zone(struct zone *zone, unsigned int order) { unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); pg_data_t *pgdat = zone->zone_pgdat; unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; unsigned long spfn, epfn, flags; unsigned long nr_pages = 0; u64 i = 0; /* Only the last zone may have deferred pages */ if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) return false; pgdat_resize_lock(pgdat, &flags); /* * If someone grew this zone while we were waiting for spinlock, return * true, as there might be enough pages already. */ if (first_deferred_pfn != pgdat->first_deferred_pfn) { pgdat_resize_unlock(pgdat, &flags); return true; } /* If the zone is empty somebody else may have cleared out the zone */ if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, first_deferred_pfn)) { pgdat->first_deferred_pfn = ULONG_MAX; pgdat_resize_unlock(pgdat, &flags); /* Retry only once. */ return first_deferred_pfn != ULONG_MAX; } /* * Initialize and free pages in MAX_PAGE_ORDER sized increments so * that we can avoid introducing any issues with the buddy * allocator. */ while (spfn < epfn) { /* update our first deferred PFN for this section */ first_deferred_pfn = spfn; nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); touch_nmi_watchdog(); /* We should only stop along section boundaries */ if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) continue; /* If our quota has been met we can stop here */ if (nr_pages >= nr_pages_needed) break; } pgdat->first_deferred_pfn = spfn; pgdat_resize_unlock(pgdat, &flags); return nr_pages > 0; } #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ #ifdef CONFIG_CMA void __init init_cma_reserved_pageblock(struct page *page) { unsigned i = pageblock_nr_pages; struct page *p = page; do { __ClearPageReserved(p); set_page_count(p, 0); } while (++p, --i); set_pageblock_migratetype(page, MIGRATE_CMA); set_page_refcounted(page); /* pages were reserved and not allocated */ clear_page_tag_ref(page); __free_pages(page, pageblock_order); adjust_managed_page_count(page, pageblock_nr_pages); page_zone(page)->cma_pages += pageblock_nr_pages; } #endif void set_zone_contiguous(struct zone *zone) { unsigned long block_start_pfn = zone->zone_start_pfn; unsigned long block_end_pfn; block_end_pfn = pageblock_end_pfn(block_start_pfn); for (; block_start_pfn < zone_end_pfn(zone); block_start_pfn = block_end_pfn, block_end_pfn += pageblock_nr_pages) { block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); if (!__pageblock_pfn_to_page(block_start_pfn, block_end_pfn, zone)) return; cond_resched(); } /* We confirm that there is no hole */ zone->contiguous = true; } static void __init mem_init_print_info(void); void __init page_alloc_init_late(void) { struct zone *zone; int nid; #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT /* There will be num_node_state(N_MEMORY) threads */ atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); for_each_node_state(nid, N_MEMORY) { kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); } /* Block until all are initialised */ wait_for_completion(&pgdat_init_all_done_comp); /* * We initialized the rest of the deferred pages. Permanently disable * on-demand struct page initialization. */ static_branch_disable(&deferred_pages); /* Reinit limits that are based on free pages after the kernel is up */ files_maxfiles_init(); #endif /* Accounting of total+free memory is stable at this point. */ mem_init_print_info(); buffer_init(); /* Discard memblock private memory */ memblock_discard(); for_each_node_state(nid, N_MEMORY) shuffle_free_memory(NODE_DATA(nid)); for_each_populated_zone(zone) set_zone_contiguous(zone); /* Initialize page ext after all struct pages are initialized. */ if (deferred_struct_pages) page_ext_init(); page_alloc_sysctl_init(); } /* * Adaptive scale is meant to reduce sizes of hash tables on large memory * machines. As memory size is increased the scale is also increased but at * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory * quadruples the scale is increased by one, which means the size of hash table * only doubles, instead of quadrupling as well. * Because 32-bit systems cannot have large physical memory, where this scaling * makes sense, it is disabled on such platforms. */ #if __BITS_PER_LONG > 32 #define ADAPT_SCALE_BASE (64ul << 30) #define ADAPT_SCALE_SHIFT 2 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) #endif /* * allocate a large system hash table from bootmem * - it is assumed that the hash table must contain an exact power-of-2 * quantity of entries * - limit is the number of hash buckets, not the total allocation size */ void *__init alloc_large_system_hash(const char *tablename, unsigned long bucketsize, unsigned long numentries, int scale, int flags, unsigned int *_hash_shift, unsigned int *_hash_mask, unsigned long low_limit, unsigned long high_limit) { unsigned long long max = high_limit; unsigned long log2qty, size; void *table; gfp_t gfp_flags; bool virt; bool huge; /* allow the kernel cmdline to have a say */ if (!numentries) { /* round applicable memory size up to nearest megabyte */ numentries = nr_kernel_pages; /* It isn't necessary when PAGE_SIZE >= 1MB */ if (PAGE_SIZE < SZ_1M) numentries = round_up(numentries, SZ_1M / PAGE_SIZE); #if __BITS_PER_LONG > 32 if (!high_limit) { unsigned long adapt; for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; adapt <<= ADAPT_SCALE_SHIFT) scale++; } #endif /* limit to 1 bucket per 2^scale bytes of low memory */ if (scale > PAGE_SHIFT) numentries >>= (scale - PAGE_SHIFT); else numentries <<= (PAGE_SHIFT - scale); if (unlikely((numentries * bucketsize) < PAGE_SIZE)) numentries = PAGE_SIZE / bucketsize; } numentries = roundup_pow_of_two(numentries); /* limit allocation size to 1/16 total memory by default */ if (max == 0) { max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; do_div(max, bucketsize); } max = min(max, 0x80000000ULL); if (numentries < low_limit) numentries = low_limit; if (numentries > max) numentries = max; log2qty = ilog2(numentries); gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; do { virt = false; size = bucketsize << log2qty; if (flags & HASH_EARLY) { if (flags & HASH_ZERO) table = memblock_alloc(size, SMP_CACHE_BYTES); else table = memblock_alloc_raw(size, SMP_CACHE_BYTES); } else if (get_order(size) > MAX_PAGE_ORDER || hashdist) { table = vmalloc_huge(size, gfp_flags); virt = true; if (table) huge = is_vm_area_hugepages(table); } else { /* * If bucketsize is not a power-of-two, we may free * some pages at the end of hash table which * alloc_pages_exact() automatically does */ table = alloc_pages_exact(size, gfp_flags); kmemleak_alloc(table, size, 1, gfp_flags); } } while (!table && size > PAGE_SIZE && --log2qty); if (!table) panic("Failed to allocate %s hash table\n", tablename); pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear"); if (_hash_shift) *_hash_shift = log2qty; if (_hash_mask) *_hash_mask = (1 << log2qty) - 1; return table; } void __init memblock_free_pages(struct page *page, unsigned long pfn, unsigned int order) { if (IS_ENABLED(CONFIG_DEFERRED_STRUCT_PAGE_INIT)) { int nid = early_pfn_to_nid(pfn); if (!early_page_initialised(pfn, nid)) return; } if (!kmsan_memblock_free_pages(page, order)) { /* KMSAN will take care of these pages. */ return; } /* pages were reserved and not allocated */ clear_page_tag_ref(page); __free_pages_core(page, order, MEMINIT_EARLY); } DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); EXPORT_SYMBOL(init_on_alloc); DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); EXPORT_SYMBOL(init_on_free); static bool _init_on_alloc_enabled_early __read_mostly = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON); static int __init early_init_on_alloc(char *buf) { return kstrtobool(buf, &_init_on_alloc_enabled_early); } early_param("init_on_alloc", early_init_on_alloc); static bool _init_on_free_enabled_early __read_mostly = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON); static int __init early_init_on_free(char *buf) { return kstrtobool(buf, &_init_on_free_enabled_early); } early_param("init_on_free", early_init_on_free); DEFINE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled); /* * Enable static keys related to various memory debugging and hardening options. * Some override others, and depend on early params that are evaluated in the * order of appearance. So we need to first gather the full picture of what was * enabled, and then make decisions. */ static void __init mem_debugging_and_hardening_init(void) { bool page_poisoning_requested = false; bool want_check_pages = false; #ifdef CONFIG_PAGE_POISONING /* * Page poisoning is debug page alloc for some arches. If * either of those options are enabled, enable poisoning. */ if (page_poisoning_enabled() || (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) && debug_pagealloc_enabled())) { static_branch_enable(&_page_poisoning_enabled); page_poisoning_requested = true; want_check_pages = true; } #endif if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) && page_poisoning_requested) { pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " "will take precedence over init_on_alloc and init_on_free\n"); _init_on_alloc_enabled_early = false; _init_on_free_enabled_early = false; } if (_init_on_alloc_enabled_early) { want_check_pages = true; static_branch_enable(&init_on_alloc); } else { static_branch_disable(&init_on_alloc); } if (_init_on_free_enabled_early) { want_check_pages = true; static_branch_enable(&init_on_free); } else { static_branch_disable(&init_on_free); } if (IS_ENABLED(CONFIG_KMSAN) && (_init_on_alloc_enabled_early || _init_on_free_enabled_early)) pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n"); #ifdef CONFIG_DEBUG_PAGEALLOC if (debug_pagealloc_enabled()) { want_check_pages = true; static_branch_enable(&_debug_pagealloc_enabled); if (debug_guardpage_minorder()) static_branch_enable(&_debug_guardpage_enabled); } #endif /* * Any page debugging or hardening option also enables sanity checking * of struct pages being allocated or freed. With CONFIG_DEBUG_VM it's * enabled already. */ if (!IS_ENABLED(CONFIG_DEBUG_VM) && want_check_pages) static_branch_enable(&check_pages_enabled); } /* Report memory auto-initialization states for this boot. */ static void __init report_meminit(void) { const char *stack; if (IS_ENABLED(CONFIG_INIT_STACK_ALL_PATTERN)) stack = "all(pattern)"; else if (IS_ENABLED(CONFIG_INIT_STACK_ALL_ZERO)) stack = "all(zero)"; else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF_ALL)) stack = "byref_all(zero)"; else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF)) stack = "byref(zero)"; else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_USER)) stack = "__user(zero)"; else stack = "off"; pr_info("mem auto-init: stack:%s, heap alloc:%s, heap free:%s\n", stack, str_on_off(want_init_on_alloc(GFP_KERNEL)), str_on_off(want_init_on_free())); if (want_init_on_free()) pr_info("mem auto-init: clearing system memory may take some time...\n"); } static void __init mem_init_print_info(void) { unsigned long physpages, codesize, datasize, rosize, bss_size; unsigned long init_code_size, init_data_size; physpages = get_num_physpages(); codesize = _etext - _stext; datasize = _edata - _sdata; rosize = __end_rodata - __start_rodata; bss_size = __bss_stop - __bss_start; init_data_size = __init_end - __init_begin; init_code_size = _einittext - _sinittext; /* * Detect special cases and adjust section sizes accordingly: * 1) .init.* may be embedded into .data sections * 2) .init.text.* may be out of [__init_begin, __init_end], * please refer to arch/tile/kernel/vmlinux.lds.S. * 3) .rodata.* may be embedded into .text or .data sections. */ #define adj_init_size(start, end, size, pos, adj) \ do { \ if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \ size -= adj; \ } while (0) adj_init_size(__init_begin, __init_end, init_data_size, _sinittext, init_code_size); adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); #undef adj_init_size pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" #ifdef CONFIG_HIGHMEM ", %luK highmem" #endif ")\n", K(nr_free_pages()), K(physpages), codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K, (init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K, K(physpages - totalram_pages() - totalcma_pages), K(totalcma_pages) #ifdef CONFIG_HIGHMEM , K(totalhigh_pages()) #endif ); } /* * Set up kernel memory allocators */ void __init mm_core_init(void) { /* Initializations relying on SMP setup */ BUILD_BUG_ON(MAX_ZONELISTS > 2); build_all_zonelists(NULL); page_alloc_init_cpuhp(); alloc_tag_sec_init(); /* * page_ext requires contiguous pages, * bigger than MAX_PAGE_ORDER unless SPARSEMEM. */ page_ext_init_flatmem(); mem_debugging_and_hardening_init(); kfence_alloc_pool_and_metadata(); report_meminit(); kmsan_init_shadow(); stack_depot_early_init(); mem_init(); kmem_cache_init(); /* * page_owner must be initialized after buddy is ready, and also after * slab is ready so that stack_depot_init() works properly */ page_ext_init_flatmem_late(); kmemleak_init(); ptlock_cache_init(); pgtable_cache_init(); debug_objects_mem_init(); vmalloc_init(); /* If no deferred init page_ext now, as vmap is fully initialized */ if (!deferred_struct_pages) page_ext_init(); /* Should be run before the first non-init thread is created */ init_espfix_bsp(); /* Should be run after espfix64 is set up. */ pti_init(); kmsan_init_runtime(); mm_cache_init(); execmem_init(); }