// SPDX-License-Identifier: GPL-2.0 #include #include #include #include #include #include #include #include #include #include #include #include "kvm_util.h" #include "test_util.h" #include "guest_modes.h" #include "processor.h" #include "ucall_common.h" static bool mprotect_ro_done; static void guest_code(uint64_t start_gpa, uint64_t end_gpa, uint64_t stride) { uint64_t gpa; int i; for (i = 0; i < 2; i++) { for (gpa = start_gpa; gpa < end_gpa; gpa += stride) vcpu_arch_put_guest(*((volatile uint64_t *)gpa), gpa); GUEST_SYNC(i); } for (gpa = start_gpa; gpa < end_gpa; gpa += stride) *((volatile uint64_t *)gpa); GUEST_SYNC(2); /* * Write to the region while mprotect(PROT_READ) is underway. Keep * looping until the memory is guaranteed to be read-only, otherwise * vCPUs may complete their writes and advance to the next stage * prematurely. * * For architectures that support skipping the faulting instruction, * generate the store via inline assembly to ensure the exact length * of the instruction is known and stable (vcpu_arch_put_guest() on * fixed-length architectures should work, but the cost of paranoia * is low in this case). For x86, hand-code the exact opcode so that * there is no room for variability in the generated instruction. */ do { for (gpa = start_gpa; gpa < end_gpa; gpa += stride) #ifdef __x86_64__ asm volatile(".byte 0x48,0x89,0x00" :: "a"(gpa) : "memory"); /* mov %rax, (%rax) */ #elif defined(__aarch64__) asm volatile("str %0, [%0]" :: "r" (gpa) : "memory"); #else vcpu_arch_put_guest(*((volatile uint64_t *)gpa), gpa); #endif } while (!READ_ONCE(mprotect_ro_done)); /* * Only architectures that write the entire range can explicitly sync, * as other architectures will be stuck on the write fault. */ #if defined(__x86_64__) || defined(__aarch64__) GUEST_SYNC(3); #endif for (gpa = start_gpa; gpa < end_gpa; gpa += stride) vcpu_arch_put_guest(*((volatile uint64_t *)gpa), gpa); GUEST_SYNC(4); GUEST_ASSERT(0); } struct vcpu_info { struct kvm_vcpu *vcpu; uint64_t start_gpa; uint64_t end_gpa; }; static int nr_vcpus; static atomic_t rendezvous; static void rendezvous_with_boss(void) { int orig = atomic_read(&rendezvous); if (orig > 0) { atomic_dec_and_test(&rendezvous); while (atomic_read(&rendezvous) > 0) cpu_relax(); } else { atomic_inc(&rendezvous); while (atomic_read(&rendezvous) < 0) cpu_relax(); } } static void assert_sync_stage(struct kvm_vcpu *vcpu, int stage) { struct ucall uc; TEST_ASSERT_EQ(get_ucall(vcpu, &uc), UCALL_SYNC); TEST_ASSERT_EQ(uc.args[1], stage); } static void run_vcpu(struct kvm_vcpu *vcpu, int stage) { vcpu_run(vcpu); assert_sync_stage(vcpu, stage); } static void *vcpu_worker(void *data) { struct kvm_sregs __maybe_unused sregs; struct vcpu_info *info = data; struct kvm_vcpu *vcpu = info->vcpu; struct kvm_vm *vm = vcpu->vm; int r; vcpu_args_set(vcpu, 3, info->start_gpa, info->end_gpa, vm->page_size); rendezvous_with_boss(); /* Stage 0, write all of guest memory. */ run_vcpu(vcpu, 0); rendezvous_with_boss(); #ifdef __x86_64__ vcpu_sregs_get(vcpu, &sregs); /* Toggle CR0.WP to trigger a MMU context reset. */ sregs.cr0 ^= X86_CR0_WP; vcpu_sregs_set(vcpu, &sregs); #endif rendezvous_with_boss(); /* Stage 1, re-write all of guest memory. */ run_vcpu(vcpu, 1); rendezvous_with_boss(); /* Stage 2, read all of guest memory, which is now read-only. */ run_vcpu(vcpu, 2); /* * Stage 3, write guest memory and verify KVM returns -EFAULT for once * the mprotect(PROT_READ) lands. Only architectures that support * validating *all* of guest memory sync for this stage, as vCPUs will * be stuck on the faulting instruction for other architectures. Go to * stage 3 without a rendezvous */ do { r = _vcpu_run(vcpu); } while (!r); TEST_ASSERT(r == -1 && errno == EFAULT, "Expected EFAULT on write to RO memory, got r = %d, errno = %d", r, errno); #if defined(__x86_64__) || defined(__aarch64__) /* * Verify *all* writes from the guest hit EFAULT due to the VMA now * being read-only. x86 and arm64 only at this time as skipping the * instruction that hits the EFAULT requires advancing the program * counter, which is arch specific and relies on inline assembly. */ #ifdef __x86_64__ vcpu->run->kvm_valid_regs = KVM_SYNC_X86_REGS; #endif for (;;) { r = _vcpu_run(vcpu); if (!r) break; TEST_ASSERT_EQ(errno, EFAULT); #if defined(__x86_64__) WRITE_ONCE(vcpu->run->kvm_dirty_regs, KVM_SYNC_X86_REGS); vcpu->run->s.regs.regs.rip += 3; #elif defined(__aarch64__) vcpu_set_reg(vcpu, ARM64_CORE_REG(regs.pc), vcpu_get_reg(vcpu, ARM64_CORE_REG(regs.pc)) + 4); #endif } assert_sync_stage(vcpu, 3); #endif /* __x86_64__ || __aarch64__ */ rendezvous_with_boss(); /* * Stage 4. Run to completion, waiting for mprotect(PROT_WRITE) to * make the memory writable again. */ do { r = _vcpu_run(vcpu); } while (r && errno == EFAULT); TEST_ASSERT_EQ(r, 0); assert_sync_stage(vcpu, 4); rendezvous_with_boss(); return NULL; } static pthread_t *spawn_workers(struct kvm_vm *vm, struct kvm_vcpu **vcpus, uint64_t start_gpa, uint64_t end_gpa) { struct vcpu_info *info; uint64_t gpa, nr_bytes; pthread_t *threads; int i; threads = malloc(nr_vcpus * sizeof(*threads)); TEST_ASSERT(threads, "Failed to allocate vCPU threads"); info = malloc(nr_vcpus * sizeof(*info)); TEST_ASSERT(info, "Failed to allocate vCPU gpa ranges"); nr_bytes = ((end_gpa - start_gpa) / nr_vcpus) & ~((uint64_t)vm->page_size - 1); TEST_ASSERT(nr_bytes, "C'mon, no way you have %d CPUs", nr_vcpus); for (i = 0, gpa = start_gpa; i < nr_vcpus; i++, gpa += nr_bytes) { info[i].vcpu = vcpus[i]; info[i].start_gpa = gpa; info[i].end_gpa = gpa + nr_bytes; pthread_create(&threads[i], NULL, vcpu_worker, &info[i]); } return threads; } static void rendezvous_with_vcpus(struct timespec *time, const char *name) { int i, rendezvoused; pr_info("Waiting for vCPUs to finish %s...\n", name); rendezvoused = atomic_read(&rendezvous); for (i = 0; abs(rendezvoused) != 1; i++) { usleep(100); if (!(i & 0x3f)) pr_info("\r%d vCPUs haven't rendezvoused...", abs(rendezvoused) - 1); rendezvoused = atomic_read(&rendezvous); } clock_gettime(CLOCK_MONOTONIC, time); /* Release the vCPUs after getting the time of the previous action. */ pr_info("\rAll vCPUs finished %s, releasing...\n", name); if (rendezvoused > 0) atomic_set(&rendezvous, -nr_vcpus - 1); else atomic_set(&rendezvous, nr_vcpus + 1); } static void calc_default_nr_vcpus(void) { cpu_set_t possible_mask; int r; r = sched_getaffinity(0, sizeof(possible_mask), &possible_mask); TEST_ASSERT(!r, "sched_getaffinity failed, errno = %d (%s)", errno, strerror(errno)); nr_vcpus = CPU_COUNT(&possible_mask) * 3/4; TEST_ASSERT(nr_vcpus > 0, "Uh, no CPUs?"); } int main(int argc, char *argv[]) { /* * Skip the first 4gb and slot0. slot0 maps <1gb and is used to back * the guest's code, stack, and page tables. Because selftests creates * an IRQCHIP, a.k.a. a local APIC, KVM creates an internal memslot * just below the 4gb boundary. This test could create memory at * 1gb-3gb,but it's simpler to skip straight to 4gb. */ const uint64_t start_gpa = SZ_4G; const int first_slot = 1; struct timespec time_start, time_run1, time_reset, time_run2, time_ro, time_rw; uint64_t max_gpa, gpa, slot_size, max_mem, i; int max_slots, slot, opt, fd; bool hugepages = false; struct kvm_vcpu **vcpus; pthread_t *threads; struct kvm_vm *vm; void *mem; /* * Default to 2gb so that maxing out systems with MAXPHADDR=46, which * are quite common for x86, requires changing only max_mem (KVM allows * 32k memslots, 32k * 2gb == ~64tb of guest memory). */ slot_size = SZ_2G; max_slots = kvm_check_cap(KVM_CAP_NR_MEMSLOTS); TEST_ASSERT(max_slots > first_slot, "KVM is broken"); /* All KVM MMUs should be able to survive a 128gb guest. */ max_mem = 128ull * SZ_1G; calc_default_nr_vcpus(); while ((opt = getopt(argc, argv, "c:h:m:s:H")) != -1) { switch (opt) { case 'c': nr_vcpus = atoi_positive("Number of vCPUs", optarg); break; case 'm': max_mem = 1ull * atoi_positive("Memory size", optarg) * SZ_1G; break; case 's': slot_size = 1ull * atoi_positive("Slot size", optarg) * SZ_1G; break; case 'H': hugepages = true; break; case 'h': default: printf("usage: %s [-c nr_vcpus] [-m max_mem_in_gb] [-s slot_size_in_gb] [-H]\n", argv[0]); exit(1); } } vcpus = malloc(nr_vcpus * sizeof(*vcpus)); TEST_ASSERT(vcpus, "Failed to allocate vCPU array"); vm = __vm_create_with_vcpus(VM_SHAPE_DEFAULT, nr_vcpus, #ifdef __x86_64__ max_mem / SZ_1G, #else max_mem / vm_guest_mode_params[VM_MODE_DEFAULT].page_size, #endif guest_code, vcpus); max_gpa = vm->max_gfn << vm->page_shift; TEST_ASSERT(max_gpa > (4 * slot_size), "MAXPHYADDR <4gb "); fd = kvm_memfd_alloc(slot_size, hugepages); mem = mmap(NULL, slot_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); TEST_ASSERT(mem != MAP_FAILED, "mmap() failed"); TEST_ASSERT(!madvise(mem, slot_size, MADV_NOHUGEPAGE), "madvise() failed"); /* Pre-fault the memory to avoid taking mmap_sem on guest page faults. */ for (i = 0; i < slot_size; i += vm->page_size) ((uint8_t *)mem)[i] = 0xaa; gpa = 0; for (slot = first_slot; slot < max_slots; slot++) { gpa = start_gpa + ((slot - first_slot) * slot_size); if (gpa + slot_size > max_gpa) break; if ((gpa - start_gpa) >= max_mem) break; vm_set_user_memory_region(vm, slot, 0, gpa, slot_size, mem); #ifdef __x86_64__ /* Identity map memory in the guest using 1gb pages. */ for (i = 0; i < slot_size; i += SZ_1G) __virt_pg_map(vm, gpa + i, gpa + i, PG_LEVEL_1G); #else for (i = 0; i < slot_size; i += vm->page_size) virt_pg_map(vm, gpa + i, gpa + i); #endif } atomic_set(&rendezvous, nr_vcpus + 1); threads = spawn_workers(vm, vcpus, start_gpa, gpa); free(vcpus); vcpus = NULL; pr_info("Running with %lugb of guest memory and %u vCPUs\n", (gpa - start_gpa) / SZ_1G, nr_vcpus); rendezvous_with_vcpus(&time_start, "spawning"); rendezvous_with_vcpus(&time_run1, "run 1"); rendezvous_with_vcpus(&time_reset, "reset"); rendezvous_with_vcpus(&time_run2, "run 2"); mprotect(mem, slot_size, PROT_READ); usleep(10); mprotect_ro_done = true; sync_global_to_guest(vm, mprotect_ro_done); rendezvous_with_vcpus(&time_ro, "mprotect RO"); mprotect(mem, slot_size, PROT_READ | PROT_WRITE); rendezvous_with_vcpus(&time_rw, "mprotect RW"); time_rw = timespec_sub(time_rw, time_ro); time_ro = timespec_sub(time_ro, time_run2); time_run2 = timespec_sub(time_run2, time_reset); time_reset = timespec_sub(time_reset, time_run1); time_run1 = timespec_sub(time_run1, time_start); pr_info("run1 = %ld.%.9lds, reset = %ld.%.9lds, run2 = %ld.%.9lds, " "ro = %ld.%.9lds, rw = %ld.%.9lds\n", time_run1.tv_sec, time_run1.tv_nsec, time_reset.tv_sec, time_reset.tv_nsec, time_run2.tv_sec, time_run2.tv_nsec, time_ro.tv_sec, time_ro.tv_nsec, time_rw.tv_sec, time_rw.tv_nsec); /* * Delete even numbered slots (arbitrary) and unmap the first half of * the backing (also arbitrary) to verify KVM correctly drops all * references to the removed regions. */ for (slot = (slot - 1) & ~1ull; slot >= first_slot; slot -= 2) vm_set_user_memory_region(vm, slot, 0, 0, 0, NULL); munmap(mem, slot_size / 2); /* Sanity check that the vCPUs actually ran. */ for (i = 0; i < nr_vcpus; i++) pthread_join(threads[i], NULL); /* * Deliberately exit without deleting the remaining memslots or closing * kvm_fd to test cleanup via mmu_notifier.release. */ }